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Abstract: Background: Spinal cord injury (SCI) pathology includes both primary and secondary
events. The primary injury includes the original traumatic event, and the secondary injury, beginning
immediately after the initial injury, involves progressive neuroinflammation, neuronal excitotoxicity,
gliosis, and degeneration. Currently, there is no effective neuroprotective treatment for SCI. However,
an accumulating body of data suggests that PELF-EMF has beneficial therapeutic effects on neuro-
trauma. The purpose of this study was to test the efficacy of the PELF-EMF SEQEX device using
a compression SCI mouse model. Methods: C57BL/6 mice were exposed to PELF-EMF for 4 h on
a daily basis for two months, beginning 2 h after a mild-moderate compression SCI. Results: The
PELF-EMF treatment significantly diminished inflammatory cell infiltration and astrocyte activation
by reducing Iba1, F4/80, CD68+ cells, and GAFP at the lesion borders, and increased pro-survival
signaling, such as BDNF, on the neuronal cells. Moreover, the treatment exhibited a neuroprotective
effect by reducing the demyelination of the axons of the white matter at the lesion’s center. Con-
clusions: Treatment with SEQEX demonstrated significant anti-inflammatory and neuroprotective
effects. Considering our results, this safe and effective rehabilitative device, already available on the
market, may provide a major therapeutic asset in the treatment of SCI.

Keywords: spinal cord injury; electromagnetic field; neuroprotection; treatment; rehabilitation

1. Introduction

Spinal cord injury (SCI) is a traumatic event that results in altered sensory and motor
function that can ultimately affect a patient’s physical, psychological, and social well-
being [1]. Statistics show that more than 27 million people worldwide suffer from long-
term disabilities due to spinal cord injuries, 90% of which are due to trauma [2]. The life
expectancy of SCI patients highly depends on the level of injury and the degree of preserved
functions. Today, the estimated lifetime cost of a SCI patient is $2.35 million [3]. Although
there are extensive efforts underway to develop novel treatments for SCI, the current
clinical treatment remains far from ideal [4,5]. Therapy for SCI is not adequately effective
and consists mostly of hemodynamic stabilization, spinal cord decompression, and early
rehabilitation [6]. Patient outcome is largely determined by the management of resultant
symptoms and rehabilitation to maximize neural function [7]; however, rehabilitation is a
long process that requires full patient cooperation [8,9]. It is therefore critical to explore
and develop new rehabilitative interventions to improve the patients’ neurological and
functional outcomes.
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The pathophysiology of SCI is multilayered, including primary and secondary events.
The primary injury results from traumatic mechanical force, producing diffuse or focal
pathology. This initial phase is characterized by tissue deformation, membrane depolariza-
tion, disruption of blood vessels and axons, ischemia, and cell membrane damage [10,11].
The secondary injury begins within minutes of the initial injury and continues for months
to years [7]. This secondary injury is triggered in response to the primary damage and leads
to progressive neuroinflammation, neuronal excitotoxicity, axonal demyelination and de-
generation, and ultimately, neuronal cell death [11–14]. While therapeutic efforts are often
focused on the axon regeneration of the central nervous system (CNS), astrocytic and glial
secondary responses significantly potentiate SCI damage [14,15]. During the first minutes
following injury, microglial activation and monocyte/macrophage infiltration initiates into
the CNS, and their numbers remain high for several months following injury [11,16,17].
Activated microglia/macrophages clear tissue debris and are part of the body’s response to
trauma [18]. Their prolonged activation, however, contributes to the secondary damage,
or to the CNS injury, by releasing pro-inflammatory cytokines, neurotoxic factors, and
reactive oxygen species that induce neurodegeneration at the injury site [19,20]. In addition
to this, astrocytes react acutely to the CNS injury by increasing cytokine and chemokine
production [21]. The results from animal studies suggest that limiting pro-inflammatory
damage can improve SCI outcomes [22–24].

Few studies have examined the effects of using extremely low frequency electromag-
netic field (ELF-EMF) in SCI and stroke models, but its use has demonstrated decreased
neuronal/axonal degeneration and scar formation, increased neuronal plasticity, and im-
proved functional recovery in animal models [25–27]. Exposing rats with SCI to PELF-EMF
stimulation (F = 50 Hz, Mf = 1 mT) for 4 h a day decreased the levels of TNF-α and IL-6,
promoted remyelination, and increased the expression of BDNF [25]. In an ischemic stroke
animal model, ELF-EMF treatment (F= 15.72 Hz, Mf = 10 µT) two days after occlusion in-
creased neuronal regeneration and the expression of nestin and doublecortin (DCX) [26]. In
a similar study, treatment (F = 60 Hz, Mf = 10 mT) started within 30–40 min post occlusion
decreased IL-1β and MMP9 levels and modulated the apoptotic cascade by promoting
activation of the BDNF/TrkB/Akt signaling pathway, thus decreasing the expression of
caspase-3 [27]. Furthermore, it has been reported that ELF-EMF exposure induces the early
expression of neuronal differentiation markers, likely due to the opening of the L-type
voltage-gated calcium channels via increased Ca2+ ions [28]. It has also been demonstrated
that low frequency electromagnetic pulses reduced the IL-1β and TNF-α in nucleus pulpo-
sus cells and downregulate TNF-α as well as its transcription factor, nuclear factor kappa
B (NFkB), in murine macrophages [29]. ELF-EMF-induced membrane depolarization has
been shown to promote neuronal survival [30], probably through the above mechanisms.

The knowledge about the importance of early rehabilitation and the current lack of
effective neuroprotective therapy brings us to examine an available and simple-to-use
PELF-EMF device as a potential rehabilitative treatment in the SCI mouse model for mild
to moderate compression injuries.

2. Materials and Methods
2.1. Mice

Male and female C57BL/6 adult mice (two months) were used in this study. We used
young adult mice, as about 50% of spinal cord injuries occur in young people between the
ages of 16 and 30 years. All experiments were conducted according to the Guidelines for
the Use of Experimental Animals of the European Community and were approved by the
Animal Care Committee of Tel Aviv University.

2.2. Spinal Cord Compression

All mice (25–35 g) were anesthetized by intraperitoneal injections of ketamine (60 mg/kg)
and xylazine (10 mg/kg). The skin was shaved and wiped with 70% ethanol prior to making
a longitudinal cut through the dorsal surface. Muscles and the laminal arches of thoracic
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vertebrae T8-T12 were removed, and the spinal cord was exposed. Calibrated Dumont #5
forceps (with a spacer of 0.3 mm) were placed in approximately the middle of the exposed
segment of the spinal cord at the level of T10. The arms of the forceps were placed within
the epidural space on adjacent sides, and their tips touched the floor of the vertebral canal
in order to generate reproducible injuries. The spinal cord was then compressed until the
spacers connected, and the compression was held for a duration of 5 s. The skin was then
joined with biological glue (M3 VetBond). Following the surgery, all mice received analgesia
and antibiotics for 3 days post operation (100 µL subcutaneous injection of 1.2 mg/mL
Carprieve and Baytril).

2.3. PELF-EMF

A SEQEX® device produced by S.I.S.T.E.M.I. S.R.L. (Trento, Italy), certified CSQ ISO-
13485, was used for the present study. This device produces complex pulsed electromagnetic
fields using an analogue mechanism with a frequency range of 1 to 80 Hz and intensities
ranging from 1 to 20 µT. The electromagnetic field produced by the device control unit
(on which the electromagnetic field parameters are set) is emitted from a mat containing a
Helmholtz coil that generates the pulsed extremely low frequency electromagnetic field
(PELF-EMF)

2.4. Treatment Protocol

The mice were treated with PELF-EMF for 7 weeks, 5 times a week, for 4 h. Each
treatment consisted of 4 cycles of 1 h duration (Table 1), with treatments starting two hours
following compression.

Table 1. The PELF-EMF 9-cycle treatment protocol.

Step Frequency (Hz) Field Intensity (µT) T-On (min) T-Off (min) Duration (min)

1 15 20 2 3 14
2 75 20 4 1 12
3 2 20 2 3 14
4 20 20 3 1 14
5 12 20 3 1 14
6 3 20 3 1 14
7 50 20 2 1 12
8 25 20 5 2 12
9 10 20 5 1 14

The PELF-EMF protocol included the use of complex modulation using different
frequencies. The combinations, referred to as steps, are modulated in order to produce the
PEMF for a given time (T-on), followed by a period without emission (T-off) for a blocked
time (duration). Each frequency has been chosen for the PELF-EMF protocol based on
significant experimental results reported previously:

(a) Neuroprotection by the reduction of Glu+-induced excitotoxicity, step 1 (15 Hz) [31,32].
(b) Modulation of local inflammation in order to increase the anti-inflammatory effect,

steps 2, 3, and 6 (75 Hz and 2 Hz) [25,33].
(c) Improvement of the removal of Glu+ from the damaged area (ion cyclotron resonance

hypothesis), steps 4 and 5 [34].
(d) Stimulation of the recovered area after SCI, step 7 (50 Hz, which also has an anti-

inflammatory effect), and neuro-regeneration, steps 8 and 9 (25 Hz and 10 Hz) [25,35–37].

2.5. Immunohistochemistry

Cryostat longitudinal sections (20 µm) of fixed frozen tissue were stained using stan-
dard immunohistochemistry procedures. Primary antibodies included rabbit anti-GFAP
(1:1000, Dako, Copenhagen, Denmark); rabbit anti-Iba1 (1:400; Abcam, Zotal Ltd., Tel Aviv-
Yafo, Israel); rat anti-CD68 (1:500; Thermo-Fisher Science, Qiryat Shemona, Israel); rat
anti-F4/80 (1:800; Abcam, Zotal Ltd.); mouse anti-βiii tubulin (1:1000; Promega, Kib-
butz Beit Ha’Emek, Israel); rabbit anti-BDNF (1:200; Abcam, Zotal Ltd.); rabbit anti-MBP
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(1:500; Abcam, Zotal Ltd.); and mouse anti-NeuN (1:500; Millipore, Sigma-Aldrich Ltd.,
Rehovot, Israel). Secondary antibodies included goat anti-rat or rabbit Alexa Fluor 488
and goat anti-mouse Alexa 546 1:1000 (Invitrogen, Sigma-Aldrich Ltd., Rehovot, Israel).
Nuclei were visualized using DAPI (Sigma-Aldrich Ltd., Rehovot, Israel)). To obtain the
immunofluorescence density of different antibody markers, a series of 20-µm-thick longitu-
dinal sections were cut. For each measurement, sections were taken at 200-µm intervals,
and sectioned tissue included both white and grey matter (15 sections per animal for each
marker, n = 10/group). DAPI immunofluorescence staining was used to define the edge
of the lesion and the size was calculated and compared to the vehicle-treated control SCI
mice. All measurements were performed using ImageJ software.

2.6. Histological Analysis

Longitudinal sections (20 µm; 500-µm intervals, 8 sections per animal; n = 10) of fixed,
frozen mice spinal cord tissue were stained at 8 weeks post-SCI. They were stained with
Cresyl Violet eosin (Sigma-Aldrich Ltd., Rehovot, Israel) for lesion area assessment and
Luxol Fast Blue (LFB; Sigma-Aldrich Ltd., Rehovot, Israel) for white matter sparing analysis.
The center of each lesion was defined as the section containing the least amount of spared
white matter. LFB-positive myelinated areas were measured at the epicentre, and different
distances, rostral and caudal from the epicentre, were recorded as specified.

Sections were imaged by fluorescence microscopy using an Olympus IX83 fluorescence
microscope, an ORCA digital camera, and cellSens Dimension Version 3; images were
sized using Adobe Photoshop 11 and Illustrator 14. All fluorescence density or intensity
measurements were performed using ImageJ software.

2.7. Behavioral Analyses

Open field locomotion score: Mice were evaluated for 3 min using the modified
Basso–Beattie–Bresnahan (mBBB) 9-point scoring system (control n = 10, EMF n = 10).

2.8. CatWalk

Gait measures were determined using the CatWalk XT 10.6 system5 (Noldus Infor-
mation Technology, Wageningen, The Netherlands) three times during the experiment:
1 week post injury, 5 weeks post injury, and 7 weeks post injury. It is important to note
that we encouraged all mice on the platform to walk at their maximum speed by inflating
compressed air on their backs to reduce the variability in running speeds between animals.
The visual data were digitized and analyzed using CatWalk XT for static and dynamic
gait kinematics, using distance, time, and intensity differences between hind paw prints as
measures contributing to gait. Each mouse was placed on the platform and permitted to
cross the walking path for at least three compliant runs, when possible (not all mice were
cooperative, and some walked less than others), as detected by the CatWalk XT system.
Three variables were chosen based on their relevance to human locomotion and human
SCI: the base of support (the width, in cm, between the two hind paws), the stride length
(the distance, in cm, between subsequent placements of the left hind paw), and the swing
speed (speed (distance unit/second) of the paw during swing).

2.9. Statistical Analysis

All statistical analyses were conducted using the GraphPad Prism Program, Version
5.03, for Windows. The significance between the treated and untreated groups was evalu-
ated using the two-tailed t-test with 95% confidence when comparing two parameters in
the data presented in Figures 1–4 (* p < 0.05, ** p < 0.01, *** p < 0.001). The non-parametric
Mann–Whitney U test was used to assess the significance of the differences in the CatWalk
behavioral analysis (Figure 5; * p < 0.05). Data are expressed as mean ± standard error of
the mean (SEM), or standard deviation (STDEV), as indicated in the figure legends.
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mice (n = 8 in each group; ** p < 0.01). 

Figure 1. Decreased microglia activation and astrogliosis in PELF-EMF-treated mice after SCI. Two
weeks after SCI (A) Representative images of the lesion site of Iba1 (green) immunostaining; DAPI
(blue) demonstrate the lesion site. The scale bar is 200 µm. (B) Quantitation of Iba1 at the lesion site
shows a significant decrease in the PELF-EMF-treated compared to the non-treated mice (n = 8 in each
group; *** p < 0.001). (C) Representative images of the lesion site of GFAP (green) immunostaining;
DAPI (blue) demonstrate the lesion site. The scale bar is 200 µm. (D) Quantitation of GFAP at the
lesion site shows a significant decrease in the PELF-EMF-treated compared to the non-treated mice
(n = 8 in each group; ** p < 0.01).
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Figure 3. The increased axonal survival and BDNF expression in PELF-EMF-treated mice after SCI. 
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Figure 2. Decrease of other microglia activation markers in PELF-EMF-treated mice after SCI. Two
weeks after SCI (A) Representative images of the lesion site of CD68 (green) immunostaining; DAPI
(blue) demonstrate the lesion site. The scale bar is 100 µm. (B) Quantitation of CD68 at the lesion
site shows a significant decrease in the PELF-EMF-treated compared to the non-treated mice. The
results are mean ± SD (n = 8/group; *** p < 0.001). (C) Representative images of the lesion site of
F4/80 (green) immunostaining; DAPI (blue) demonstrate the lesion site. The scale bar is 100 µm.
(D) Quantitation of F4/80 at the lesion site shows a significant decrease in the PELF-EMF-treated
compared to the non-treated mice. The results are mean ± SD (n = 8 in each group; *** p < 0.001).
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Figure 3. The increased axonal survival and BDNF expression in PELF-EMF-treated mice after
SCI. Two months after SCI (A) Representative images of the white matter at the lesion site of the
βIII-tubulin immunostaining; the scale bar is 100 µm. (B) Quantitation of the βIII-tubulin density
immunostaining at the lesion site shows a significant increase in the PELF-EMF-treated compared
to the non-treated mice. The results are mean ± SD (the red box represents the area of analysis;
n = 10 in each group; * p < 0.05). (C) Quantitation of the BDNF (green) expression density in neuronal
cells (NeuN in red) close to the lesion site shows a significant increase in the PELF-EMF-treated
compared to the non-treated mice. The results are mean ± SD (n = 10 in each group; *** p < 0.001).
(D) Representative images of lesion site of the BDNF (green) and NeuN (red) immunostaining; DAPI
(blue) demonstrate the lesion site. The scale bar is 100 µm.
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mice after SCI. Two months after SCI (A) Representative images both sides of the white matter of 
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decrease in demyelination in the PELF-EMF-treated mice. Data represent the mean ± SD (n = 

Figure 4. The reduced axonal demyelination and increased MBP expression in PELF-EMF-treated
mice after SCI. Two months after SCI (A) Representative images both sides of the white matter of
the spinal cord stained with LFB. The injury epicentre (0) is marked in the red box. The scale bar
is 100 µm. (B) Quantitative analysis of residual myelin in different rostral and caudal distances
from the epicentre of the white matter in the PELF-EMF and the control treated groups shows a
significant decrease in demyelination in the PELF-EMF-treated mice. Data represent the mean ± SD
(n = 10/group; * p < 0.05). (C) Representative images of the white matter at the lesion site with MBP
immunostaining; the scale bar is 100 µm. (D) Quantitation of the MBP density immunostaining at the
lesion site shows a significant increase in the PELF-EMF-treated compared to the non-treated mice.
Results are mean ± SD (n = 10/group; *** p < 0.001).



Biomedicines 2022, 10, 325 8 of 13

Biomedicines 2022, 10, x FOR PEER REVIEW 8 of 13 
 

10/group; * p < 0.05). (C) Representative images of the white matter at the lesion site with MBP 
immunostaining; the scale bar is 100 μm. (D) Quantitation of the MBP density immunostaining at 
the lesion site shows a significant increase in the PELF-EMF-treated compared to the non-treated 
mice. Results are mean ±SD (n = 10/group; *** p < 0.001). 

 
Figure 5. The improved motor function in the PELF-EMF-treated mice after SCI. Two months after 
SCI, the motor function recovery of the mice was assessed using different behavioral tests. (A) mBBB 
scores demonstrated a significant improvement in the first week after SCI in the PELF-EMF-treated 
mice compared to the control; the subsequent weeks showed no difference between the groups (n = 
10 animals/group. The results are the mean ± SEM (* p < 0.05; non-parametric Mann–Whitney test, 
α set to 5%). The CatWalk analysis of swing duration (B), stride length (C), and the base of support 
(D) (n = 10 animals/group); the data are expressed as the mean  ±  SEM, one-way ANOVA followed 
by Bonferroni’s multiple comparison test; * p < 0.05, *** p < 0.001). 

3. Results 
Since in our previous study, we demonstrated the anti-inflammatory effect of the re-

duction in glutamate excitotoxicity in spinal cord injured mice, we selected a 15 Hz fre-
quency for use in step 1 [38]. This frequency has shown an anti-glutamatergic effect and a 
reduction in glutamate levels in vitro [31,32]. In addition, the 2 Hz and 75 Hz frequencies 
demonstrated a change in local inflammation in the CNS and an increased anti-inflamma-
tory response after spinal cord injury in the rat mode [25,33] and were therefore used in 
steps 2, 3, and 6 of the protocol. In steps 4 and 5, the 20 Hz and 12 Hz frequencies, respec-
tively, were applied to improve the removal of Glu+ from the damaged area based on the 
Ion Cyclotron Resonance Hypothesis [34]. The 50 Hz frequency increased the recovery 
and the anti-inflammatory response after spinal cord injury in rats [25]. We used this fre-
quency in step 7 of the protocol. The 25 Hz and 10 Hz frequencies showed neuroprotective 
and regenerative effects in the neuronal culture from ischemic brain tissues and promoted 
the restoration of sensorimotor functions in adult rats with a hemisection of the thoracic 
spinal cord [36,37]. These frequencies were used in steps 8 and 9. 

3.1. PELF-EMF Treatment Reduced Astrocyte and Microglia Reactivity 
In order to determine whether the PELF-EMF treatment reduced the pro-inflamma-

tory environment two weeks following SCI compression, we examined the degree of ac-
tivation of microglia/macrophages and astrocytes at the lesion site. Examination of the 
density of GFAP and Iba1 expression at the lesion site demonstrated that the PELF-EMF 
treatment significantly decreased glial scarring and inflammation, respectively, at and 
around the lesion site (Figure 1). Further examination of the M1 phenotype of the activated 

Figure 5. The improved motor function in the PELF-EMF-treated mice after SCI. Two months after
SCI, the motor function recovery of the mice was assessed using different behavioral tests. (A) mBBB
scores demonstrated a significant improvement in the first week after SCI in the PELF-EMF-treated
mice compared to the control; the subsequent weeks showed no difference between the groups
(n = 10 animals/group. The results are the mean ± SEM (* p < 0.05; non-parametric Mann–Whitney
test, α set to 5%). The CatWalk analysis of swing duration (B), stride length (C), and the base of
support (D) (n = 10 animals/group); the data are expressed as the mean ± SEM, one-way ANOVA
followed by Bonferroni’s multiple comparison test; * p < 0.05, *** p < 0.001).

3. Results

Since in our previous study, we demonstrated the anti-inflammatory effect of the
reduction in glutamate excitotoxicity in spinal cord injured mice, we selected a 15 Hz
frequency for use in step 1 [38]. This frequency has shown an anti-glutamatergic effect
and a reduction in glutamate levels in vitro [31,32]. In addition, the 2 Hz and 75 Hz
frequencies demonstrated a change in local inflammation in the CNS and an increased
anti-inflammatory response after spinal cord injury in the rat mode [25,33] and were
therefore used in steps 2, 3, and 6 of the protocol. In steps 4 and 5, the 20 Hz and 12 Hz
frequencies, respectively, were applied to improve the removal of Glu+ from the damaged
area based on the Ion Cyclotron Resonance Hypothesis [34]. The 50 Hz frequency increased
the recovery and the anti-inflammatory response after spinal cord injury in rats [25]. We
used this frequency in step 7 of the protocol. The 25 Hz and 10 Hz frequencies showed
neuroprotective and regenerative effects in the neuronal culture from ischemic brain tissues
and promoted the restoration of sensorimotor functions in adult rats with a hemisection of
the thoracic spinal cord [36,37]. These frequencies were used in steps 8 and 9.

3.1. PELF-EMF Treatment Reduced Astrocyte and Microglia Reactivity

In order to determine whether the PELF-EMF treatment reduced the pro-inflammatory
environment two weeks following SCI compression, we examined the degree of activation
of microglia/macrophages and astrocytes at the lesion site. Examination of the density
of GFAP and Iba1 expression at the lesion site demonstrated that the PELF-EMF treat-
ment significantly decreased glial scarring and inflammation, respectively, at and around
the lesion site (Figure 1). Further examination of the M1 phenotype of the activated mi-
croglia/macrophages, using Cd68 and F4/80 markers [39,40] was performed. Significantly
reduced microglia/macrophage activation was demonstrated by evaluation using CD68+
staining (control 49.9 + 10.9; PELF-EMF 37.2 + 8.4; *** p < 0.001) (Figure 2B). Interestingly,
some CD68+ cells extended diffusely beyond the lesion cavity borders and glial interface
into the grey and white matter in the control groups, compared to the results from the
PELF-EMF treated groups. In the treated groups, CD68+ cells were more restricted to the
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lesion center (Figure 2A). Staining with F4/80, which preferentially stains macrophages
and activated microglia, demonstrated positively stained cells mainly at the lesion site and
mostly in the control group, with reduced quantified density in the PELF-EMF treated
groups (Figure 2C,D).

3.2. PELF-EMF Treatment Increases Axonal Survival and BDNF Expression at the Lesion Site

Two months following daily PELF-AMF treatment, significantly higher βIII-tubulin
levels were detected in the spinal cord’s white matter at the lesion sites (Figure 3A,B),
suggesting that the electromagnetic treatment led to axonal survival at the lesion area. We
further examined whether this treatment facilitated pro-survival molecule expression [41].
BDNF, an important neurotrophic factor used in experimental neurotrauma treatments
to promote neurogenesis, neuroprotection, axonal sprouting, myelination, and synaptic
plasticity, was significantly increased in neuronal cells adjacent to the lesion site in the
PELF-EMF group compared to the control group (control 62.7+ 17.3; PELF-EMF 91.6 + 15.1;
*** p < 0.001) as shown in Figure 3C,D.

3.3. PELF-EMF Treatment Moderated the Area of Demyelination at the Lesion Site

BDNF is known to play a role in myelin structure formation, maintenance, and repair,
and has been suggested to be a critical factor involved in remyelination and/or structural
repair of myelin after neurotrauma [42,43]. Luxol Fast Blue (LFB) histological staining
of longitudinal sections at the injury site revealed enhanced myelin sparing in the PELF-
EMF-treated mice compared with the untreated mice (Figure 4A,B). Significant myelin
loss prevention in the PELF-EMF mice was evident only in the white matter of the lesion
center, up to 250 µm rostral and caudal to the injury. Additional analysis of myelin sparing
was examined using immunostaining of the myelin binding protein (MBP) in the white
matter at the center of the lesion (Figure 4C) and it was found that the MBP density was
significantly reduced in the control group when compared to the PELF-EMF-treated group
(control 45.2 + 11.7; ELF-EMF 64.16 + 17.08; *** p < 0.001). These results may suggest that
the electromagnetic treatment reduced the demyelination of the axons through inhibition
of the inflammatory response and enhancement of the pro-survival factor secretion.

3.4. ELF-EMF Treatment Reduced Functional Deficits a Week after the Injury

As shown in Figure 5, the PELF-EMF-treated mice displayed significant improvement
in locomotor recovery at seven days post SCI, but this significance was lost at 14 days
after the injury. There was a significant improvement in the mBBB score at 7 days post
injury, and the score remained the same up to 5 weeks post-injury (Figure 5A). Mice in the
control group reached the same score as the PELF-EMF treated mice at week two, but had
significantly lower mBBB scores at one week post-injury.

Similar results were obtained using CatWalk gait analysis. Compared with mice prior
to injury, the control group showed significantly lower measurements in swing duration
and stride length compare to the PELF-EMF-treated mice, which demonstrated better
locomotive abilities (Figure 5B,C). Poorer swing duration measures continued in the control
group, even at 7 weeks post-injury. In both groups, the base of support was significantly
reduced, compared to that in the pre-operative stage (Figure 5D). These results may suggest
that the PELF-EMF treatment produces greater improvement in motor abilities in the first
week after injury when compared to control groups, possibly as a result of decreased
inflammation.

4. Discussion

Over the past decade, an accumulating body of data suggests that PELF-EMF, in the
frequency range of <100 Hz and a field strength < 5 mT, exhibits beneficial therapeutic
effects in the treatment of neurotrauma, without any adverse effects. Here we examined its
benefit in a mild to moderate SCI model.



Biomedicines 2022, 10, 325 10 of 13

In this study, we demonstrated that daily treatment with PELF-EMF, beginning within
two hours after SCI, significantly diminished the pro-inflammatory response by reducing
microglia and astroglia activation and increasing pro-survival and anti-apoptotic signaling,
such as BDNF expression, in mice. Moreover, this treatment exhibited a neuroprotective
effect by reducing the axon demyelination in the white matter of the lesion center. The anti-
inflammatory and neuroprotective effects of PELF-EMF treatment also improved functional
performance during the first week post-injury; however, this improvement was weakened
in subsequent weeks.

CNS injury is almost always accompanied by some degree of reactive gliosis, in-
flammation, and scarring [24,44]. Microglia are the first non-neuronal cells that become
activated following neurotrauma, and they are the main source of pro-inflammatory medi-
ators in the CNS. Activated astrocytes and microglia release a wide variety of cytokines,
growth factors, and other inflammatory mediators, promoting axonal degeneration, de-
myelination, and scar formation [45]. Reactive astrocytes densely populate the borders of
the injury epicenter, strongly upregulate the intermediate filament protein (such as GFAP)
expression, and secrete chondroitin sulfate proteoglycans (CSPGs) into the extracellular
matrix, organizing astrocytes into a barrier-like structure that inhibits neural sprouting
through this area [44,46,47]. Attenuation of this early inflammatory response to spinal
cord injury (SCI) may therefore limit the extent of the secondary tissue injury and, accord-
ingly, the consequent disability [48]. In stroke patients, rehabilitative 4-week treatment
with ELF-EMF (F = 40 Hz, Bm = 5 mT), in combination with physiotherapy, reduced both
IL-1β plasma and IL-1β mRNA expression levels and increased IL-2 plasma levels without
any adverse effects [49]. In addition, no cytotoxic or genotoxic effects were detected in a
human mesenchymal stromal cell exposed to an ELF-EMF of 5 Hz, 0.4 mT, for 20 min/day,
3 x/week, for 2 weeks [50].

Here we demonstrated significantly reduced expression of GFAP at and around the
lesion site after two weeks of daily treatment with PELF-EMF. Furthermore, the expression
of M1 pro-inflammatory CD68+ microglia/macrophages was reduced and limited to the
lesion site in the treated group, as compared to the significantly higher and more diffused
expression in the untreated group. It is understood that shortly after neurotrauma, as
a result of the primary injury, the predominantly M2-like microglia/macrophage envi-
ronment shifts to an M1 pro-inflammatory type, promoting secondary damage [51–53].
It has been shown that the M1 microglia/macrophages indeed have a neurotoxic effect,
while the anti-inflammatory M2 type promotes regenerative growth in response to CNS
injury [24,52,54]. In our study, long-term neuroprotective markers such as BDNF, which
has been identified as a potent promoter of neuronal cell survival and regeneration, were
significantly elevated in the lesion site of the treated group two months post-injury. The
elevated expression of BDNF, followed by the diminished loss of myelin, supports our
hypothesis that the prevention of pro-inflammatory events shortly after spinal cord injury
has a long-term neuroprotective effect. Nevertheless, motor function improved signifi-
cantly in the first week only in the PELF-EMF treated mice, although later, the control
group achieved the same status as the treatment group, likely because the injury was mild
enough for mice from both groups to gain a high motor recovery score. We believe that
the proposed rehabilitative treatment will be less effective in more severe cases of SCI. We
could still see a trend of improvement in the gait of the PELF-EMF-treated mice in all the
CatWalk parameters we presented in Figure 4 because the injuries to the mice were mild
compression injuries, indicating that a combined treatment approach should be examined
in the future for better neuro-functional outcomes in SCI patients.

5. Conclusions

To date, there is no FDA-approved treatment that can prevent the development of
secondary SCI, nor one that induces regenerative processes [5]. Nonetheless, a moderate
degree of functional recovery can be achieved using rehabilitative motor training [38,55,56].
Rehabilitation is probably one of the most important interventions following neurotrauma,
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and it can potentially improve a patient’s quality of life significantly. However, multi-
trauma and the management of other medical complications in the acute post-injury
setting often preclude or complicate early rehabilitation that demands the patient’s active
participation. Therefore, a simple, safe, and approved-for-use rehabilitation device that
can be combined with traditional therapy, without the need to involve the patient in active
participation immediately after a spinal cord injury, may have significant therapeutic value.
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