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Abstract: Innate immunity is critical for immediate recognition and elimination of invading pathogens
or defense against cancer cell growth. Dysregulation of innate immune systems is associated with the
pathogenesis of different types of inflammatory diseases, including cancer. In addition, the mainte-
nance of innate immune cells’ genomic integrity is crucial for the survival of all organisms. Oxidative
stress generated from innate immune cells may cause self-inflicted DNA base lesions as well as DNA
damage on others neighboring cells, including cancer cells. Oxidative DNA base damage is predomi-
nantly repaired by base excision repair (BER). BER process different types of DNA base lesions that are
presented in cancer and innate immune cells to maintain genomic integrity. However, mutations in
BER genes lead to impaired DNA repair function and cause insufficient genomic integrity. Moreover,
several studies have implicated that accumulation of DNA damage leads to chromosomal instability
that likely activates the innate immune signaling. Furthermore, dysregulation of BER factors in
cancer cells modulate the infiltration of innate immune cells to the tumor microenvironment. In the
current review, the role of BER in cancer and innate immune cells and its impact on innate immune
signaling within the tumor microenvironment is summarized. This is a special issue that focuses on
DNA damage and cancer therapy to demonstrate how BER inhibitor or aberrant repair modulates
innate inflammatory response and impact immunotherapy approaches. Overall, the review provides
substantial evidence to understand the impact of BER in innate immune response dynamics within
the current immune-based therapeutic strategy.
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1. Introduction

Innate immunity is triggered in response to pathogen infection or local lesions to
promote infection clearance or wound-healing processes [1–3]. In addition, innate im-
mune response can be initiated by non-professional immune cells (like epithelial cells,
endothelial cells, and fibroblasts) and professional antigen presenting cells (like neutrophils,
macrophages, and dendritic cells) [2]. Mechanistically, the activation of innate immune
response depends on pattern-recognition receptors (PRRs) that sense danger associated
molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs) [4,5].
Pathogen-derived nucleic acids constitute a major class of PAMPs that operate in specific
subcellular localizations and recognized by a vast array of PRRs [6]. Due to the abundance
of nucleic acids in cells, their corresponding PRRs are evolved to be highly regulated
and compartmentalized [7]. Most of the PRRs exhibit high substrate specificity to detect
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DAMPS [8]. Specific groups of pathogens are recognized via PRRs expressed mainly by
cells of the innate immune system. For example, many viruses, bacteria, and intracellular
parasites trigger type 1 immunity, with elevations in the expression of specific cytokines [9].
In contrast, multicellular pathogens, including helminths, stimulate a type 2 response, with
elevations in IL-4 and IL-13 [10]. Recently published data have also shown that self-released
nucleic acids derived from DNA repair deficient cells [1,11] or oxidative mitochondrial
DNA damage [2,12] have been considered as DAMPs and trigger innate immune cells
response. It is critical to consider both the cell lineage and the specific activation state when
assessing the function of a cell of the immune system in response to a specific pathogen
or stimuli.

There are different types of innate immune cells such as monocytes, macrophages,
neutrophils, and dendritic cells (DC) that can be stimulated by endogenous oxidative
stress or exogenous agents such as pathogen [3]. Macrophages originate either from bone
marrow-derived monocytes [13–15] or from precursor cells derived from the yolk sac or
fetal liver during development [16–18]. In addition, macrophages play a significant role in
maintaining tissue homeostasis, defending against pathogens, and facilitating wound heal-
ing [19]. Moreover, macrophages release different types of cytokines, chemokines, and other
immune factors to attract other cells to the infection site or tissue injury site [20]. Similarly,
monocytes-derived DC also play critical roles in innate immunity [21,22]. DC have PRR
and PAMPs, which activate Toll-like receptor (TLR) pathways, type C lectins, release proin-
flammatory cytokines, and stimulate the innate immune system [23]. Moreover, DCs in the
periphery capture and processes antigens, expresses co-stimulatory molecules and produces
cytokines, and migrates to lymphoid organs [21]. In addition, DC are equipped with robust
oxidative DNA damage repair machinery to maintain its DNA integrity [24]. Neutrophils
are another major innate immune cell in the peripheral blood and are produced in the bone
marrow from stem cells [25,26]. Neutrophils are recruited to the tumor bed and contribute
to further amplifying inflammatory response and releasing metabolites such as hydrogen
peroxide that may cause reactive oxygen species (ROS) induced DNA damage [27,28].
Overall, the major common features of neutrophil, monocyte/macrophage activation is
the generation of ROS and reactive nitrogen intermediates (RNI), such as O−2 and ni-
tric oxide (NO), respectively [29–31]. NO is produced by inducible nitric oxide synthase
(iNOS) from L-arginine and oxygen, while O−2 is catalyzed by NADPH oxidase [32–34].
For instance, activated macrophage induced ROS and RNI caused DNA damage, including
8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) [35,36]. Those DNA
base lesions can lead to base loss or DNA single-strand breaks (SSBs) [37–40]. Furthermore,
cells harbor SSBs progress into S-phase encounter DNA-replication apparatus and convert
to double-strand breaks (DSBs) [41,42]. In addition, spontaneous ROS-associated DNA base
damage and DSBs can result from RNA transcription, DNA replication, and/or genotoxic
stress during infection [43–45]. Those DNA damaged sites likely release DNA fragments
into cytosolic compartment of the cells and would potentially be recognized as DAMP to
trigger innate immune response [43]. Notably, a recent discovery has shown that innate
immune cells such as macrophages have two important self-protective mechanisms against
oxidative stress associated DNA damage/DAMP-associated innate immune cells activation,
including maintaining redox balance via generating antioxidant enzymes such as superox-
ide dismutase (SOD), glutathione peroxidase (GPx), catalase, and glutathione reductase
(GR) [46,47]. The second mechanism is associated with inherent DNA repair pathways to
process oxidative DNA damage and restore immune system homeostasis [6,48].

An overall summary of what has been so far discovered and established on DNA dam-
age and repair in innate immune cells biology is provided within this review. In addition,
we highlight what remains outstanding and which questions are still unanswered. The key
findings of studies that have been carried out in oxidative DNA damage repair linking
to innate inflammatory response are provided. The various aspects of BER dynamics to
modulate the macrophages population that are present in high numbers in the tumor
microenvironment (tumor-associated macrophage) and its role in how BER contributes to
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cGAS/STING inflammatory pathways is included. Finally, we outline the potential use
of some of the DNA repair targeted therapy that modulates innate immune signaling and
remodels the inflammatory response.

2. Base Excision Repair in Innate Immune Cells

Excessive production of ROS and RNI in innate immune cells, including neutrophils,
dendritic cells, eosinophil, and macrophage, leads to oxidative-stress-related DNA base
damage, DNA adducts, and SSBs, which may further result in mutations [49–51]. BER is the
main repair pathway against oxidized DNA bases to maintain genomic integrity [49,52–55].
Mammalian cells harbor two sub-BER pathways that are dependent on the size of the
oxidized DNA base they process and the key enzyme involved in the repair process [56].
The two sub-pathways are known as short-patch BER (SP-BER) and long-patch BER (LP-
BER) [57,58]. Short-patch BER engages in repairing one nucleotide gap [44,45], while
the long-patch BER involves processing and repairing 2–12 nucleotides gaps. Both BER
mechanisms are initiated by DNA glycosylase that recognizes and removes the DNA base
lesion. In SP-BER, AP-endonuclease 1 (APE1) cleaved the DNA backbone to generate a 3′-
OH terminus at the damage site, followed by DNA polymerase beta adding one nucleotide
and the nick sealed by a DNA ligase in a complex with XRCC1 [59]. In comparison, LP-BER
utilizes both DNA polymerase beta and other DNA replication enzymes, such as DNA
Pol δ and DNA Pol ε, to conduct strand-displacement DNA synthesis. The displaced
single-stranded DNA structure or 5′-DNA flap off-load by flap endonuclease I (FEN1) [60]
followed by sealing of the DNA nicks by Ligase I or Ligase III [61].

Several studies have shown that neutrophils and monocytes are hypersensitive to
accumulated DNA damage derived from oxidative stress due to their insufficient BER
function [24,62]. The unrepaired DNA base damage derived from oxidative stress and
accumulated BER intermediates in monocytes and triggers DNA damage response (DDR)
to halt the cell cycle or induce cell death [50]. Low BER and DSB repair activity observed in
neutrophils and monocytes are results from under-expression of BER proteins, including
XRCC1, ligase IIIα, ligase I, poly(ADP-ribose) polymerase-1 (PARP1), and repair pro-
teins [25,37,63]. In addition, ROS induces DNA single- and double-strand breaks, leading
to activation of the DDR pathways that trigger monocytes apoptosis, whereas macrophages
and DCs are resistant to ROS-associated DNA damage and apoptotic cell death [12,24].
In addition, eosinophils harbor efficient DNA repair activity, including BER [62]. Overall,
these observations are supported by the presence of a sufficient level of BER proteins,
including XRCC1, Ligase I, and DNA polymerase beta (Figure 1) in macrophages, but not
in monocytes [50]. In accordance with this, the relevant evidence on how BER factors are
also involved in macrophage plasticity is discussed in the next section.
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are deficient in main base excision repair genes, including POLB, XRCC1, and ligase III and non-
homologous end joining repair genes, including DNA-PK.



Biomedicines 2022, 10, 557 4 of 19

3. BER Modulates DNA Damage Induced Innate Immune Inflammatory Response

Several studies have shown that oxidative DNA damage initiates an innate immune
inflammatory response via activation of a variety of transcription factors, such as nuclear
factor kappa B (NF-κB), STAT, and interferon regulatory factors [51,64,65]. BER function is
critical to protect the cells from genomic instability and/or inflammation [37,66]. In partic-
ular, BER is expressed in selected types of innate immune cells that may regulate the innate
immune response [67]. Few studies highlight the role of oxidative DNA damage repair
in innate immune cells; however, detailed mechanistic insight into how loss-of-function
BER drives or contributes to DNA-damage-induced inflammatory response remains un-
known. The Cancer Genome Atlas (TCGA) data set have shown that somatic BER gene
mutations are found in 30% of tumors, and other also indicated that germline variant of
BER genes (POLB, APEX1, MUTYH, XRCC1 OGG1, TDG) leads to compromised repair
capacity and increases the risk of inflammatory associated diseases, including cancer [68].
Due to impaired function of oxidized DNA damage repair and/or increased accumula-
tion of ROS induced DNA base damage that can trigger DNA damage response (DDR),
including activation of Ataxia-telangiectasia mutated (ATM) kinase, ATR, and stimulate
nuclear factor kappa B (NF-κB) transcription factors to drive the expression of proinflam-
matory genes [51,69–71]. Moreover, some of the BER proteins such as OGG1 and APE1
can act as transcription factors and are involved in epigenetic regulation of expression
of inflammatory cytokines mediated by NF-κB to foster inflammatory response [65,72].
In contrast, BER deficiency (e.g., OGG1) suppresses the expression of proinflammatory
genes [72–75]. However, in some cases, loss of OGG1 function enhances inflammatory
response to mitigate bacterial infection [63]. Excessive level of unrepaired DNA damage in
the nucleus- and factors-associated DNA end resection during double-strand break repair,
including the Bloom syndrome (BLM) helicase and exonuclease 1 (EXO1), plays a major
role in generating DNA fragments, and the cytoplasmic 3′–5′ exonuclease Trex1 is required
for their degradation. However, the lack of DNA degrading nucleases enzyme in the
cytosol likely contributes to increasing cytosolic DNA [43,76]. The cytosolic damaged DNA
is recognized by the innate immune system mediated by different types of receptors or
DNA sensors [77,78], which subsequently triggers inflammatory immune response [79–81].
Moreover, DNA fragments released from apoptotic cells [82,83] can activate innate immune
cells in a Toll-like receptor 9 (TLR9) [84] and cGAS/STING dependent fashion [2].

Multiple studies have shown that BER prevents DNA damage derived from oxidative
stress in innate immune cells and modulates the inflammatory response [73]. BER defi-
ciency leads to accumulated intrinsic oxidized DNA bases, BER intermediates (AP sites,
SSBs), and DNA-replication-associated DSBs [85]. Alternatively, DNA damage derived
from oxidative stress leads to activation of DNA damage response (DDR) and modulate
inflammatory response [67,86]. DDR signaling enhances the DNA repair capacity of the
cells by inducing DNA repair transcriptionally or post-translation modification to counter
DNA damage [87]. However, several BER knockout mouse models are found to develop
inflammatory associated diseases, including cancer and autoimmunity [1,88,89]. For in-
stance, mice are susceptible to inflammation when they harbor aberrant DNA glycosylases
function (e.g., OGG1, MUTYH, NEIL2, and NEIL3) since they are unable to remove oxi-
dized DNA bases [66,90–94]. Moreover, mouse carrying mutation in dRP lyase domain of
DNA polymerase beta displays higher innate immune inflammatory response [37]. An-
other study found that a nuclease-deficient Flap endonuclease-1 (FEN1) mutant mouse
model accumulates apoptotic-associated cytosolic DNA that forms complex with IgG to
promote chronic inflammation [95,96]. However, it is unknown whether the cytosolic DNA
in BER-deficient cells is predominantly generated from DNA damage product from nuclei
or mitochondrial DNA that likely activates innate immune signaling and promotes the
inflammatory response. Recent work has implicated chromosol instability contribute to
inducing innate immune inflammatory pathways [97]. Detection of DNA in the cytoplas-
mic compartment of the cells induces a type I interferons (IFNs) response to amplify the
innate immune signaling-based inflammatory response [89]. DNA leakage from damaged
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nuclear and/or mitochondrial DNA has the potential to induce innate immune signaling
through binding to a cyclic guanosine monophosphate (GMP)-adenosine monophosphate
(AMP) synthase (cGAS) DNA sensor [98]. These products catalyze the production of cyclic
GMP-AMP (cGAMP) and further lead to the activation of stimulators of interferon genes
(STING) [98]. Previously, other studies have shown that cGAS and STING have been iden-
tified as intracellular DNA sensors that activate the interferon pathway in response to virus
infection and intercellular pathogens [81,99]. STING is a signaling molecule, often located
at the endoplasmic reticulum (ER), and it is essential for controlling the induction of type 1
interferons (IFN) and inflammatory mediators [100–102]. In addition, interferon-inducible
protein 16 (IFN16) binds to dsDNA and promotes STING dependent activity [100,103,104]
of TBK1 phosphorylation that subsequently leads to activation of transcription factors inter-
feron regulatory factor 3 (IRF3) and Nuclear factor-kappa B (NF-kB), which triggers innate
immune gene transcription [76,88,89,105,106]. In particular, macrophages harbor robust
DNA-sensing activity [107]. Macrophage has the ability to activate intrinsic cGAS/STING
pathways due to persistence of endogenous oxidative stress-associated DNA base damage
and promote proinflammatory response [108]. Alternatively, dsDNA released from oxida-
tive stress-associated DNA damage product may also trigger activation of cGAS/STING a
(Figure 2). Moreover, exposure to exogenous DNA damaging agents such as radiation and
chemotherapy (e.g., paclitaxel, BSO) triggers the death of tumor cells and the production of
oxidized DNA base damage, which activates innate immune cells, including macrophage
and dendritic cells via the STING-dependent signaling pathway [43,109].
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Figure 2. Aberrant BER induces DNA-sensor-mediated inflammatory signaling. The cGAS-STING
signaling pathway in BER deficient tumor cells (A) and immune cells (B). In both cases, tumor-
associated mutation of BER genes or germline variant associated with impaired BER function in
cancer cells and/or macrophage may contribute to accumulation of unrepaired endogenous oxidative
DNA damage product that may leak to cytosol and stimulate cGAS and produce second messenger
2′,3′-cGAMP. After 2′,3′-cGAMP binds to STING protein and then phosphorylate TBK1 that leads
to IRF3 activation and/or NF-κB to facilitate their translocation into the nucleus and drives the
expression of inflammatory genes, including Type I interferon. In contrast, macrophages with high
DNA repair capacity (without pathogenic variant of BER gens) suppress innate immune signaling
mediated by cGAS/STING. (C) Schematic representation of impaired BER function will likely leads
to accumulation of oxidative stress related DNA damage and may trigger the release of cytosolic
DNA and cGAS/STING dependent inflammatory response.
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4. Role of BER in Macrophage Plasticity

As an essential component of innate immunity, macrophages can inhibit or promote
cell proliferation and tissue repair [110]. Macrophages originate from peripheral blood
monocytes and harbor heterogeneous phenotypes [17]. Moreover, macrophages can adjust
their phenotype in response to various extracellular signals [111,112]. M1 macrophages
secrete high levels of proinflammatory cytokines and increased concentrations of super-
oxide anions (O2

−), oxygen radicals, and nitrogen radicals to increase their cytotoxicity
activity, as required in early phases of tissue repair [113]. Conversely, M2 macrophages
produce an extracellular matrix and reduce proinflammatory cytokine levels to promote
tissue repair [100]. More specifically, tumor-associated macrophages (TAMs) account for
more than 50% of tumor-infiltrating cells in the tumor microenvironment (TME) [114,115].
TAM is derived from two different sources including tissue-resident macrophage and
macrophage derived from monocytes [101,102]. TAM is the most abundant cell type
among the tumor-promoting stromal cells in solid tumors [103,104]. TME consists of cy-
tokines/chemokines produced by tumor cells or stroma cells, and it is critical to shaping
the macrophage functional plasticity [116–118]. In particular, macrophage chemoattractant
molecules [e.g., C-C Motif Chemokine Ligand 2 (CCL2)/monocyte chemoattractant protein
1 (MCP-1), colony-stimulating factor 1 (CSF-1)] play a major role to recruit TAMs into
the tumor microenvironment. TAMs are categorized into M1 and M2 phenotypes [119].
The switch between M1 (anti-tumorigenesis) and M2 (pro-tumorigenesis) is known as
“macrophage polarization” [120]. The relationship between TAMs and cancer cells has
been studied intensively [121,122], and it is well established that TAMs play a major role in
tumor development and progression [123,124]. Several studies have shown that increased
TAM infiltration negatively correlated with the overall survival of cancer patients [125–127].
TAMs promote tumor progression via enhancing cancer cell genetic instability, facilitating
cancer stem cells replication and survival, supporting metastasis, influencing adaptive im-
munity response, and promoting chemoresistance [128]. Specifically, M2 macrophages play
key roles in cancer development by promoting angiogenesis in tumors and accelerating
metastasis, as well as fostering resistance to different cancer therapy [128–130]. In addition,
M2 macrophages exhibit an anti-inflammatory response to promote tumor progression,
while M1 macrophages support proinflammation response hostile to tumor cells. In con-
trast, finding from several preclinical studies demonstrated that infiltration of M1 in the
tumor microenvironment is associated with better overall survival of patients [126].

Genetic variants of BER genes may result in differences in immune system components,
including the abundance and activation states of immune-cell types, the expression of im-
munomodulatory molecules, and regulation of immune-related genes [131]. Several studies
have identified somatic and germline variants of BER genes and have provided mechanistic
insight their impact in tumor initiation [132–136]. Germline genetic variation in genes that
code for DNA repair may influence an individual’s innate immune function. Moreover,
recent studies have shown that germline may influence which mutations are selected for
in the growing tumor [137,138]. In contrast, few studies have shown that macrophage
carrying DNA repair defect accumulates DNA damage that derives metabolic reprogram-
ming and eventually leads to chronic inflammation [139]. However, it is unknown that
human germline variant of BER genes impacts macrophage functional plasticity. In com-
parison, altered BER function in cancer cells may contribute to unbalanced recruitment of
macrophages in the tumor microenvironment. There are several mouse models established
with altered BER functions to understand mechanisms of inflammation-associated cancer
pathogenesis. For example, MUTYH knockout mice demonstrated that BER has a capacity
to modulate inflammatory response via macrophages infiltration in the tumor microen-
vironment [103]. Furthermore, mouse models studies provide mechanistic insight into
how TAMs are recruited to primary tumors and metastatic tumors [140]. In line with this,
a high number of infiltrations of M2 macrophage in the TME is associated with poor overall
survival of patient and worse disease outcome [141,142]. In addition, BER genes, including
MPG and NEIL2, are overexpressed and have a positive correlation with the infiltration
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of M2 macrophage in the tumor microenvironment (TIMER 2.0, CIBERSORT) (Figure 3).
However, experimental evidence has shown that increased TAM infiltration enhances the
DNA repair capacity of the tumor cells and fosters low treatment response [143]. Fur-
thermore, treating tumor with oxidative DNA damaging chemotherapeutic drug, such as
Paclitaxel, promotes the rewire of TAMs toward tumoricidal phenotypes through activation
of TLR4 [144].

Different strategies to target TAMs have been proposed including depleting and/or repro-
gramming TAMs to improve clinically approved chemotherapeutic drugs response [145,146].
Therefore, using TAM as a therapeutic target in the tumor microenvironment will likely
provide a novel approach to prevent the progression of solid tumors and prevent metastatic
disease [128]. One of the therapeutic strategies focused on targeting BER genes such as
APE1 and PARP1 promotes attracting antitumor macrophage in tumors microenvironment
and enhancing antitumor immune response [103,119,147–149]. In particular, targeting the
Colony Stimulating Factor1 (CSF1)–Colony Stimulating Factor1 Receptor (CSF-1R) axis has
received significant consideration for DNA repair targeted therapeutic purpose to over-
come immunosuppressive macrophages [150]. CSF1 (also known as M-CSF) plays a critical
role in promoting the differentiation of monocyte to macrophage lineages [151]. CSF1
is abundantly expressed by several tumor types; this ligand-receptor pathway has been
extensively investigated in tumor models and constitutes a paradigm of TAM-cancer cell
interaction [1,152]. Moreover, DNA damaging agents such as radiation therapy induce the
expression of CSF1, which results in CSFR1 dependent infiltration of immunosuppressive
macrophages to the TME [153,154]. CSF-1R is expressed by macrophages and provides
a potential target to eliminate TAM. Overexpression of CSF-1, the major lineage regula-
tor for macrophages, is associated with poor prognosis in breast, ovarian, endometrial,
prostate, hepatocellular, and colorectal cancer [15], as the intra-tumoral presence of CSF1R+

macrophages correlates with poor survival in various tumor types [127,155]. Moreover,
our in silico analysis shows that overexpression of CSF1 and CSFR1 is positively correlated
in tumors that harbor high expression of DNA repair genes such as APEX1 and PARP-1
(TCGA, TIMER 2.0, CIBERSORT). In line with this, exploiting the CSF1–CSF1-R axis of
macrophage and DNA repair targeted therapy may likely provide an alternative platform
to enhance therapeutic efficacy and may improve overall patient survival.
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5. Targeting PARP1 Modulate Macrophage Mediated Tumor Inflammatory Response

Poly(ADP-ribose) polymerase-1 (PARP1) contributes to many physiological processes,
including DNA replication and transcription, DNA repair, regulation of cell differentiation,
and apoptosis [156]. PARP1 plays a significant role in BER pathway to repair SSBs [157].
In addition, PARP1 is also critical to repair replication-associated DNA damage during
DNA synthesis [157–159]. Apart from its primary role in genome integrity maintenance,
PARP1 appears to protect M1 macrophages from oxidative-stress-related cell death through
transcriptionally regulating antioxidants such as MnSOD (SOD2), glutathione reductase,
and thioredoxin reductase [160,161]. In addition, the level of PARP1 is reduced when
macrophage is stimulated with lipopolysaccharide (LPS) and polarized to pro-M1 pheno-
type [160]. Further, PARP1 modulates macrophage polarization via inflammatory mediators
such as high-mobility group box protein 1 (HMGB1) [162]. HMGB1 is a non-histone nu-
clear proteins and very potent inflammatory mediator [144,163]. HMGB1 is secreted by
activated innate immune cells, including monocytes and macrophages [164], and is also
released by necrotic cells [165,166]. In the setting of immune challenge, PARP1 PARylates
HMGB1 promotes its acetylation, detaches from chromatin, and thus allows the transloca-
tion of HMGB1 from the nucleus to the cytoplasm [164,167]. Subsequently, the cytoplasmic
HMGB1 can be secreted into the extracellular space as DAMP to induce inflammatory
mediator such as cytokine and chemokine activities [168]. Moreover, HMGB1 interacts with
the receptor for advanced glycation products (RAGE) and leads to macrophage polariza-
tion into M1 phenotype [169], whereas HMGB1 interacts with C1q complement to induce
M2 polarization [170]. Conversely, the TCGA dataset shows that expression of PARP1 in
tumors negatively correlated with type I interferon gene expression (CCL5, IFNβ, ISG15).
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The recent results reviewed in this article indicate that PARP1 inhibitors, such as Olaparib
treatment in cancer cells, reduce polarization of adjacent macrophage to M2 phenotype via
accumulation of unrepaired DNA damage and BER intermediates [150]. Moreover, PARP1
inhibition is associated with increased levels of cytosolic DNA, which can trigger cGAS-
STING pathways to activate IRF3 and NF-κB dependent expression of several genes that
mediate innate immune response [171,172]. This includes expression of type 1 interferons
and T-cell-recruiting chemokines [C-C Motif Chemokine Ligand 5 (CCL5), C-X-C Motif
Chemokine Ligand 10 (CXCL10)], leading to a higher level of tumor-infiltrating T-cells [171].
Additionally, PARP1′s role in sensing DNA damage mediates a non-canonical pathway of
STING activation [173]. Upon binding DSBs, PARP1 recruits and activates ATM, which
subsequently activates the ubiquitin ligase TRAF6 to translocate to the cytosol and interact
with IRF16, which results in STING activation [174]. This alternative pathway stimulates
STING-dependent activation of the transcription factor NF-κB to generate inflammatory
response [175]. It is possible that PARP1 inhibitor exacerbates accumulation of unrepaired
DNA damage in cells that harbor pathogenic germline variant of BER that caused impaired
BER function (Figure 4). Overall, targeting PARP1 will likely stimulate cGAS/STING
dependent on the innate immune signaling and enhance antitumor immune response that
potentially contributes to maximizing immunotherapy treatment efficacy (Figure 4 labeled
with blue).
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Figure 4. BER-based therapeutic intervention in immune cells (macrophage) modulates inflammatory
signaling. Macrophages harbor pathogenic germline variant of BER genes treated with PARP1
inhibitor (Olaparib) will likely accumulate unrepaired products such as PARP1-DNA complex and
generate cytosolic DNA to stimulate cGAS/STING pathways and enhance type interferon response
(represent by blue color). In contrast, macrophages harbor overexpression of BER genes (e.g., APE1)
targeted by APE1 inhibitor (E3330) suppresses NF-kB mediated inflammatory response (represented
by purple color).

6. Targeting APE1 Modulate Macrophage Mediated Tumor Inflammatory Response

Apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional en-
zyme participating in both oxidative DNA damage repair and redox signaling in can-
cer [176,177]. APE1 enhances the affinity of transcription factors (e.g., activator protein
1 [AP-1], nuclear factor-κappa B [NF-κB], p53, and others) binding to DNA to modulate
inflammatory response [178]. APE1 is overexpressed in several types of cancer and alters
treatment outcomes [149,178–181]. Previous studies have shown that APE1 regulates innate
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inflammatory response in macrophages [182]. APE1 overexpression in tumors is associated
with poor prognosis in cancer patients and upregulation of immunosuppressive expression
of genes [e.g., program death ligand-1 (PD-L1)] [183]. In addition, APE1 overexpressed
tumor positively correlates with pro-tumor M2 macrophage infiltration and is associated
with poor overall survival (CIBERSORT, TIMER 2.0). In line with this, the release of inflam-
matory cytokines/chemokine by M2 macrophage played a major role in cancer promotion
and progression [121], whereas anti-inflammatory drugs reduce the risk of cancer [184].
Several studies have suggested the potential of APE1 as a therapeutic target in cancer [178].
However, little has been investigated on the role of APE1 in regulating innate immune
cells mediated antitumor inflammatory response. Furthermore, APE1 expression in tu-
mors negatively correlated with Type I interferon genes expression such as IFNB, CCL5
expression (TCGA) implicated that its overexpression contributes to suppressing the anti-
tumor immune response. However, a limited number of studies have shown that targeting
APE1 with inhibitor (E3330) reduces macrophage-mediated NF-κB and AP-1 signaling,
which leads to low expression of inflammatory mediators such as TNF-α, IL-6, IL-12, NO,
and PGE2 [185–187]. That experimental evidence suggests that targeting APE1 (E3330)
in cancer and innate immune cells likely provides an alternative therapeutic strategy to
stimulate antitumor immunity and may also increase anti-PD-L1 therapeutic response in
cancer (Figure 4, labeled with purple).

7. Exploiting BER as Innate Immune Modulator for Cancer Therapy

BER modulates the immune response in inflammation-associated human disease [188,189].
Inhibition of the BER pathway promotes the accumulation of oxidative-stress-related
DNA damage in an acidic TME [190]. There are different types of immune-based therapy
for cancer; however, the therapeutic efficacy depends on the interaction of cancer cells
with different components of the TME, including the DNA repair capacity, the density of
infiltration of tumor-associated macrophage, and the status of innate immune signaling.
In the next section of this review, we discuss the potential contribution of some of the tumor-
associated functions of DNA repair proteins and their role in the context of immune-based
therapy. We discuss the two important scenarios that are associated with defective DNA
damage repair and activation of immune response to enhance immune-based therapy.

(i) Exploiting BER defect associated with reactivation of cGAS/STING in TME. Several
types of cancer cells are found to silence their intrinsic cGAS-STING signaling pathways
in the TME by epigenetic hypermethylation [191]. Loss of cGAS-STING signaling facili-
tates tumor cells to escape immune surveillance, thereby promoting carcinogenesis and
resistance towards immunotherapy. Further studies in mouse models have shown that
loss of cGAS-STING pathway causes low expression of type I IFN genes, which leads to
a low number of infiltrating CD3+ CD8+ T cells [192]. Recent evidence emerged on acti-
vating “cold tumor” to “hot tumor” through the restoration of cGAS/STING pathway to
enhance immune-based therapy response. One viable strategy is to target the BER pathway.
For example, PARP1 inhibitor impairs DNA repair capacity and enhances the accumulation
of PARP1-DNA complex trapping and further triggers the release of cytosolic DNA for
activation of cGAS/STING [162,193]. There have been multiple attempts in developing a
number of synthetic STING agonists, including Cyclic dinucleotides (CDNs) (e.g., MK-1454)
and non-CDN small molecule compounds (MK2118, SR717, TK676, MSA-1, and MSA-2)
to restore activation of cGAS/STING pathways [194]. Further, divalent metal ion such as
manganese ion plays an important role during oxidative stress and act asco-factor for many
DNA repair enzymes, including in BER factors for activation of cGAS/STING signaling
pathways. A newly discovered mechanism suggests manganese released from mitochon-
dria to the cytosol activates cGAS/STING pathways [195] and enhances immunotherapy
response [196].

(ii) Inhibition of BER factors enhances program cell death ligand-1 (PD-L1) expression
in cancer cells. Cancer-specific BER defects are abundant in malignant tissues [197–200].
Immune checkpoint therapy has recently emerged as a promising next-generation cancer
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treatment. Several studies have shown that the PD-L1 level of expression in tumors is an
important factor to influence the therapeutic efficacy of response of cancer patients [201,202].
Interestingly, traditional chemotherapeutic agents inducing DNA damage have been found
to upregulate the expression of PD-L1 in many cancer types [203]. Furthermore, emerging
evidence suggests that defects in DNA repair machinery lead to upregulation of PD-L1 [204].
Recently, Permata et al. showed that BER gene expressions are negatively correlated
with PD-L1 expression in tumors and oxidative DNA damaging agents exacerbate the
expression of PD-L1 [205]. Loss of BER that enhances the accumulation of SSBs and
progress into the S phase of the cell cycle likely causes replication-associated DSBs in cancer
cells [85,203]. BER defects/low expression show high microsatellite instability increased
neoantigen production and PD-L1 expression in tumors [206]. In the future, exploring BER
deficiency and oxidative stress DNA damage associated upregulation of PD-L1expression
in tumors will likely provide an additional immune biomarker to introduce the immune-
based therapeutic strategy.

8. Conclusions and Future Direction

In this review article, we presented a new direction to highlight the cross talk of DNA
repair capacity of cancer cells and innate immune cells phenotypes. The overall mechanistic
insight into the DNA repair capacity of cancer cells and innate immune cells can provide
a fundamental framework to develop a therapeutic strategy that considers the innate
immune cells’ response in the tumor microenvironment. Even though several BER germline
and tumor-associated mutations were uncovered from different studies [68,135,198,200],
their functional impact on innate immune cells such as macrophage and dendritic cells is
unknown. In particular, macrophages phenotypes and functional plasticity are influenced
by several factors, including oxidative DNA damage and repair capacity. Based on our
in silico analysis, the positive correlation of overexpression of BER genes in tumor cell
versus infiltration of M2 macrophage impacts the overall survival of patients. Within this
context, and similar to other studies, we have shown that reprogramming M2 macrophage
into an M1-like phenotype is a potential cancer therapeutic strategy [207,208]. Further,
our comprehensive review can inform future studies to consider BER pathways as a
potential target to modulate the innate immune signaling and promote the inflammatory
response. The future may uncover potential mechanistic insight into how the DNA repair
pathway modulates the innate immune response in terms of reprogramming the tumor
microenvironment, restoring antitumor immunities, and enhancing cancer immunotherapy
treatment response.
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