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Abstract: Nowadays, gelatin, a molecular derivative of collagen, has gained increasing interest in tis-
sue engineering applications due to excellent biocompatibility, biodegradability, availability, process
simplicity, and low costs. In this study, we fabricated tannic acid-crosslinked gelatin nanofibers by
electrospinning method. In order to increase the bio-functionality of scaffolds, they were exposed to
the atmospheric air plasma. Several analytical tools were used for evaluation of nanofibers including
scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflection
Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), and water contact angle
equipment (CA) together with biocompatibility study using fibroblast cells. Results demonstrated
that atmospheric air plasma is not only able to improve the hydrophilicity of nanofibers but it also im-
proves the bio-functionality against human skin fibroblast cells. Hence, we recommend atmospheric
air plasma pre-treatment approach for the surface functionalization of gelatin nanofibers for skin
tissue engineering applications.

Keywords: electrospinning; gelatin; nanofibers; plasma; skin tissue engineering

1. Introduction

Gelatin is a natural biopolymer obtained from collagen under controlled hydrolysis.
It has well-known properties for drug delivery, wound healing, and tissue regeneration
applications [1–7]. Despite several advantages in biomedical engineering and regenerative
medicine, gelatin has some major problems including melting at temperatures about or
above 37 ◦C in water and hardening into gel at room temperatures. Therefore, specific
pre-treatments are required for gelatin prior to applications in tissue engineering. Studies
showed that gelatin can mimic different properties of collagen after the crosslinking ap-
proach with chemical reagents or physical processes [1]. In this context, aldehyde-based
chemicals have been proposed by some researchers despite their moderate toxicity in tissue
regeneration studies. Therefore, researchers have explored bioactive, non-toxic, and natural
compounds to stabilize gelatin biomacromolecules [8]. Tannic acid is a plant polyphenol
and a glucose derivative which is widely used as a natural reagent in the moisture, an-
tioxidant, antimicrobial, antiviral, and anti-inflammatory products. Recent studies have
approved that tannic acid can be effectively applied as a crosslinker for gelatin [9,10].

Electrospinning is a simple and effective method for producing long, uniform, and
fine diameter nanofibers. Resultant scaffolds from different nanofibers have shown specific
properties such as high surface-to-volume ratio, high porosity, and long lengths. Notably,
they have been used in various products such as artificial tissues, biomedical products,
electronics, sensors, and nanocomposites [11–15]. In the electrospinning process, different
biomaterials can be utilized with effective mechanical properties in order to adapt and
functionalize a biological environment [13–15]. On the other hand, surface modification of
electrospun products has been an attractive method for increasing multifunctionality and
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biocompatibility properties [10]. A great number of studies demonstrated that different
techniques can be applied for biofunctionalization of polymers including plasma, corona
discharge, flame, photons, electron beam, ion beam, X-ray, and Gama-ray functionalization.
However, plasma process of polymers has been known as a safe, cost-effective, and simple
approach without affecting the bulk properties [16–19]. Our previous studies demonstrated
that plasma process enhances the interactions between different polymers and increases the
absorption properties of biomaterials. Moreover, protein molecules can easily be adsorbed
on the plasma-treated membranes due to improvement in hydrophilicity [10,16]. This is
owing to the fact that oxygen-containing molecules can be generated on plasma-treated
biomaterials which is important in tissue engineering applications [20]. In continuation to
our previous studies, the aim of our research is to study the effect of atmospheric air plasma
method on bio-functionality of gelatin nanofibers against human skin fibroblast cells.

2. Materials and Methods
2.1. Electrospinning and Crosslinking Nanofibers

Gelatin powder (type A, Bio Reagent with code G1890 from porcine skin), tannic acid,
and acetic acid (66%) were provided from Sigma Aldrich. According to the prior research,
acetic acid was used as a solvent for gelatin electrospinning [9,10]. The spinning solution
(20% w/w) was prepared by dissolving 2 g gelatin in 10 g acetic acid. Then, it was stirred at
30 ◦C for 4 h. The electrospinning process was conducted under the following conditions
using the electrospinning device from Fanavaran nano-meghyas Co. (Tehran, Iran): high
voltage value of 15 kV, distance of tip of needle to collector of 15 cm, and feeding rates
of 0.6 mL/h. Then, nanofibers were collected onto an aluminum (Al) sheet. In order to
generate crosslinked nanofibers, gelatin scaffolds were treated in a solution containing
5% w/w tannic acid and finally placed in a vacuum oven at 45 ◦C for 3 h.

2.2. Plasma Functionalization

Crosslinked nanofiber scaffolds were treated in a PF-200 plasma DBD device (Nik
Fanavaran Plasma Co. from Tehran, Iran) for 90 s in the presence of compressed atmo-
spheric air. The voltage applied in this process was AC and up to 100 kV, the gas pressure
was 2 L/min and the distance to nozzle was 3 mm. Plasma-treated samples were kept
under vacuum prior to characterization.

2.3. Microscopic Evaluation

The morphology of gelatin nanofibers was illustrated with scanning electron micro-
scope (SEM, LEO1455VP, ENGLAND). In this context, samples were first coated with
sputter coating (Au layer) under vacuum conditions. We applied a pumping system along
with a coating thickness controller of MTM-20 at a sputtering power of 30 W. The coating
thickness and the target-to-substrate distance were 10 and 50 mm, respectively. The SEM
working distance was set at 9 mm for all samples and a magnification of ×10 K (K = 1000)
was used. SEM device was operated at a 25 kV accelerating voltage.

AFM was employed to evaluate the surface topography and the roughness of tissues
on a non-contact mode (FemtoScan, Moscow, Russia). It had a single-beam Pt-coated
fpN01S tip with a length of 130 µm, width of 35 µm, resonance frequency of 152 kHz,
and force constant of 5.3 N/m. The root mean square (RMS) of nanofibers, as the most
important parameter for roughness, was calculated according to Equation (1):

RMS =

√
∑N

n−1(Zn − Zm)2
N − 1

, (1)

where Zn is the height measurement of pixel n (from a total of N = 256 × 256 pixels), and
Zm is the mean height.
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2.4. Chemical Analysis

The ATR-FTIR spectra of nanofibers were assessed with the FTIR spectroscopy (Thermo
Nicolet NEXUS 870 FTIR from Nicolet Instrument Corp., Portland, OR, USA). The spectra
were collected after 64 scans per sample.

2.5. Physical Properties and Wettability

X-ray diffraction studies of nanofibers were conducted from wide-angle X-ray diffrac-
tograms using a Philips X’Pert Pro Multipurpose X-ray Diffractometer operating at 40 mA.
Ni-filtered Cu Ka radiation generated at 40 kV (k = 0.1542 nm) and the measured angle
ranged from 4 to 70◦, with the scan speed of 1◦/min.

Wettability of the scaffolds was assessed using a water contact angle system supported
by a video camera equipment (Perkin Elmer Spectrum RX-1, Duluth, MN, USA). To achieve
the contact angle (CA), the water droplet size was set at 0.5 mL and three samples were
evaluated for each test; the average value of CA was finally reported.

2.6. Cell Culture and Microscopic Evaluation

We also studied the effect of atmospheric air plasma treatment of gelatin films on
the human dermal fibroblast cell culture. HDF-1 (human dermal fibroblast) cells were
purchased from Royan Institute, Iran. In this regard, primary cells, derived from human
skin fibroblasts were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Biosera,
England) prepared with 10% fetal bovine serum (FBS; Gibco, Mississauga, ON, Canada),
100 IU/mL penicillin, and 100 µg/mL streptomycin. The cells were remained at 37 ◦C
in 5% CO2 condition. Then, final cells (fourth passage) were cultivated on gelatin films
with a size of 10 mm × 10 mm, by using a microscope slide cover glass (22 mm × 22 mm).
After 24 h, films were washed twice with PBS, then fixed using 2.5% glutaraldehyde for
1 h at 4 ◦C, dehydrated by graded ethanol, and allowed to air-dry overnight. The dried
films were finally imaged using SEM and optical microscopy with a cell seeding density of
10,000 cells/cm2 of medium.

3. Results and Discussion
3.1. Microscopic Assessment

The surface morphology of gelatin nanofiber scaffolds was assessed before and after
treatment with air pressure plasma, using SEM and AFM methods. Figure 1A,B indicates
the results of SEM data for the untreated and plasma-treated gelatin nanofibers. There
were no considerable changes on the surface, morphology, and the average diameter of
nanofibers after plasma treatment. As a result of using acetic acid solvent, we previously
found that several factors prevent bead-like patterns on electrospun nanofibers including
electrostatic repulsion, surface tension, and viscoelastic properties. Therefore, we used
optimized electrospinning conditions from our previous studies to generate smooth gelatin
nanofibers [9,10]. In our latest study on argon and argon–oxygen plasma-treated gelatin
nanofibers, SEM did not indicate any surface changes which is in agreement with the
results from air pressure plasma-treated nanofibers.

For an accurate surface topography evaluation of scaffolds, we led a complementary
AFM analysis (Figure 1C,D). We also extracted the output results from AFM analysis,
and roughness parameters were illustrated in Table 1. The surface of untreated fibers
was smooth with an average RMS of 5.1 nm, as calculated from Figure 1C. The RMS for
atmospheric-air plasma-treated nanofibers (Figure 1D) was 954.9 nm. A drastic increase in
the surface roughness of nanofibers after plasma treatment can be resulted from several
factors including the bombardment of energetic particles such as electrons, ions, radicals,
neutrals, and excited atoms/molecules. On the other hands, chemical etching of polymer
surfaces has been illustrated by plasma method due the bond breakage, chain scission, and
chemical degradation [21,22]. In several research works, we established that the surface of
polymer films and fibers can be oxidized after plasma functionalization.
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Figure 1. (A) SEM image of untreated gelatin nanofibers, (B) SEM image of atmospheric-air plasma-
treated gelatin nanofibers, (C) AFM image of untreated gelatin nanofibers, (D) AFM image of
atmospheric-air plasma-treated gelatin nanofibers.

Table 1. Different parameters extracted from AFM analysis for the untreated and atmospheric-air
plasma-treated gelatin nanofibers (standard deviations in parenthesis).

Samples Plasma Exposure
Time (s)

Maximum Peak
Height, Ra (nm)

Maximum Valley
Depth, Rz (nm)

Average Peak-to-
Valley Height, Rq (nm)

RMS
(nm)

Untreated
nanofibers 0 6.5 (0.02) 276.8 (2.7) 47.4 (1.1) 5.1 (0.01)

Plasma-treated
nanofibers 90 30.8 (0.1) 479.8 (5.3) 222.6 (2.5) 954.9 (4.3)

3.2. Chemical Analysis

Figure 2 indicated ATR-FTIR spectra for the untreated and atmospheric-air plasma-
treated gelatin nanofibers. We observed various bands arose for the untreated gelatin
including a band at 3443 cm−1 due to N–H stretching of amide bond, C–H stretching at
2925 cm−1, C=O stretching at 1635–1651 cm−1, a band at 1449 cm−1 from C–C bond, and
peaks at about 610-66 cm−1 related to C–H bond [23,24]. Several studies reported the amide
I band in protein-based materials at 1650 cm−1 which was attributed to the random coil and
alpha-helix conformations [25]. Notably, amide I band was associated with C-O stretching
vibrations of peptide linkages in the backbone of proteins. However, amide II band was
combined with N–H in plane bending, C–N stretching vibrations, and N–H out-of-plane
wagging at 610 cm−1 [26].

For the atmospheric-air plasma-treated gelatin nanofibers, C–H stretching was ob-
served at 3300 and 2947 cm−1. Moreover, a strong absorption band was exhibited at
3400–3500 cm−1 due to overlapping of N–H and O–H stretching vibrations. We also found
the C=O stretching vibrations (amide I) at 1651 cm−1 [25]. In addition, a band at 1538 cm−1

was attributed to the C=O stretching (amide I) and N–H bending vibrations (amide II). The
intensity of this band was changed after atmospheric-air plasma treatment. Furthermore,
the intensity of bands at 1449 (C–C bond), 1241, and 1077 cm−1 (referred to C–O stretch-
ing bond) was also decreased after atmospheric-air plasma functionalization of gelatin
nanofibers. Table 2 represented the effect of atmospheric-air plasma functionalization on
the main peaks of gelatin.
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Figure 2. ATR-FTIR spectra of (A) untreated gelatin nanofibers, (B) atmospheric-air plasma-treated
gelatin nanofibers.

Table 2. ATR-FTIR band assignments of gelatin that were affected by atmospheric-air plasma treatment.

Peak Position (cm−1) Band Assignment
610–669 –C–H

1333–1833 –CH3
1444–1449 C–C stretching
1635–1651 Amide I (C=O stretching)

2925 –CH stretching
3300 –CH stretching
3443 O–H stretching, NH stretching

3.3. X-ray Diffraction Analysis

The X-ray diffraction (XRD) test was conducted for the untreated and atmospheric-
air plasma-treated gelatin nanofibers, and results are indicated in Figure 3. According
to the spectrum for gelatin, the crystalline structure of fabricated scaffolds was demon-
strated by peaks at 2θ = 38.5◦, 45◦, and 65.5◦. Pena et al. established that the crystalline
structure of gelatin generally originated from the triple helix conformation of protein
macromolecules [27]. As can be seen in the XRD pattern of atmospheric-air plasma-treated
gelatin, the location of crystalline peaks was not changed. However, the intensity of peaks
was reduced in comparison with the untreated gelatin, which can be due to the oxidation
or plasma chain session at gelatin crystalline regions [10].
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3.4. Water Contact Angle Properties of Nanofibers

One of the most important properties of biomedical scaffolds is their hydrophilic/
hydrophobic functionalities [28]. For this purpose, the contact angle (CA) of water droplets
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was measured on nanofibers using the device software. Table 3 represented the results of
CA for the untreated and atmospheric-air plasma-treated gelatin nanofibers. As expected,
gelatin indicated excellent wettability in comparison with different hydrophobic biopoly-
mers including polylactic acid and poly caprolactone, with a water CA of 20.65. This is
owing to its hydrophilic nature [29]. On the other hand, the water CA decreased to 11.8 for
the atmospheric-air plasma-treated gelatin nanofibers due to the oxidation or attachment of
polar groups [30]. Several studies postulated that the introduction of oxygen-polar domains
on the nanofiber surfaces can be conducted by the atmospheric-air plasma method, which
can subsequently lead to a drastic change in their hydrophilicity [28–31]. This observation
is in good agreement with our ATR-FTIR and AFM results.

Table 3. The average water CA (◦) of (A) untreated, (B) atmospheric air plasma-treated gelatin
nanofibers.

Samples Water CA (◦) Image from Camera

A 20.6
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3.5. Effect of Atmospheric-Air Plasma on the Fibroblast Cell Culture

Fibroblast cells were put on the scaffolds and analyzed with inverted optical micro-
scope along with SEM after 24 h.

As it can be seen from the inverted microscope (Figure 4A with a magnification of
200×), fibroblast cells were flat. However, the microscopic examination did not reveal any
major change in cell shape and adhesion to the atmospheric-air plasma-treated gelatin
film (Figure 4B). According to Figure 4C from SEM, fibroblast cells were connected to
the untreated gelatin film and their natural shapes were maintained after 24-h treatment
with trypsin. On the other hand, there was no change in the shape of fibroblast cells
on the plasma-treated gelatin film (Figure 4D). Interestingly, we found that the num-
ber of cells were increased on gelatin due to plasma functionalization. This result was
in agreement with our recent study on argon and argon-oxygen plasma-treated gelatin
nanofibers [10]. Several studies stated that plasma modification has a critical role in im-
proving the hydrophilicity of scaffold surfaces which can further enhance the proliferation
and differentiation of osteoblastic cells [32–36]. These researchers found that the number of
oxygen atoms on tissue scaffolds was increased after atmospheric-air plasma treatment,
thus the cell growth was improved.
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