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Abstract: Based on our original RNA sequence-based microRNA (miRNA) signatures of head and
neck squamous cell carcinoma (HNSCC), it was revealed that the expression levels of miR-1-3p, miR-
206, miR-133a-3p, and miR-133b were significantly suppressed in cancer specimens. Seed sequences
of miR-1-3p/miR-206 and miR-133a-3p/miR-133b are identical. Interestingly, miR-1-3p/miR-133a-
3p and miR-206/miR-133b are clustered in the human genome. We hypothesized that the genes
coordinately controlled by these miRNAs are closely involved in the malignant transformation of
HNSCC. Our in silico analysis identified a total of 28 genes that had putative miR-1-3p/miR-133a-3p
and miR-206/miR-133b binding sites. Moreover, their expression levels were upregulated in HNSCC
tissues. Multivariate Cox regression analyses showed that expression of PFN2 and PSEN1 were
independent prognostic factors for patients with HNSCC (p < 0.05). Notably, four miRNAs (i.e.,
miR-1-3p, miR-206, miR-133a-3p, and miR-133b) directly bound the 3′untranslated region of PFN2
and controlled expression of the gene in HNSCC cells. Overexpression of PFN2 was confirmed in
clinical specimens, and its aberrant expression facilitated cancer cell migration and invasion abilities.
Our miRNA-based strategy continues to uncover novel genes closely involved in the oncogenesis
of HNSCC.

Keywords: microRNA; clustered; HNSCC; miR-1-3p; miR-206; miR-133a-3p; miR-133b; TCGA; PFN2

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a malignant neoplasm that
arises mainly from the mucosa of the oral cavity, pharynx, and larynx [1]. HNSCC is
the sixth most common cancer worldwide, with 890,000 new cases and 450,000 deaths
in 2018 [2]. Epidemiological studies have shown several risk factors for HNSCC such as
consumption of tobacco and alcohol, exposure to environmental pollutants, and infection
with human papillomavirus or Epstein–Barr virus [3]. With an increase in the number
of HPV-related HNSCC with favorable prognosis, the overall survival rate of HNSCC is
improving [4]. However, the prognosis of HPV-negative HNSCC has not improved, even
with multidisciplinary treatments combining surgery, irradiation, chemotherapy, molecular
targeted agents, and immunotherapy [3,5]. More than 60% of HNSCC cases are at an
advanced stage at the time of the first diagnosis [1]. Treatment that combines chemotherapy
with radiation therapy or surgical resection is the first option for locally advanced HNSCC
patients [6]. Due to the anatomical characteristics of HNSCC, these treatments have a
significant impact on the quality of life. Despite the use of invasive procedures, there
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are many cases resistant to treatment and recurrence or metastasis after treatment is not
uncommon [7]. To further improve treatment outcomes, it is necessary to elucidate the
molecular biological mechanisms that underlie recurrence and metastasis of HNSCC.

MicroRNA (miRNA) is a type of single-strand, noncoding RNA, and its length is
only 18–25 nucleotides [8]. miRNA acts as a negative controller of gene expression in a
sequence-dependent manner [8,9]. In human cells, a single species of miRNA can control
a vast number of genes, and the expression of a single mRNA is subject to numerous
miRNAs [8,10]. Bioinformatic analysis suggested that more than 60% of protein-coding
genes are controlled by miRNAs [8,11]. Therefore, aberrant expression of miRNAs likely
disrupts intracellular RNA networks. In fact, numerous studies have demonstrated that
aberrantly expressed miRNAs are involved in human diseases including various types of
cancer [12,13].

Recent advances in nanotechnology have led to the development of drug delivery
systems that deliver various drugs to target cancer cells [14]. Many attempts to use miRNAs
as pharmaceuticals have been reported so far [15,16]. The advantage of miRNAs as drugs
is that one type of miRNA has the potential to control many target genes [15]. Recently,
exosomes have been attracting attention as a drug delivery system. Exosomes are a type of
cell-derived vesicle characterized as extracellular vesicles. Of particular note, some miRNAs
are contained within exosomes and migrate between cells through exosomes [14,17]. The
development of new therapies that embed tumor-suppressive miRNAs in exosomes and
deliver them to cancer cells is very attractive.

Interestingly, some miRNAs are in close proximity within the human genome. These
miRNAs are called clustered miRNAs [18,19]. The clustered miRNAs share a number of
properties: (a) they are composed of physically adjacent miRNA genes that are transcribed
together in the same orientation, (b) no separate transcriptional units exist between the
members of the cluster, and (c) there are no miRNAs in opposite directions [19]. Members
of miRNA clusters have been shown to exhibit similar expression levels and often regulate
genes and biological functions belonging to the same signaling pathway [20]. Clustered
miRNAs work more efficiently than single miRNA genes, because they include numerous
miRNA-coding genes [19]. Detailed analysis of clustered miRNAs will be an important
topic in future miRNA research.

We have created several miRNA expression signatures of HNSCC that originated in
several regions, e.g., maxillary sinus, oral cavity, and hypopharynx [21–23]. Analysis of our
miRNA signatures of HNSCC revealed that the expression levels of miR-1-3p, miR-206, miR-
133a-3p, and miR-133b were significantly downregulated in cancer tissues. Interestingly, miR-
1-1-3p/miR-133a-2, miR-133a-1/miR-1-2-3p, and miR-206/miR-133b are clustered miRNAs
in the human genome, specifically, 20q13.33, 18q11.2, and 6p12, respectively [24]. Moreover,
the seed sequences of miR-1-3p/miR-206 and miR-133a-3p/miR-133b are identical [25]. We
hypothesized that searching for genes/molecular pathways commonly controlled by these
clustered miRNAs would enhance our understanding of the molecular pathogenesis of
HNSCC.

Our analysis revealed that Profilin 2 (PFN2) was directly controlled by miR-1-3p, miR-
206, miR-133a-3p, and miR-133b, and its expression was involved in HNSCC pathogenesis.
Functional studies demonstrated that aberrant expression of PFN2 facilitated the migratory
and invasive abilities in HNSCC cells. Searching for antitumor miRNAs and the target
molecules that these miRNAs coordinately control will improve our understanding of
HNSCC.

2. Materials and Methods
2.1. Analysis of miRNA Expression in HNSCC

Expression levels of each miRNA in HNSCC clinical specimens was examined based
on the miRNA expression signature (GSE184991) and TCGA–HNSC data (TCGA, Firehose
Legacy).
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Six cDNA libraries obtained from three paired of cancer and normal tissues were
sequenced by Next Seq500 (Illumina, San Diego, CA, USA) for miRNA expression signature.
The clinical information of three HNSCC patients used for miRNA sequencing are shown
in Table S1. All specimens used for our miRNA signature were derived from surgical
resection at Chiba University Hospital. Cancer tissues were collected from each primary
tumor, and normal tissues were collected from normal mucosa at least 1 cm away from the
margins of the primary tumor.

The TCGA–HNSC miRNA sequence expression data were downloaded from cBiopor-
tal (https://www.cbioportal.org), accessed on 10 April 2020 [26,27].

2.2. HNSCC Cell Lines and Cell Culture

SAS and Sa3 were purchased originally from the RIKEN BioResource Center (Tsukuba,
Ibaraki, Japan). These cell lines were cultured in DMEM medium with 10% fetal bovine
serum and antibiotics (i.e., penicillin/streptomycin) The cells were grown in a humidified
atmosphere of 5% CO2 and 95% air at 37 ◦C. The features of the cell lines are shown in
Table S2.

2.3. Transfection of Mature miRNAs and siRNAs

The protocol used for transient transfection of miRNAs and siRNAs were described
in our previous studies [22,28,29]. All miRNA precursors were transfected at 10 nM, and
siRNAs were transfected at 5nM into HNSCC cell lines using RNAiMAX (Invitrogen,
Carlsbad, CA, USA). Mock was a group without precursors or siRNAs. Control groups
were transfected with the negative control precursor. The reagents used in the analysis are
shown in Table S3.

2.4. Functional Assays (Cell Proliferation, Migration, and Invasion) Conducted in HNSCC Cells

The procedures for functional assays (cell proliferation, migration, and invasion as-
says) in HNSCC cells have been described previously [22,28,29]. Briefly, in proliferation
assay, SAS or Sa3 cells were plated at 3.0 × 103 cells per well in 96-well plates. Cell
proliferation was examined by XTT assays (Sigma–Aldrich, St. Louis, MO, USA) 72 h
after miRNA/siRNA transfection. For migration and invasion assays, SAS or Sa3 cells at
2.5 × 105 cells per well were transfected in 6-well plates. After 48 h transfection, SAS or
Sa3 at 1.0 × 105 cell per well were added into the Corning BioCoatTM cell culture chamber
(Corning, Corning, NY, USA) for migration assays or into the Corning BioCoat Matrigel
Invasion Chamber for invasion assays. After 48 h, the cells at the bottom of the chamber
were counted and analyzed.

2.5. Identification of Putative Targets Controlled by miR-1/miR-133 Clustered miRNAs in HNSCC
Cells

The seed sequences of miR-133a/miR-133b and miR-1-3p/miR-206 were confirmed
based on miRbase v.22.1 (https://www.mirbase.org, accessed on 10 April 2020) [30].

We selected putative target genes that had both miR-133a/miR-133b- and miR-1-
3p/miR-206-binding sites based on TargetScanHuman v.7.2 (http://www.targetscan.org/
vert_72/; data downloaded on 10 July 2020) [31]. The clinicopathological analysis of can-
didate genes were performed using clinical information of TCGA–HNSC obtained from
cBioportal (https://www.cbioportal.org), accessed on 10 April 2020 [26,27].

Five-year overall survival rates between the groups were analyzed by log-rank test. In
addition, the multivariate statistical technique was performed using Cox’s proportional
hazards model. The ç cases were divided into two groups according to the median value of
each gene in OncoLnc (http://www.oncolnc.org; accessed on 20 April 2021) [32].

2.6. RNA Extraction and Quantitative Reverse-Transcription PCR (qRT-PCR)

Total RNA was isolated using TRIzol reagent and the PureLink™ RNA Mini Kit
(Invitrogen/Thermo Fisher Scientific (Waltham, MA, USA)). Reverse transcription was

https://www.cbioportal.org
https://www.mirbase.org
http://www.targetscan.org/vert_72/
http://www.targetscan.org/vert_72/
https://www.cbioportal.org
http://www.oncolnc.org
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achieved with the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Waltham, MA, USA). We performed qRT-PCR using the StepOnePlus™ Real-Time PCR
System (Applied Biosystems). GAPDH was used as the normalized control. Taqman assays
(Applied Biosystems) used in this report are shown in Table S3.

2.7. Western Blotting

The procedures for Western blotting have been described previously [22,29,33]. We
incubated the membranes with the anti-PFN2 antibody (1:500) overnight at 4 ◦C and with
the secondary antibody for 1 h at room temperature. GAPDH was used as an internal
control. The reagents used in the analysis are shown in Table S3. Full blots are shown in
Figures S1 and S2.

2.8. Immunostaining

Paraffin sections were obtained from HNSCC cases who received surgical treatment
at Chiba University Hospital. The clinical features are shown in Table S4. Specimens
were incubated with anti-PFN2 antibody (1:1000) overnight at 4 ◦C. We incubated samples
with secondary antibody for 30 min at room temperature and counterstained them with
hematoxylin. The reagents used in the analysis are shown in Table S3.

2.9. Dual Luciferase Reporter Assays

PFN2 DNA sequences including or lacking predicted miRNA-binding sequence were
inserted into the psiCHECK-2 vector (C8021; Promega, Madison, WI, USA). Transfection of
the purified plasmid vectors into HNSCC cells were performed using Lipofectamine 2000
(Invitrogen) at 50 ng/well. After 48 h of transfection, we conducted dual luciferase reporter
assays using the Dual Luciferase Reporter Assay System (Promega). Luminescence data
are presented as the Renilla/Firefly luciferase activity ratio.

2.10. Gene Set Enrichment Analysis (GSEA)

To investigate the molecular pathways in HNSCC, GSEA was performed. TCGA–
HNSC data were divided into high- and low-expression groups according to the Z-score of
the PFN2 expression level. We generated a ranked list of genes by the log2 ratio comparing
the expression levels of each gene between the two groups. We uploaded the resultant
gene lists into GSEA software [34,35] and applied the Hallmark gene set in The Molecular
Signatures Database [34,36].

2.11. Statistical Analysis

JMP Pro 15 (SAS Institute Inc., Cary, NC, USA) was used for statistical analyses.
Comparisons between the two groups were assessed by Welch’s t-test. Differences be-
tween multiple groups were assessed by Dunnett’s test compared to control group. A
p-value < 0.05 was considered statistically significant. Significant differences within the
figures are expressed as follows: * p < 0.05, ** p < 0.01, *** p < 0.001, N.S.: not significant.
Quantitative data are presented as the means and standard errors.

3. Results
3.1. Expression Levels of miR-1/miR-133 Clustered miRNAs in HNSCC Clinical Specimens

In the human genome, miR-1-1 and miR-133a-2 are located on chromosome 20q13.33,
whereas miR-133a-1 and miR-1-2 are located on chromosome 18q11.2, while miR-206 and
miR-133b are located on chromosome 6p12.2 (Figure 1A). Throughout the maturation
process, miR-133a-3p/miR-133b and miR-1-3p/miR-206 are formed from pre-miRNAs. The
seed sequences of miR-133a-3p/miR-133b are identical and the seed sequences of miR-1-
3p/miR-206 are identical (Figure 1A).
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Figure 1. Expression levels of miR-1/miR-133 clustered miRNAs in HNSCC clinical specimens.
(A) The chromosomal location of each microRNA. Mature seed sequences of miR-133a-3p/miR-133b
were identical. Mature seed sequences of miR-1-3p/miR-206 were identical. (B) Volcano plot of the
miRNA expression signature determined through small RNA sequencing. The log2-fold change (FC)
is plotted on the x-axis, and the log10 (p-value) is plotted on the y-axis. The blue points represent the
downregulated miRNAs with an absolute log2 FC <−2.0. The red points represent the downregulated
miRNAs with an absolute log2 FC > 2.0. (C) The expression levels of miR-133a-3p/miR-133b and
miR-1-3p/miR-206 were evaluated in an HNSCC data set from TCGA.

To confirm the expression levels of miR-133a-3p/miR-133b and miR-1-3p/miR-206, we
used our HNSCC miRNA expression signature (GSE184991). All were downregulated
(the log2 fold-change < −2.0) in HNSCC clinical tissues (Figure 1B). We validated aberrant
expression of these miRNAs using the TCGA–HNSC data set. TCGA database analysis
showed that all these miRNAs were significantly downregulated in cancer tissues (n = 485)
compared with normal tissues (n = 44) (Figure 1C).

3.2. Tumor-Suppressive Functions of miR-1/miR-133 Clustered miRNAs Assessed by Ectopic
Expression Assays

To assess the effects of the ectopic expression of miR-133a-3p/miR-133b and miR-1-
3p/miR-206, functional assays were performed in two HNSCC cell lines (i.e., SAS and
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Sa3). The results revealed that transfection of miR-133a-3p/miR-133b and miR-1-3p/miR-206
into HNSCC cell lines significantly suppressed cancer cell proliferation, migration, and
invasion (Figure 2A–C). Typical images of cells in migration and invasion assays following
miR-133a-3p/miR-133b and miR-1-3p/miR-206 transfection are shown in Figures S3 and S4.
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Figure 2. Tumor-suppressive functions of miR-1/miR-133 clustered miRNAs in HNSCC cells, SAS,
and Sa3: (A) cell proliferation assays; (B) cell migration assays; (C) cell invasion assays. (*** p < 0.001).

These findings showed tumor suppressive functions of miR-133a-3p/miR-133b and
miR-1-3p/miR-206 in HNSCC.
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3.3. Screening for Common Oncogenic Targets of Clustered miR-1/miR-133 miRNAs in HNSCC
Cells

We focused on target genes coordinately regulated by tumor suppressive clustered
miRNAs (miR-133a-3p/miR-133b and miR-1-3p/miR-206) that were involved in HNSCC
molecular pathogenesis and clinical prognosis.

Our strategy for searching for common putative target genes is shown in Figure 3.
Based on the TargetScan Human database (release 7.2), we identified a total of 896 genes that
had putative miR-133a-3p/miR-133b-binding sites in the 3′-UTR, and a total of 711 genes
that had putative miR-1-3p/miR-206-binding sites in the 3′-UTR. Ninety-five of these genes
were common putative targets of clustered miRNAs.
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Figure 3. Our strategy of identification of miR-1/miR-133 clustered miRNAs targets in HNSCC cells.

Next, we confirmed the expression levels of these genes in HNSCC using TCGA–
HNSC data. Among these genes, 28 were upregulated in cancer tissues (n = 518) compared
to normal tissues (n = 44). We further analyzed these 28 genes as candidates for common
oncogenic targets (Table 1).
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Table 1. Twenty-eight candidate target genes regulated by both miR-133a-3p/miR-133b and miR-1-
3p/miR-206.

Entrez
Gene ID Gene Symbol Gene Name 5 y OS p-Value

(Log-Rank Test)

FDR
(Benjamini–
Hochberg)

27 ABL2 c-abl oncogene 2, non-receptor tyrosine kinase 0.155 0.426
29956 CERS2(LASS2) ceramide synthase 2 0.353 0.618
54805 CNNM2 cyclin M2 0.792 0.822
23603 CORO1C coronin, actin binding protein, 1C 0.099 0.358
57089 ENTPD7 ectonucleoside triphosphate diphosphohydrolase 7 0.073 0.354
23197 FAF2 Fas associated factor family member 2 0.406 0.661
2729 GCLC glutamate-cysteine ligase, catalytic subunit 0.710 0.764

23349 KIAA1045(PHF24) KIAA1045(PHD finger protein 24) 0.110 0.358
55243 KIRREL kin of IRRE like (Drosophila) 0.638 0.733
3927 LASP1 LIM and SH3 protein 1 0.051 0.354

27253 PCDH17 protocadherin 17 0.167 0.426
5150 PDE7A phosphodiesterase 7A 0.655 0.733
5217 PFN2 profilin 2 0.000 0.011
5663 PSEN1 presenilin 1 0.004 0.035
5725 PTBP1 polypyrimidine tract binding protein 1 0.621 0.733
5757 PTMA prothymosin, alpha 0.330 0.616
5814 PURB purine-rich element binding protein B 0.229 0.492

285590 SH3PXD2B SH3 and PX domains 2B 0.552 0.733

55186 SLC25A36 solute carrier family 25 (pyrimidine nucleotide carrier),
member 36 0.443 0.661

6546 SLC8A1 solute carrier family 8 (sodium/calcium exchanger),
member 1 0.919 0.919

6857 SYT1 synaptotagmin I 0.003 0.035
8407 TAGLN2 transgelin 2 0.626 0.733
7030 TFE3 transcription factor binding to IGHM enhancer 3 0.472 0.661

79183 TTPAL tocopherol (alpha) transfer protein-like 0.115 0.358
26100 WIPI2 WD repeat domain, phosphoinositide interacting 2 0.076 0.354
7525 YES1 v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1 0.205 0.478

56829 ZC3HAV1 zinc finger CCCH-type, antiviral 1 0.269 0.538
55609 ZNF280C zinc finger protein 280C 0.455 0.661

5 y OS: 5-year overall survival rates; FDR: false discovery rate.

3.4. Clinical Significance of miR-1/miR-133 Clustered miRNAs Targets by TCGA Analysis

We investigated the clinical significance of the 28 common putative targets controlled
by miR-133a-3p/miR-133b and miR-1-3p/miR-206 in HNSCC. The expression and 5-year
overall survival analysis showed that three genes (PFN2, PSEN1, and SYT1) were signifi-
cantly upregulated in cancer tissues (Figure 4A), and increased expression levels of each
gene were associated with a poorer prognosis in HNSCC patients (log rank test; p < 0.05
and false discovery rate < 0.05; Figure 4B and Table 1).

In addition, Cox proportional hazards regression analysis was performed for 5-year
overall survival rates, using each gene expression level (i.e., PFN2, PSEN1, and SYT1),
tumor stage, pathological grade, and age as covariates. The multivariate analysis showed
that the expression levels of PFN2 and PSEN1 were independent prognostic factors (PFN2:
HR 1.490, p < 0.05; PSEN1: HR 1.444, p < 0,05; Figure 4C). These results suggested that
PFN2 and PSEN1 were oncogenes related to molecular pathogenesis and clinical prognosis
in HNSCC patients.
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HNSCC cells (Figure 5A,B). We found that the expression levels of PFN2 were signifi-
cantly suppressed by miR-133a-3p/miR-133b and miR-1-3p/miR-206 in HNSCC cells (Fig-
ure 5A). On the other hand, transfection of miR-133a-3p/miR-133b reduced the expression 
level of PSEN1, whereas transfection of miR-1-3p/miR-206 did not significantly suppress 
the expression (Figure 5B). According to these results, we focused on PFN2 as a common 
oncogenic target of miR-133a-3p/miR-133b and miR-1-3p/miR-206 in HNSCC. 

Figure 4. Clinical significance of PFN2, PSEN1, and SYT1 in HNSCC clinical specimens determined
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cancer tissues in TCGA–HNSC; (B) Kaplan–Meier curves of the 5 year overall survival frequencies
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the three target genes (i.e., PFN2, PSEN1, and SYT1) identified by the analysis of the TCGA–HNSC
data (HR: hazard ratio; CI: confidence interval).

3.5. Direct Control of PFN2 Expression by All Members of the miR-1/miR-133 Clustered miRNAs
in HNSCC Cells

First, qRT-PCR was performed to evaluate whether expression of PFN2 and PSEN1
was controlled by clustered miRNAs (miR-133a-3p/miR-133b and miR-1-3p/miR-206) in
HNSCC cells (Figure 5A,B). We found that the expression levels of PFN2 were significantly
suppressed by miR-133a-3p/miR-133b and miR-1-3p/miR-206 in HNSCC cells (Figure 5A).
On the other hand, transfection of miR-133a-3p/miR-133b reduced the expression level
of PSEN1, whereas transfection of miR-1-3p/miR-206 did not significantly suppress the
expression (Figure 5B). According to these results, we focused on PFN2 as a common
oncogenic target of miR-133a-3p/miR-133b and miR-1-3p/miR-206 in HNSCC.
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Figure 5. Expression of PFN2 and PSEN1 controlled by miR-1/miR-133 clustered miRNAs in HNSCC
cells: (A) real-time PCR showed significantly reduced expression of PFN2 mRNA 48 h after transfec-
tion of each miR-133a-3p/miR-133b and miR-1-3p/miR-206; (B) PSEN1 expression was not repressed
by miR-1-3p/miR-206. (** p < 0.01, *** p < 0.001, N.S.: not significant).

Western blotting revealed that the protein levels of PFN2 were reduced by clustered
miRNA transfection (Figure 6A). To prove that direct binding between PFN2 and clus-
tered miRNAs was sequence dependent, a dual-luciferase reporter assay was conducted.
The luciferase activity was significantly reduced following co-transfection with miR-133a-
3p/miR-133b and a vector containing the miR-133a-3p/miR-133b-binding site in the 3′-UTR
of PFN2 (Figure 6B). On the other hand, co-transfection with a vector that lacked the se-
quence of the miR-133a-3p/miR-133b site showed no change in luciferase activity (Figure 6B).
Co-transfection with miR-1-3p/miR-206 and a vector containing the miR-1-3p/miR-206-
binding site reduced the luciferase activity, but co-transfection with miR-1-3p/miR-206
and a vector lacking the miR-1-3p/miR-206-binding site did not inhibit luciferase activity
(Figure 6C).
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To confirm expression of the PFN2 protein in HNSCC clinical specimens, immuno-

histochemical staining was performed. Clinical features of four HNSCC cases used for 
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sion in the normal epithelium, high expression of PFN2 was detected in cancer lesions in 
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Figure 6. Direct regulation of PFN2 by miR-1/miR-133 clustered miRNAs in HNSCC cells.
(A) Western blot of PFN2 protein 48 h after miR-133a-3p/miR-133b and miR-1-3p/miR-206 transfection
of SAS and Sa3 cells. (B) The TargetScan database shows that a single putative miR-133a-3p/miR-133b
binding site predicts the 3′-UTR of the PFN2 sequence (upper panel). Dual-luciferase reporter assays
after co-transfection of the wild-type or deleted-type vector and miR-133a-3p/miR-133b in Sa3 cells
(lower panel). (C) The TargetScan database shows that a single putative miR-1-3p/miR-206 binding
site predicts the 3′-UTR in the PFN2 sequence (upper panel). Dual-luciferase reporter assays after
co-transfection of the wild-type vector or deleted-type vector and miR-133a-3p/miR-133b in Sa3 cells
(lower panel). (*** p < 0.001, N.S.: not significant).

3.6. Overexpression of PFN2 in HNSCC Clinical Specimens

To confirm expression of the PFN2 protein in HNSCC clinical specimens, immuno-
histochemical staining was performed. Clinical features of four HNSCC cases used for
immunostaining are summarized in Table S1. Whereas there was almost no PFN2 expres-
sion in the normal epithelium, high expression of PFN2 was detected in cancer lesions in
HNSCC (Figure 7).
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Figure 7. Overexpression of PFN2 in HNSCC clinical specimens. (A,B) Weak expression was detected
in the normal mucosa. (C–F) High expression of PFN2 was detected in the nuclei and/or cytoplasm
of HNSCC cancer cells.

3.7. Effects of PFN2 Knockdown on the Proliferation, Migration, and Invasion of HNSCC Cells

To assess the role of PFN2 as an oncogene in HNSCC cells, functional knockdown
assays using siRNA were performed. First, we confirmed the inhibitory effects of siRNA
by performing qRT-PCR and Western blotting. Two different siRNAs targeting PFN2
(i.e., siPFN2-1 and siPFN2-2) were used for this study. The mRNA and protein levels
of PFN2 were significantly inhibited after transfection of siRNAs into HNSCC cell lines
(Figure 8A,B).

Then, functional assays using these siRNAs were performed. Knockdown of PFN2
had little effect on cell proliferation in HNSCC cells (Figure 9A). However, cell migration
and invasion were significantly suppressed after transfection of siPFN2 in SAS and Sa3 cells
(Figure 9B,C). Typical images of cells in migration and invasion assays following siPFN2
transfection are shown in Figures S5 and S6.
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Figure 8. Knockdown efficiencies of siRNAs targeting PNF2 in HNSCC cell lines. Knockdown
efficiencies of PFN2 expression by siPFN2-1 and siPFN2-2 were evaluated by real-time PCR (A) and
Western blotting (B) in SAS and Sa3 cells. Expression data for PFN2 (mRNA) and PFN2 (protein)
were collected 48 h after siRNAs transfection. (*** p < 0.001).
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Figure 9. Functional assays after knockdown of PFN2 in HNSCC cell lines (SAS and Sa3): (A) cell
proliferation assays; (B) cell migration assays; (C) cell invasion assays. (** p < 0.01, *** p < 0.001, N.S.:
not significant).
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3.8. PFN2-Mediated Molecular Pathways in HNSCC Cells

To identify the molecular pathways involving PFN2 in HNSCC, we performed gene set
enrichment analysis (GSEA) using TCGA–HNSC RNA-seq data. GSEA analysis revealed
that “epithelial–mesenchymal transition” was the most enriched pathway in the PFN2 high
expression group (Figure 10 and Table 2). These results suggest that aberrant expression
of PFN2 contributes to the malignant phenotype, including migration and/or invasion of
HNSCC, through the epithelial–mesenchymal transition pathway.
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Figure 10. PFN2-mediated pathways identified by gene set enrichment analysis: (A) the top 10 en-
riched gene sets in the high PFN2 expression group; (B) enrichment plot of “epithelial–mesenchymal
transition”.

Table 2. The top 10 enriched gene sets in the high PFN2 expression group.

Name Normalized Enrichment Score FDR q-Value

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 2.490 q < 0.001
HALLMARK_MYOGENESIS 1.943 0.008

HALLMARK_PANCREAS_BETA_CELLS 1.870 0.012
HALLMARK_HEDGEHOG_SIGNALING 1.840 0.012

HALLMARK_SPERMATOGENESIS 1.685 0.047
HALLMARK_UV_RESPONSE_DN 1.664 0.046

HALLMARK_XENOBIOTIC_METABOLISM 1.662 0.040
HALLMARK_GLYCOLYSIS 1.658 0.036

HALLMARK_HYPOXIA 1.600 0.053
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY 1.577 0.058

4. Discussion

Even when various strategies are used to treat HNSCC patients, their prognosis is still
poor due to the high rate of recurrence and metastasis [3,7]. Unfortunately, combination
therapy with EGFR inhibitor or PD-L1 inhibitor has not achieved satisfactory therapeutic
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results [37,38]. With the advent of immune checkpoint inhibitors, treatment options for
recurrent or metastatic cases have increased, but their efficacy is limited [39,40]. Despite
vigorous RNA sequence analysis using samples from patients with HNSCC, the search
for therapeutic target molecules for HNSCC has not fully succeeded [41], with a few
exceptions [42,43].

We are continuing tumor-suppressive miRNA-based analysis to explore prognostic
markers and therapeutic targets in HNSCC [21,23,29,44]. Our previous studies showed
that miR-143 and miR-145 functioned as tumor-suppressive miRNAs in a wide range of
cancers [45–48]. Notably, they are clustered miRNAs on the human chromosome at region
5q31 [45,46]. Our studies demonstrated that Golgi membrane protein 1 (GOLM1) and
hexokinase-2 (HK2) were directly controlled by miR-143-3p and miR-145-5p in prostate
cancer and renal cell carcinoma, respectively [45,46]. Further study showed that the MET
proto-oncogene was coordinately regulated by miR-23b and miR-27b clustered miRNAs in
HNSCC cells [49]. Clustered miRNAs regulate one gene through different seed sequences.
Continuous and genome-wide analyses of clustered miRNAs are essential to explain the
biological implications of clustered miRNAs on the human genome.

Analysis of our original miRNA expression signatures in several cancers, including
HNSCC showed that members of the miR-1/133 clustered miRNAs were downregulated
in cancer tissues [21,23,50]. Downregulation of each miRNA in the miR-1/miR-133 cluster
was confirmed by TCGA–HNSC database analysis. Originally, miR-1/miR-133 clustered
miRNAs were discovered through their roles involved in the development of skeletal
and cardiac muscles, called “myomiR” [51]. In cancer research, downregulation of miR-
1/miR-133 clustered miRNAs were reported in a wide range of cancers, and their functional
analyses showed that these miRNAs acted as tumor-suppressive miRNAs [21]. Therefore,
the search for oncogenes and oncogenic pathways controlled by each miRNA is being
vigorously carried out [52–54].

In this study, a total of 28 genes were identified as putative targets of miR-1/miR-133
clustered miRNAs. Among these targets, we identified PFN2 as a gene directly controlled
by all members of miR-1/miR-133 clustered miRNAs in HNSCC cells. Our present analysis
showed that aberrantly expressed PFN2 facilitated cancer cell migration and invasion and
was closely involved in the malignant phenotypes of HNSCC.

Profilin is an actin-binding protein that forms an ATP-actin-PFN complex. It recruits
monomeric actin to the barbed end of actin filaments and it contributes to elongation [55].
In mammals, profilin is constituted by four members (e.g., PFN1, PFN2, PFN3, and PFN4);
PFN1 and PFN2 are the most common types of profilins [56].

Several studies have reported that PFN2 expression is involved in malignant trans-
formation of cancer cells [57–59]. In triple-negative breast cancer (TNBC), high expression
of PFN2 was related to a poorer prognosis (10-year overall survival and relapse-free sur-
vival) [58]. In esophageal squamous cell carcinoma (ESCC), PFN2 protein expression was
markedly increased gradually from low-grade intraepithelial neoplasia to ESCC, and high
expression was positively correlated with the depth of invasion and lymph node metasta-
sis [57]. A recent study reported that PFN2 is involved in small cell lung cancer metastasis
and angiogenesis through exosomes [60].

Transforming growth factor-β (TGF-β) signaling induces cancer cell development and
progression [61]. Expression of PFN2 induced the transactivation of Smad2 and Smad3,
and these transmission factors enhanced TGF-β-induced EMT and angiogenesis in lung
cancer [59]. PFN2 overexpression reduced epithelial markers and increased mesenchymal
markers in several cancers [57,58]. These results suggest that PFN2 promotes tumor
aggressiveness via EMT. Our present study showed that PFN2 contributes to the malignant
phenotype in HNSCC through the EMT pathway, and these results are consistent with
previous reports.

There are other reports that miRNAs control the expression of PFN2 [62–64]. In lung
cancer cells, miR-30a-5p negatively regulates PFN2 and inhibited EMT and invasion [62].
In breast cancer, miR-150-5p suppressed PFN2 in a sequence-dependent manner, and the



Biomedicines 2022, 10, 663 16 of 19

long non-coding RNA FOXD2 adjacent the opposite strand of RNA1 (FOXD2-AS1)/miR-
150-5p/PFN2 axis regulated malignancy and tumorigenesis [63]. In osteosarcoma cell lines,
miR-140-5p repressed PFN2 [64]. lncRNA TUG1 was a sponge for miR-140-5p to isolate
PFN2, inducing cell progression and metastasis [64]. Interestingly, these miRNAs were
downregulated in HNSCC tissues [65–67], and these events might coordinately enhance
expression of PFN2 in HNSCC cells. The finding in this report that the tumor-suppressive
clustered miRNAs, miR-1/133 cluster, directly regulated PFN2 in HNSCC cells is attractive
and novel. In this study, two cell lines were used to verify the importance of miR-1/miR-133
clustered miRNAs/PFN2 axes for malignant transformation of HNSCC. In order to test our
hypothesis, in vivo (mouse model) experiments are indispensable.

5. Conclusions

Analysis of miRNA expression signatures of HNSCC showed that all members of
the miR-1/miR-133 miRNA cluster (e.g., miR-1-3p, miR-206, miR-133a-3p, and miR-133b)
were frequently downregulated in cancer tissues. TCGA database analysis confirmed that
these miRNAs were significantly reduced in cancer tissues. Ectopic expression assays
demonstrated that these miRNAs acted as antitumor miRNAs in HNSCC cells. A combi-
nation of in silico analyses and luciferase reporter assays revealed that PFN2 was directly
controlled by all members of the miR-1/miR-133 cluster in HNSCC cells. Expression of
PFN2 was closely involved in the prognosis of patients with HNSCC. Moreover, aberrant
expression of PFN2 facilitated cancer cell migration and invasion. Those abilities might be
controlled by EMT pathways. Our tumor-suppressive miRNA-based strategy thus provides
novel insights, contributing to our overall understanding of the molecular pathogenesis of
HNSCC.
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