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Abstract: SARS-CoV-2, the virus that causes COVID-19, has given rise to one of the largest pandemics,
affecting millions worldwide. High neutrophil-to-lymphocyte ratios have been identified as an
important correlate to poor recovery rates in severe COVID-19 patients. However, the mechanisms
underlying this clinical outcome and the reasons for its correlation to poor prognosis are unclear.
Furthermore, the mechanisms involved in healthy neutrophils acquiring a SARS-CoV-2-mediated
detrimental role are yet to be fully understood. In this study, we isolated circulating neutrophils
from healthy donors for treatment with supernates from infected epithelial cells and direct infection
with SARS-CoV-2 in vitro. Infected epithelial cells induced a dysregulated degranulation of primary
granules with a decrease in myeloperoxidase (MPO), but slight increase in neutrophil elastase release.
Infection of neutrophils resulted in an impairment of both MPO and elastase release, even though
CD16 receptor shedding was upregulated. Importantly, SARS-CoV-2-infected neutrophils had a
direct effect on peripheral blood lymphocyte counts, with decreasing numbers of CD19+ B cells,
CD8+ T cells, and CD4+ T cells. Together, this study highlights the independent role of neutrophils in
contributing to the aberrant immune responses observed during SARS-CoV-2 infection that may be
further dysregulated in the presence of other immune cells.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a β coronavirus
with a single-stranded RNA genome. It is the third virus in this group to show potential for
causing large-scale pandemics, with SARS-CoV and MERS-CoV (Middle East respiratory
syndrome coronavirus) causing outbreaks in 2003 and 2012, respectively [1–5]. In March
2020, the World Health Organization (WHO) declared SARS-CoV-2-infection-induced
coronavirus disease 2019 (COVID-19) a pandemic. By November 2020, SARS-CoV-2 proved
its tremendous infectivity and transmissibility by spreading to 216 countries and territories,
infecting over 62 million individuals and killing over 1.5 million [6].

Although the majority of the infected individuals are asymptomatic or exhibit mild
symptoms, about 15% develop pneumonia [7]. Infection in the higher-risk groups, such as
the elderly and individuals with underlying chronic conditions, can cause acute respiratory
distress syndrome and multiorgan failure resulting in death [7]. Many of the early symp-
toms resemble other respiratory viral infections, with high fever and dyspnea being the
main difference between COVID-19 and the common cold [8]. Importantly, compared to
infections by other commonly circulating viruses such as influenza, SARS-CoV-2 infection
has higher chances of progressing to a critical state requiring oxygen therapy and ventila-
tory support. This suggests SARS-CoV-2 may have a systemic aspect to its infection that is
accompanied by severe inflammation [9–12].
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Hyperinflammation has been identified as one of the major causes of the morbidity
and mortality observed in COVID-19. Specifically, neutrophilia correlates to COVID-19
disease severity, with increased blood neutrophil counts in severe patients compared to
mild cases [13]. This, combined with lymphopenia, leading to elevated neutrophil-to-
lymphocyte ratio (NLR), has been observed as a hallmark of severe COVID-19 suggestive
of poor recovery rates [7,14,15].

Neutrophils make up 50–70% of all leukocytes and are the most abundant immune
cells in human blood [16]. They serve as the first responders during infections and can shape
cell-mediated responses. Although their role during bacterial and fungal infections have
been well-studied, their role during viral infections remains to be fully understood [17–19].
Upon activation, neutrophils migrate to a target tissue where they defend against invad-
ing microbes. They can also interact with other immune cell populations and affect the
microenvironment [18,20].

During SARS-CoV-2 infection, whole blood transcriptomics of patients who required
intensive care showed increased neutrophil function and activation genes on the first day of
hospitalization [21,22]. This indicates that neutrophil activation occurs before the onset of
severe illness. Another study looking at 300 patients with confirmed COVID-19 observed
that the presence of circulating activated neutrophils can serve as an independent predictor
for mechanical ventilation and death [23].

Numerous clinical data collected during the pandemic, specifically regarding neu-
trophils and NLR, have immensely aided patient care in terms of predicting prognosis and
devising a more informed treatment plan. However, in-depth mechanistic understanding
of the neutrophilic dysregulation observed during SARS-CoV-2 infection is not fully under-
stood. This knowledge is crucial for establishing better treatment strategies to allow for
improved control of disease progression. As such, we aimed to systematically delineate the
effects of SARS-CoV-2 on neutrophil degranulation and subsequent lymphocyte numbers
in vitro.

Here, using neutrophils from healthy donors, we found a dysregulation in neutrophil
degranulation induced by SARS-CoV-2-infected epithelial cells and the virus directly,
which was characterized by diminished myeloperoxidase (MPO) release and impaired
azurophil granule release following CD16 shedding, respectively. Notably, infected human
neutrophils significantly lowered lymphocyte counts, specifically B cells, CD8+ T cells, and
CD4+ T cells in vitro. Together, this report sheds light on the mechanisms underlying the
aberrant neutrophil activity observed in COVID-19.

2. Materials and Methods
2.1. Cells and Virus

Calu-3 cells (ATCC: HTB-55) were grown in Eagle’s Minimum Essential Medium
(EMEM) supplemented with 10% fetal bovine serum (FBS). Whole blood, collected from
healthy donors by University of Nebraska Medical Center (UNMC) Elutriation Core Fa-
cility, was used for neutrophil isolation with EasySep™ Human Neutrophil Isolation Kit
(StemCell Technologies, Vancouver, Canada) according to manufacturer’s instructions.
Peripheral blood lymphocytes (PBLs) were isolated from whole blood by the UNMC
Elutriation Core Facility.

SARS-CoV-2 wild-type strain USA-WA1/2020 (BEI Resources, Manassas, VA, USA)
was propagated in Calu-3 cells. All experiments were conducted at the UNMC Biosafety
Level 3 (BSL3) facility unless the samples were fixed with 4% paraformaldehyde (Thermo
Fisher Scientific, Waltham, MA, USA). Fixed samples were further analyzed at Biosafety
Level 2 (BSL2).

2.2. Neutrophil Treatment with Calu-3-Conditioned Media

Calu-3 cells were infected with SARS-CoV-2 at multiplicity of infection (MOI) of
0.01 and 0.1 for 48 h. Supernatants were collected and UV-inactivated on ice for 15 min.
Human neutrophils were seeded at a density of 1 × 106 cells/well in a 96-well round-
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bottom plate and treated with the UV-inactivated Calu-3-conditioned media. Neutrophils
treated with 10 ng/mL phorbol myristate acetate (PMA; InvivoGen, San Diego, CA, USA)
were used as controls. Following a 4 h treatment at 37 ◦C and 5% CO2, the plates were
centrifuged, and supernatant media were collected for ELISA while the cells were used
for immunofluorescence.

2.3. SARS-CoV-2 Infection of Neutrophils

Human neutrophils were seeded at a density of 1 × 106 cells/well in a 96-well round-
bottom plate and infected with SARS-CoV-2 at MOI of 0.001 and 0.01. Neutrophils were
also treated with 10 ng/mL PMA to serve as controls. Two hours post infection, the plates
were centrifuged for collection of supernates and cells. Supernatant media were used
for ELISA and PBL treatment while cells were used to determine viral titer and for flow
cytometry analysis.

2.4. PBL Treatment with Neutrophil Conditioned Media and Coculture

Following a 2 h SARS-CoV-2 infection of neutrophils, supernates were collected and
UV-inactivated on ice for 15 min. Human PBLs isolated from whole blood of healthy
donors were seeded at a density of 1 × 106 cells/well in a 96-well round-bottom plate and
treated with the UV-inactivated neutrophil-conditioned media. Conditioned media from
neutrophils treated with 10 ng/mL of PMA or 10 ng/mL ultrapure lipopolysaccharide
(LPS; InvivoGen, San Diego, CA, USA) were also used for PBL treatment. Untreated, PMA-
or LPS-treated PBLs were used as controls. Furthermore, infected and PMA/LPS-treated
neutrophils were cocultured with 1 × 106 cells/well PBLs. Following an 18 h treatment at
37 ◦C and 5% CO2, the plates were centrifuged and cells were collected for flow cytometry
analysis of PBLs.

2.5. RNA Extraction and Quantitative Polymerase Chain Reaction (qPCR)

Cells were scraped and collected in Buffer AVL with carrier RNA (Qiagen, Hilden,
Germany). RNA was then isolated from the samples using QIAamp Viral RNA Mini
Kit (Qiagen, Hilden, Germany) according to manufacturer’s instructions. RNA was also
isolated from a heat-inactivated cell lysate and supernate containing SARS-CoV-2 isolate
USA-WAI/2020 (BEI Resources, Manassas, VA, USA) with known genome equivalents of
virus, which was used as a standard during qPCR.

UltraPlex 1-Step ToughMix (QuantaBio, Beverly, MA, USA) was used along with
2019-nCoV CDC Probe and Primer Kit for SARS-CoV-2 (Catalog: KIT-nCoV-PP1-1000)
for the qRT-PCR reactions. QuantStudio 3 Real-Time PCR machine (Applied Biosystems,
Waltham, MA, USA) was used with QuantStudio Design and analysis software version
1.5.1 (Applied Biosystems, Waltham, MA, USA) for analysis. Results are expressed as log
of genome equivalents/mL.

2.6. Immunofluorescence

Treated neutrophils were fixed with 4% paraformaldehyde and permeabilized with
0.1% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA). After blocking with 3% bovine
serum albumin (BSA), the cells were stained with a rabbit monoclonal recombinant anti-
human neutrophil elastase antibody (Abcam, Cambridge, United Kingdom) at 1:250 dilu-
tion. The cells were then washed with 1x PBS and stained with Alexa Fluor 488-conjugated
goat anti-rabbit IgG (Invitrogen, Waltham, MA, USA) at 1:2000 dilution. The cells were
again washed and stained with a mix of Hoechst 33,342 nuclear stain (Invitrogen, Waltham,
MA, USA) and CellMask Deep Red plasma membrane stain (Invitrogen, Waltham, MA,
USA) at 1:20,000 dilution each. Stained cells were visualized using the Operetta CLS™
system (Perkin Elmer, Waltham, MA, USA). Alexa Fluor 488-positive cells were identified
under 40x water objective and 55 fields/well were analyzed using Harmony 4.9 (Perkin
Elmer, Waltham, MA, USA) software.
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2.7. Myeloperoxidase (MPO) and Neutrophil Elastase ELISA

Human MPO ELISA Kit (Abcam, Cambridge, UK) and Human Neutrophil Elastase
ELISA Kit (Abcam, Cambridge, UK) were used according to manufacturer’s instructions.
Cell supernates were diluted 5-fold before being added to the ELISA plates.

2.8. Flow Cytometry

Neutrophils were washed and stained with FITC-conjugated anti-human CD11b
(clone ICRF44), PE-conjugated anti-human CD66b (clone G10F5), PE-Cyanine5-conjugated
anti-human CD14 (clone 61D3), PE-Cyanine7-conjugated anti-human CD15 (clone HI98),
and Alexa Fluor 647-conjugated anti-human CD16 (clone 3G8; Thermo Fisher Scien-
tific, Waltham, MA, USA). Samples containing PBLs were washed and stained with PE-
conjugated anti-human CD19 (clone HIB19; BioLegend, San Diego, CA, USA), PE-Cyanine5-
conjugated anti-human CD3 (clone UCHT1), Alexa Fluor 488-conjugated anti-human CD8a
(clone OKT-8), and Alexa Fluor 647-conjugated anti-human CD4 (clone RPA-T4). All
antibodies were purchased from eBioscience (San Diego, CA, USA) unless otherwise
specified. Stained samples were fixed with 4% paraformaldehyde. Data were acquired
using NovoCyte flow cytometer (ACEA Biosciences, San Diego, CA, USA). Single-stained
and unstained controls were used for compensation to correct for spectral overlap. Data
analysis was completed using NovoExpress 1.5.0 (Agilent Technologies, Santa Clara, CA,
USA) software.

2.9. Statistical Analysis

Statistical analysis was conducted using Student’s t-test or one-way analysis of vari-
ance (ANOVA) when appropriate. Tukey’s post hoc test was used to adjust for multi-
ple comparisons between different test groups. Tests were performed at a 5% signifi-
cance level. All statistical analyses were performed using GraphPad Prism 8 (San Diego,
CA, USA) software.

3. Results
3.1. Factors Secreted by SARS-CoV-2-Infected Epithelial Cells Diminish Myeloperoxidase Release
While Modestly Increasing Elastase Release by Human Neutrophils In Vitro

To determine the effect of infected lung epithelial cells on neutrophil degranulation
in vitro, we infected Calu-3 cells with SARS-CoV-2 at two different MOIs for 48 h. To
ensure effective cell entry and virus release, we determined the viral titer in the cells and
supernatant using qPCR (Figure 1A). At 48 h post infection, some cytopathic effect was
observed at the higher MOI, leading to decreased viral load in the cells and the supernatant
compared to MOI 0.01. The supernatant from the infected Calu-3 cells were then UV-
irradiated for treatment of circulating human neutrophils isolated from healthy donors.

Following a 4 h treatment with Calu-3-conditioned media, we measured the release of
MPO and neutrophil elastase in the supernatant using ELISA. A PMA treatment control was
added to serve as a positive control for potent neutrophil activation. Conditioned media
from infected Calu-3 cells significantly reduced MPO release compared to the uninfected
control media (Figure 1B). However, a dose–response relationship in MPO release with
increasing infection was not observed. A MOI higher than 0.1 may be required to detect a
significant drop in MPO release. As expected, a low dose of PMA induced high levels of
MPO release (Figure 1B).

In contrast, levels of secreted neutrophil elastase slightly increased at the higher MOI
compared to the uninfected control (Figure 1E). To determine if this increase correlated to
lower intracellular elastase levels, the treated neutrophils were fixed, permeabilized, and
stained with an antineutrophil elastase antibody. Lower percentage of elastase-positive
cells were indeed seen after treatment with PMA and conditioned media from infected
Calu-3 compared to the uninfected control (Figure 1C,D). However, the proportion between
intracellular and released elastase seen with PMA treatment was not detected with infected
conditioned media treatment (Figure 1C,E). Together, these data suggest that SARS-CoV-
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2-infected epithelial cells induce aberrant neutrophil degranulation, specifically in the
azurophil granules, in vitro.
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Figure 1. SARS-CoV-2-infected Calu-3 cells secrete factors that diminish neutrophil MPO release.
(A) Viral titer in the cells and supernates of SARS-CoV-2-infected Calu-3 48 h post infection; UV-
irradiated Calu-3 supernates, referred to as Calu-3-conditioned media, were used to treat human
neutrophils. (B) MPO levels in the treated neutrophils supernatant media determined through
ELISA; (C) Percentage of neutrophil elastase-positive cells among total cells; (D) Representative
images at 40× magnification of neutrophils stained for their nucleus (blue), cytoplasm (red), and
neutrophil elastase (green); (E) Neutrophil elastase levels in the treated neutrophils supernatant media
determined through ELISA. Data shown are mean ± SEM; n = 3 per group in each experiment per
donor; experiments were repeated twice with two different donors; * p < 0.05, ** p < 0.01, *** p < 0.001
(one-way ANOVA with Tukey’s post hoc test).

3.2. Direct Infection of Neutrophils with SARS-CoV-2 Promotes CD16 Shedding but Does Not
Increase Release of Azurophil Granules

Next, we sought to observe the direct effect of live SARS-CoV-2 on neutrophil de-
granulation. Circulating neutrophils isolated from healthy donors were infected with live
virus for 2 h. The cells were then collected for qPCR to determine the viral load. A dose-
dependent response was observed with a 10-fold increase in MOI resulting in a ~10-fold
increase in viral genome detected (Figure 2A).

We then analyzed the activation state of the neutrophils by measuring CD16 shed-
ding. CD16, also known as FcγRIII, is the most abundant receptor on the surface of
neutrophils [24]. During neutrophil activation, CD16 is shed, granting access to other
activating receptors on the cell surface [24]. Using flow cytometry, we determined the
percentage of CD16-negative cells among the CD11b+ CD66b+ CD14− CD15+ population.
Neutrophils infected at MOI 0.01 had a significant increase in CD16 shedding compared to
uninfected controls (Figure 2B). As expected, stimulation with PMA resulted in the highest
percentage of CD16 cells, indicating the highest activation state.
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Figure 2. Direct infection of neutrophils with SARS-CoV-2 promotes CD16 shedding without increas-
ing MPO or elastase release. (A) Viral titer in the neutrophils 2 h post infection; (B) Percentage of
CD16 cells among CD11b+ CD66b+ CD14− CD15+ population (left). Representative flow cytometry
density plots of CD11b+ CD66b+ CD14− CD15+ CD16− cells in different treatment groups (right);
Levels of MPO (C) and neutrophil elastase (D) in the supernatant media determined through ELISA.
Data shown are mean ± SEM; n = 3 per group in each experiment per donor; experiments were
repeated three times with three different donors; * p < 0.05, ** p < 0.01, *** p < 0.001 (Student’s t-test or
one-way ANOVA with Tukey’s post hoc test).

Since CD16 shedding is associated with enhanced degranulation [24,25], we quantified
secreted MPO and elastase in the supernatant 2 h post infection. Interestingly, infection
significantly lowered the levels of released MPO (Figure 2C) and neutrophil elastase
(Figure 2D). While both MOI 0.001 and 0.01 resulted in reduced MPO release, only the
higher MOI decreased elastase release. It is important to note that there is some MPO
and elastase release even with very low CD16 shedding as seen in the ‘No virus’ control,
suggesting that the neutrophils are not at resting state in ex vivo conditions, as anticipated.
Moreover, as expected from the high CD16 shedding, a low-dose PMA treatment induced
effective MPO and elastase release, albeit to the same levels as the uninfected control
(Figure 2C,D).

3.3. SARS-CoV-2-Infected Neutrophils Reduce B Cell, CD8+ T Cell, and CD4+ T Cell Counts
In Vitro

As part of contributing to the inflammatory milieu, the release of granules by neu-
trophils has a significant effect on lymphocyte numbers, and in turn, on their function [26].
Therefore, we ascertained the effect of infected neutrophils on B- and T-cell populations
in vitro. Peripheral blood lymphocytes (PBLs) were isolated from healthy donors and
either treated directly with PMA or LPS, or with UV-irradiated conditioned media from
neutrophils treated with live virus, PMA or LPS two hours post-treatment. The PBLs were
also co-cultured with treated neutrophils. Following an 18 h treatment, the PBLs were
analyzed using flow cytometry. The number of CD3− CD19+ B cells (Figure 3A), CD19−
CD3+ CD8+ T cells (Figure 3C), and CD19− CD3+ CD4+ T cells (Figure 3E) significantly
decreased with infected conditioned media, while media from LPS-treated neutrophils had
comparable numbers to the uninfected control. A similar trend was observed when treated
neutrophils were co-cultured with PBLs (Figure 3B,D,F,G).



Biomedicines 2022, 10, 382 7 of 12

Biomedicines 2021, 9, x FOR PEER REVIEW 7 of 12 
 

3.3. SARS-CoV-2-Infected Neutrophils Reduce B Cell, CD8+ T Cell, and CD4+ T Cell Counts In 
Vitro 

As part of contributing to the inflammatory milieu, the release of granules by neu-
trophils has a significant effect on lymphocyte numbers, and in turn, on their function 
[26]. Therefore, we ascertained the effect of infected neutrophils on B- and T-cell popula-
tions in vitro. Peripheral blood lymphocytes (PBLs) were isolated from healthy donors 
and either treated directly with PMA or LPS, or with UV-irradiated conditioned media 
from neutrophils treated with live virus, PMA or LPS two hours post-treatment. The PBLs 
were also co-cultured with treated neutrophils. Following an 18 h treatment, the PBLs 
were analyzed using flow cytometry. The number of CD3- CD19+ B cells (Figure 3A), 
CD19- CD3+ CD8+ T cells (Figure 3C), and CD19- CD3+ CD4+ T cells (Figure 3E) signifi-
cantly decreased with infected conditioned media, while media from LPS-treated neutro-
phils had comparable numbers to the uninfected control. A similar trend was observed 
when treated neutrophils were co-cultured with PBLs (Figure 3B,D,F,G).  

 
Figure 3. SARS-CoV-2-infected neutrophils reduce lymphocyte counts in vitro. After 18 h treatment 
of PBLs with conditioned media from infected neutrophils or direct stimulation with PMA or LPS, 
the number of CD19+ CD3- B cells (A), CD19- CD3+ CD8+ T cells (C), and CD19- CD3+ CD4+ T cells 
are shown (E). Following 18 h coculture of PBLs with infected neutrophils, the number of CD19+ 
CD3- B cells (B), CD19- CD3+ CD8+ T cells (D), and CD19- CD3+ CD4+ T cells are shown (F); (G) 
Representative flow cytometry histograms of B and T cells in different treatment groups of PBLs 
alone, PBLs treated with neutrophil-conditioned media, and PBL/neutrophil co-culture. Data shown 
are mean ± SEM; n = 3 per group in each experiment per donor; experiments were repeated three 
times with three different donors; * p < 0.05, ** p < 0.01, *** p < 0.001 (one-way ANOVA with Tukey’s 
post hoc test). 

Since no other stimulants were added to induce active proliferation of these lympho-
cytes, we did not expect any differences between ‘No virus’ and LPS-conditioned media 
or co-culture groups for B- and T-cell populations. Furthermore, PBLs either directly 
treated with PMA or treated with PMA-stimulated neutrophils were drastically dimin-
ished in number. This may be due to a possible toxic effect of PMA on lymphocytes.  

Figure 3. SARS-CoV-2-infected neutrophils reduce lymphocyte counts in vitro. After 18 h treatment
of PBLs with conditioned media from infected neutrophils or direct stimulation with PMA or LPS,
the number of CD19+ CD3- B cells (A), CD19− CD3+ CD8+ T cells (C), and CD19− CD3+ CD4+ T
cells are shown (E). Following 18 h coculture of PBLs with infected neutrophils, the number of CD19+
CD3− B cells (B), CD19− CD3+ CD8+ T cells (D), and CD19− CD3+ CD4+ T cells are shown (F);
(G) Representative flow cytometry histograms of B and T cells in different treatment groups of PBLs
alone, PBLs treated with neutrophil-conditioned media, and PBL/neutrophil co-culture. Data shown
are mean ± SEM; n = 3 per group in each experiment per donor; experiments were repeated three
times with three different donors; * p < 0.05, ** p < 0.01, *** p < 0.001 (one-way ANOVA with Tukey’s
post hoc test).

Since no other stimulants were added to induce active proliferation of these lympho-
cytes, we did not expect any differences between ‘No virus’ and LPS-conditioned media or
co-culture groups for B- and T-cell populations. Furthermore, PBLs either directly treated
with PMA or treated with PMA-stimulated neutrophils were drastically diminished in
number. This may be due to a possible toxic effect of PMA on lymphocytes.

The lack of other stimulants also resulted in lower B- and T-cell counts in the untreated
(PBLs only) group than the uninfected neutrophil-conditioned media treatment. Similarly,
direct LPS treatment of PBLs resulted in decreased lymphocyte numbers compared to
treatment with media from LPS-stimulated neutrophils. This may be due to the higher
expression of Toll-like receptor 4 (TLR4) on neutrophils than unstimulated PBLs [27,28].
Higher TLR4 levels leads to higher LPS-induced activation of neutrophils that can further
release lymphocyte-activating factors. In addition, lymphocytes upregulate TLR4 expres-
sion upon CD3/CD28 activation [28]. Since there were no such activators present, direct
LPS treatment of PBLs did not augment the lymphocyte counts (Figure 3).

Although infection of neutrophils had a significant impact on lymphocyte numbers,
an increase in MOI only had a mild effect during neutrophil-conditioned media treatment.
However, when the PBLs were co-cultured with the infected neutrophils, a substantial
decrease in CD8+ (Figure 3D) and CD4+ (Figure 3F) T cells was seen with increasing MOI,
even though the overall counts were lower compared to conditioned media treatment.
This may be due to additional effects neutrophils can have on lymphocytes through direct
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contact. Together, these data highlight the significant role neutrophils have on B- and T-cell
counts during SARS-CoV-2 infection.

4. Discussion

Many comorbidities have been associated with mortality in COVID-19 patients. One
of the major risk factors for mortality is coinfections, specifically secondary bacterial
pneumonia [29]. Other viral pandemics have proven the detrimental effect of bacterial
coinfections on viral diseases. A recent study comparing COVID-19 and influenza patients
showed that higher rates of bacterial infections were present in COVID-19 patients [29].
Interestingly, these bacterial infections were more common in fatal cases [30,31]. Indeed, the
highest percentage of bacterial coinfections were found in critically ill COVID-19 patients
compared to moderately or severely ill patients [32,33]. Colonization of bacteria is thought
to be augmented by dysregulated virus-induced immune responses, and neutrophils are
known to play a crucial role in controlling bacterial infections [34,35]. In this study, we
show the adverse effects of SARS-CoV-2 on neutrophil functions, which may contribute to
the lethality caused by secondary bacterial lung infections in severe COVID-19 cases.

Neutrophilia and altered neutrophil function have been identified as hallmarks of
immunopathology associated with severe COVID-19 [36]. Elevated levels of neutrophils
have been observed in the nasopharyngeal epithelium, distal parts of the lung, and in the
blood [37,38]. Notably, blood transcriptomes of severe patients showed an increase in neu-
trophil activation markers, and immunophenotyping revealed the presence of immature
neutrophil subsets in the blood [22,39–41]. Similarly, many studies have identified neu-
trophil signatures and/or conducted ex vivo characterization of neutrophils isolated from
infected patients. However, the alterations occurring in previously healthy neutrophils
during early SARS-CoV-2 infection remains unclear. Here, we report for the first time the
dysregulated degranulation, specifically the release of MPO and elastase, in healthy human
neutrophils as a result of direct infection and due to secreted factors from infected epithelial
cells in vitro. Furthermore, we show the direct effect of SARS-CoV-2-infected neutrophils
on lymphocyte numbers.

A unique feature of SARS-CoV-2 was described in mice, which was not observed
with other RNA or DNA viruses, where an increase in infiltration of immature aberrant
neutrophils was observed in the lungs, correlating to a fatal outcome [42]. Patients with
severe COVID-19 were also shown to have high levels of immature and low-density
neutrophils [39,40,43,44]. In MERS-CoV and SARS-CoV infections, persistently activated
neutrophils helped maintain the inflammatory state by releasing cytokines in the lungs [45].
Likewise, with SARS-CoV-2, neutrophils were reported to have a shift towards their
immature forms and to display enhanced degranulation of primary (azurophil) granules
and proinflammatory cytokine release, thereby driving hyperinflammation [46]. This study
by Parackova et al. varies from our study in that they used peripheral blood neutrophils
from COVID-19 patients to study neutrophil function and properties, whereas we used
circulating neutrophils from healthy donors to observe the effect of an in vitro SARS-CoV-2
infection on neutrophil function. Furthermore, in their experiments, Parackova et al. found
increased MPO and neutrophil elastase in the serum of COVID-19 patients [46]. Since, in
our experiments, other immune cells were absent during infection of healthy neutrophils
and we used a set number of cells compared to the neutrophilia seen during COVID-19, we
observed a virus-mediated decrease in MPO and elastase release (Figure 2).

On the other hand, CD16 shedding typically indicates an activated state of neutrophils,
but increased shedding did not translate to increased release of MPO and elastase in our
study (Figure 2). This aberrant activation may lead to longer lifespan of neutrophils persis-
tently contributing to the inflammation. Indeed, early elevation of developing and mature
neutrophil counts in COVID-19 patients were predictive of higher mortality rates [22].
Upregulation of neutrophil genes and chemokines was also observed in bronchoalveolar
lavage fluid cells from COVID-19 patients [47].
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Molecules contained in neutrophil granules can promote tissue damage in addition
to the injury caused by invading pathogens. Molecules such as MPO and elastase are
also components of neutrophil extracellular traps (NETs), and help modulate immune
responses [48]. During SARS-CoV-2 infection of healthy human neutrophils, NET release
was observed in a MOI-dependent manner that subsequently promoted epithelial cell death
in vitro [49]. Furthermore, sera from COVID-19 patients induced NET release by healthy
human neutrophils in vitro [50]. This suggests that virus-mediated release of granules
as part of NETs or through degranulation may have different effects on the virus and
surrounding tissue.

Moreover, a thorough comparative analysis COVID-19 blood transcriptomes and over
3100 samples derived from 12 different viral infections and inflammatory diseases revealed
highly specific signatures for COVID-19 [41]. Interestingly, single-cell analysis of circulating
cells showed a disease-stage-dependent downregulation of MHC molecules on monocytes
and granulocytes, and immune cell exhaustion [39,40,51,52]. Along with higher gene
expression of neutrophil elastase (ELANE) and MPO, as expected due to the neutrophilia,
upregulation of T-cell suppressor genes, such as IL-10 and PD-L1, was observed [41].
The transcriptome had evidence of simultaneous inflammatory and suppressive markers,
highlighting a dysregulated phenotype in the peripheral granulocytes [41].

The downregulation of MHC molecules on granulocytes and upregulation of T-cell
suppressor genes seen in COVID-19 patients coincide with our observation of reduced
lymphocyte counts following treatment with SARS-CoV-2-infected neutrophils (Figure 3).
Neutrophils have been reported to enter lymph nodes during bacterial infections and to
interact with B cells, affecting antibody production and thus the humoral response [53].
Furthermore, neutrophils release H2O2 that can suppress T-cell proliferation and activa-
tion through various mechanisms such as inducing apoptosis [54,55]. MPO catalyzes
H2O2 to form reactive oxygen intermediates that play an important role in neutralizing
microbes [26,48]. Therefore, lower levels of MPO release, as observed in our study, induced
by SARS-CoV-2-infected neutrophils (Figure 2) may lead to higher levels of hydrogen per-
oxide resulting in reduced CD4+ and CD8+ T-cell counts (Figure 3). Indeed, high NLR has
been implicated with severe COVID-19 and is associated with poor prognosis [10,56–58].

One of the main limitations of our study is the lack of access to lung neutrophils, as
immune processes in the lungs may differ compared to peripheral blood. However, circu-
lating immune cells can provide helpful information regarding the overall inflammatory
state. In summary, we have shown dysregulation of neutrophil responses, specifically
in degranulation, mediated directly by SARS-CoV-2 and SARS-CoV-2-infected epithelial
cells in the absence of other immune cells. Clinical data suggest that this aberrance is
further augmented when other cells are present, contributing to the inflammatory milieu.
Therefore, it is crucial to dissect helpful versus harmful immune responses in COVID-19
and to understand the mechanisms underlying the hyperinflammation observed in severe
cases in order to develop better treatment strategies. Further studies using neutrophil-
specific inhibitors or activators can help deduce specific pathways involved in protection
and potentially provide the basis for development of novel therapeutic options.
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