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Abstract: Gestational choriocarcinoma (CC) is an aggressive cancer that develops upon the occur-

rence of abnormal pregnancies such as Hydatidiform moles (HMs) or upon non-molar pregnancies. 

CC cells often metastasize in multiple organs and can cause maternal death. Recent studies have 

established an association between recurrent HMs and mutations in the Nlrp7 gene. NLRP7 is a 

member of a new family of proteins that contributes to innate immune processes. Depending on its 

level of expression, NLRP7 can function in an inflammasome-dependent or independent pathway. 

To date, the role of NLRP7 in normal and in malignant human placentation remains to be eluci-

dated. We have recently demonstrated that NLRP7 is overexpressed in CC trophoblast cells and 

may contribute to their acquisition of immune tolerance via the regulation of key immune tolerance-

associated factors, namely HLA family, βCG and PD-L1. We have also demonstrated that NLRP7 

increases trophoblast proliferation and decreases their differentiation, both in normal and tumor 

conditions. Actual findings suggest that NLRP7 expression may ensure a strong tolerance of the 

trophoblast by the maternal immune system during normal pregnancy and may directly affect the 

behavior and aggressiveness of malignant trophoblast cells. The proposed review summarizes re-

cent advances in the understanding of the significance of NLRP7 overexpression in CC and dis-

cusses its multifaceted roles, including its function in an inflammasome-dependent or independent 

pathways. 

Keywords: NLRP7; inflammasome; choriocarcinoma; pregnancy; maternal immune tolerance;  

tumor microenvironment 

 

1. Introduction 

The placenta is a highly specialized organ that develops during pregnancy to ensure 

the growth and the normal progress of the pregnancy. This organ also plays an important 

role in protecting the fetus from environmental harms, including those emanating from 

the maternal immune system [1]. Among important cells that form the placenta is the 
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cytotrophoblast, a cell type capable of strong adaptation to its environment, as it expresses 

both the maternal and paternal antigens. Numerous studies have described the tropho-

blast as a special cell that possesses means to prevent its recognition by the maternal im-

mune system [2]. 

During early pregnancy, cytotrophoblast cells (CT) differentiate into two main cell 

types: the syncytiotrophoblast (ST), which represents the endocrine unit of the placenta, 

as it is responsible of the production and secretion of the key hormone human chorionic 

gonadotropin (βCG), and the second cell type is the extravillous trophoblast (EVT). EVTs 

are strong remodelers of the maternal spiral arteries during the first trimester of preg-

nancy, as they contribute to the establishment of the fetomaternal circulation [3]. As they 

migrate, EVTs acquire a new repertoire of proteins that belongs to endothelial cells [4]. At 

the port of the chorionic villi, attached proliferating cytotrophoblasts express adhesion 

molecules characteristic of epithelial cells such as integrins α6/β1 and αv/β5. As these cells 

enter the invasive cell columns, they lose the expression of epithelial cell-like adhesion mol-

ecules and acquire the expression of endothelial cell adhesion markers such as integrins 

α1/β1, αv/β3, and VE-cadherin, which promote vascular mimicry [5,6]. Importantly, this 

switch allows the heterotypic adhesive interactions that allow fetal and maternal cells to 

cohabit in the uterine vasculature during normal pregnancy [4]. 

Due to the proliferative, migratory and invasive characteristics of EVT, the initial low 

capacitance/high resistance of the uterine arteries is converted into high capacitance/low 

resistance vessels. Upon this invasion, the fetomaternal circulation is established, allowing 

for an increase in oxygen pressure within the intervillous space, from 20 mmHg in the 

early first trimester to 55 mmHg in the late first trimester of pregnancy [7]. 

Failure in the process of invasion of trophoblast cells into the maternal decidua has 

been reported to cause deregulations in the production of multiple factors, including in-

flammatory cytokines, reactive oxygen species (ROS) and other harmful molecules, such 

as uric acid [8]. These molecules have been reported to cause cellular damages and to 

activate intracellular processes such as inflammasomes [9]. Several have demonstrated 

that superficial invasion of EVT is observed in the pathology of preeclampsia and fetal 

growth restriction (FGR) [10–14], while excessive invasion of the maternal decidua and 

myometrium by these cells is observed in gestational trophoblastic diseases (GTD) [15,16]. 

GTDs are a rare subset of placental conditions encompassing benign proliferations called 

partial (PHM) or complete hydatidiform moles (CHM), and their invasive counterpart 

named gestational trophoblastic neoplasia (GTN), of which choriocarcinoma (CC) is the 

most aggressive [17–19]. 

Currently, increasing literature reports the involvement of inflammasomes in key 

processes of placental development, including trophoblast invasion [20]. Importantly, a 

compelling link between pregnancy pathologies, in particular GTDs, and the occurrence 

of mutations in one of the inflammasome genes, nlrp7, is now established [16,21], suggest-

ing its involvement in the etiology of these pathologies, especially those associated with 

trophoblastic gestational neoplasia. Nevertheless, the underlying molecular mechanisms 

are largely unknown. 

2. NLRP7 Inflammasome: Generalities 

2.1. NLRP7 Expression Pattern and Functions 

Inflammasomes are cytosolic multi-protein complexes that link pathogen recognition 

by specific cytosolic pattern recognition receptors (PRRs) [22,23]. The nucleotide-binding 

and oligomerization domain (NOD)-like receptor (NLR) serves as intracellular guards 

that coordinate the innate immunity and inflammatory responses upon the perception of 

adverse signals within the cell [22,23]. The activation of these inflammasomes is mediated 

by two signals. The first signal activates the nuclear factor (NF-κB) pathway that induces 

the transcription of the pro-IL-1β and pro-IL-18 [24], while the second signal is the direct 
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sensing of the stimulus by the inflammasome, mediating its assembly and later the matu-

ration of the pro-IL-1β and pro-IL-18 in a caspase-1 dependent manner (Figure 1). 

Among the most studied NLRs are the NLRP family members. These inflammasomes 

are formed from three domains: PYRIN, nucleotide binding domain (NATCH) and leu-

cine-rich repeats (LRR), the latter of which binds to NATCH in the inactive state of the 

complex (Figure 1). Upon activation, LRR dissociates from NATCH-PYRIN, and then 

Pyrin binds to the apoptosis-associated speck-like protein (ASC) adaptor protein, which 

enables its subsequent binding to caspase-1, mediating the maturation of pro-IL-1β (Fig-

ure 1) and pro-IL-18. The NLRP family contains 14 members. The most studied one is the 

NLRP3, also reported to be associated with oncogenic functions, as it was recently re-

ported that resistance to metastasis in Nlrp3−/− mice was fully attributed to enhanced NK-

cell activity [25]. In addition, other members such as NLRP6 have also been shown to ex-

hibit an anti-tumor role through the suppression of the expression of pro-inflammatory 

cytokines in the tumor microenvironment [26]. 

NLRP7, also called NALP7 or PYPAF3, is an ASC-dependent inflammasome. Its gene 

has been reported to emerge from NLRP2 gene [27]. Similar to all inflammasomes, NLRP7 

contributes to both pro- and an anti-inflammatory processes, depending on whether it 

functions in an inflammasome dependent or independent pathway [23]. The function of 

NLRP7 inflammasome has also been reported to depend on the master regulatory tran-

scription factor protein that controls cellular inflammation, the NF-kB [23,28]. In addition 

to its pro- and anti-inflammatory actions, NLRP7 plays a role in restricting intracellular 

bacterial replication [29] and can also induce inflammasome assembly upon specific stim-

ulation by FSL-1 (diacylated lipoprotein) [20]. 

Under physiological conditions, NLRP7 mediates the maturation and secretion of IL-

1β via its inflammasome’s activity [20]. However, its overexpression under pathological 

conditions causes an inhibition of the procaspase-1 and pro-IL-1β maturation through di-

rect physical interaction with these pro-proteins and without any interference with the 

NF-kB pathway. Importantly, data from Kinoshita et al. showed that NLRP7 might exert 

a negative feedback loop on the transcription of IL-1β to avoid cell toxicity [9,30]. 

 

Figure 1. Illustration of the domains that comprise the NLRP7 inflammasome. NLRP7 inflam-

masome is composed of the NLRP7 receptor, the ASC adaptor protein and procaspase 1. PYD: pyrin 

domain; NATCH: nucleotide binding domain (allows the ATP-dependent oligomerization of the 

NLRs); LRR: leucine-rich repeats. 

The proposed review will summarize recent advances in the understanding of 

NLRP7 involvement in normal and tumor placenta development. In particular, this re-

view will report NLRP7 involvement in the development and progression of CC and dis-

cuss its multifaceted roles in the control of pregnancy inflammatory processes. The review 

will advance our knowledge on the underlying mechanisms of NLRP7 in the control of 
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trophoblast differentiation and acquisition of maternal immune tolerance during preg-

nancy. In addition, this review will report recent advances on the mechanism by which 

NLRP7 contributes to the development of HM and their progression to CC. 

3. NLRP7 and Normal Pregnancy 

Beside its contribution to inflammatory responses in numerous physiological sys-

tems, NLRP7 exhibits an important role in the control of the female reproduction pro-

cesses [20,28,29,31–34]. NLRP7 has been reported to be highly expressed in the oocyte and 

to interact with other maternal-effect genes to regulate ovarian reproductive activities 

[35]. Immunohistochemical localization of NLRP7 within adult ovary sections revealed 

that the protein was present in follicles regardless of their developmental stages [35]. In 

addition, NLRP7 knockdown is unfavorable for the pre-implantation embryo develop-

ment, in vitro [36,37]. 

Because maintenance of human pregnancy is considered as an immunological para-

dox, it has been established that its normal outcome depends on finely tuned adaptations 

at the fetomaternal interface of numerous systems, including the innate and adaptive im-

mune systems. At this interface, two distinct genomes must interact in order to maintain 

tolerance of the allograft and to preserve the pregnancy. In this way, the placenta has to 

employ several mechanisms to regulate immune tolerance and modulate the way the ma-

ternal immune system adapts in the presence of potentially dangerous signals [38,39]. 

Importantly, placental trophoblasts, endothelial cells and macrophages (Hofbauer 

cells) have been reported to be sensitive to infectious agents via the PRRs [40]. The PRRs 

are known to sense both pathogen-associated molecular patterns (PAMPs) and host-de-

rived damage-associated molecular patterns (DAMPs). The latter include exosomes, reac-

tive oxygen species (ROS), uric acid, cholesterol and microparticles [41,42]. During preg-

nancy, both maternal and fetal compartments have been reported to express mRNA and 

protein of the following NLRPs, 1 to 4 and NLRP7, as well as the adaptor protein ASC and 

the main caspase (caspase 1). These proteins have been reported in ST and CT in the cells 

of the myometrium and in the amnion cells [43,44]. At term, the activity of the inflam-

masomes have been reported to be increased in the cervix and the decidua [45]. In addi-

tion, recent studies have demonstrated that pyroptosis can also occur upon the activation 

of the NLRP3 inflammasome during the process of labor [46]. 

In relation to NLRP7, recent studies have demonstrated that this protein plays a cen-

tral role in pregnancy-induced immune adaptations [47]. Early in pregnancy, NLRP7 is 

abundantly expressed in M2-polarized decidual macrophages, and its overexpression 

suppresses M1 and increases M2 macrophage marker expression, suggesting NLRP7 con-

tribution to immunological homeostasis of the endometrium early in pregnancy [36]. 

Nevertheless, NLRP7 function as an inflammasome in early pregnancy is still elusive. 

While the first studies proposed an anti-inflammatory role of NLRP7 in non-immune 

cells, further studies have shown the assembly of a functional NLRP7 inflammasome 

[28]. NLRP7 has also been reported to contribute to the decidualization process. Its silenc-

ing has been reported to impair decidualization, and its NLRP7 expression enhances this 

process [36]. 

Recently, our group demonstrated that NLRP7 expression is also critical in the early 

stages of placental development, particularly in trophoblast cells [20]. NLRP7 increased 

cytotrophoblast proliferation and controlled their precocious differentiation toward EVT 

and ST. Importantly, these effects were dependent upon the oxygen tension, a key param-

eter of placental development during the first trimester of pregnancy, and by the endo-

crine regulation of the key hormone, βhCG [20]. 

High levels of NLRP7 in hypoxia were linked to a lower differentiated state from CT 

to ST and EVT and to a higher proliferative state. These data suggested that NLRP7 is 

associated with an undifferentiated state of trophoblast cells. These findings are in line 

with recent data published by Alici-Garipcan et al. [48], who demonstrated that NLRP7 

downregulation allows the cells to better respond to BAP (a BMP4 inhibitor), allowing for 
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their commitment toward a trophoblastic lineage. They further confirmed their results by 

demonstrating that one of the ESC (embryonic stem cell) genes, the OCT3/4, was down-

regulated upon NLRP7 downregulation. Importantly, restoring of NLRP7 expression not 

only allows the cells to recover from the low expression of BMP4 but also restores the 

expression of OCT3/4. These data strongly suggest that NLRP7 is involved in the control 

of trophoblast lineage and commitment. This means that NLRP7 inhibits pluripotent stem 

cells (iPSCs) commitment toward the trophoblast lineage through a BMP4 dependent 

pathway [48]. Another study using patient-specific induced pluripotent stem cells (iP-

SCs)-derived trophoblast cells also demonstrated that NLRP7 control of trophoblast dif-

ferentiation involves members of bone morphogenetic proteins, including BMP4 [48]. 

4. NLRP7 in Pregnancy Pathologies 

4.1. NLRP7 and Recurrent Hydatidiform Moles 

Until 2014, studies on NLRP7 in relation to pregnancy pathologies have mainly been 

focused on its association with recurrent HM, as ample evidence has been collected to 

convincingly link HM to NLRP7 [9,31,49]. Several NLRP7 gene variants are clearly asso-

ciated with reproduction and imprinting defects [9,31,49,50]. HM patients have been re-

ported to carry nonsynonymous variants of NLRP7, and more than 200 sequence variants 

have thus far been reported in 48–80% of recurrent HM patients [50,51]. Mutations in the 

nlrp7 gene include insertions, substitutions, deletions and duplications. While the associ-

ation between NLRP7 mutations and HM occurrence is convincing, the functional conse-

quences and the underlying molecular mechanism are still unknown.  

4.2. NLRP7 and Fetal Growth Restriction 

In relation to pregnancy pathologies, we demonstrated that NLRP7 expression is el-

evated in the placentae of pregnancies complicated by fetal growth restriction (FGR), a 

pregnancy often characterized by increased inflammation [13,20,52,53]. These findings 

strongly suggest that the NLRP7 inflammasome could be involved in the etiology of 

FGR. In addition, we demonstrated that the expression of other NLRP7 inflammasome 

components, including ASC, cleaved caspase-1 and mature IL-1β, were also increased in 

FGR placentae and that circulating IL-1β, but not IL-18 levels, were significantly increased 

in the sera from FGR patients [20]. 

4.3. NLRP7 and Preeclampsia 

While deregulation of NLRP7 expression in the placenta of preeclamptic patients is 

likely, assuming that inflammation is one of the main causes of PE development, no study 

has thus far reported NLRP7 status in relation to this significant and life-threatening pa-

thology of pregnancy complications. Because the NLRP gene family has been reported to 

be associated with the etiology of imprinting defects and that PE has also been observed 

in disorders associated with aberrant methylation at genomically imprinted loci, it was 

hypothesized that the NLRP gene family may be implicated in PE. To verify this hypoth-

esis, Soellner et al. analyzed a cohort of 47 PE patients for NLRP gene mutations using 

next generation sequencing [54]. The screening indicated that NLRP mutations are not a 

relevant cause of PE. Further studies are warranted to show the potential clinical and bi-

ological significance of NLRP7 in the etiology of PE. 

Overall, the above studies describing NLRP7 expression and activation in physio-

logical inflammation, associated or not with complicated human pregnancies such as FGR, 

provide important information on their potential role in the pathophysiology of pregnancy 

complications such GTDs. 

5. NLRs and Cancer 

Because elevated serum concentrations of IL-1β and IL-18 are often correlated to ma-

lignancies, it was suggested that all members of the NLR family are associated with pro-
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tumoral activities. Nevertheless, numerous studies, especially the comprehensive review 

by Terlizzi et al., reported that members of this family can exhibit both pro-and anti-tu-

moral activities, depending on the type of cancer and whether they function in inflam-

masome dependent or independent pathways [26]. 

While inflammasome activation in cancer is supposed to control its expansion, some 

stimuli of inflammasomes can behave as tumor promoters through the induction of 

chronic inflammation that rather facilitates tumor development. This sight is contrasted 

in animal models of colon cancer in which the activation of some inflammasome com-

plexes is associated with tumor protection. For instance, NLRC4- and caspase-1-deficient 

mice have been reported to develop increased colonic inflammation, responsible for 

higher colon adenocarcinoma burden, in an azoxymethane/dextran sulfate sodium 

(AOM/DSS) mouse model. NLRC4 and caspase-1 were inferred to exert a protective func-

tion in that model via a direct effect on epithelial cell proliferation [26]. In addition, knock-

down of NLRP6 in mice increased their risk of developing colorectal cancer, suggesting 

its significant role in the onco-suppressive activity [55]. Conversely, NLRP3, the most 

studied NLR has been reported to be associated with pro- and anti-carcinogenic roles. In 

the DSS/AOM cancer model, NLRP3 has been reported to play a protective role [56]. How-

ever, this member has been associated with poor survival rate of colorectal cancer [57] and 

to higher susceptibility to melanoma [58] and myeloma [59]. In addition, NLRP3 has been 

reported to suppress NK (natural killer) and T cell-mediated anti-tumor actions and im-

mune-editing in a mouse model of carcinogen-induced sarcoma and metastatic melanoma 

[25]. This phenomenon was mediated by IL-1β-dependent recruitment of immune sup-

pressive cells, such as myeloid-derived suppressor cells (MDSCs) and Treg cells [25]. 

Taken together, these findings strongly suggest that the roles of NLRs in human cancers 

are yet to be elucidated. 

While increasing literature exists about the involvement of NLR members in cancer 

development, few studies are available for NLRP7. Increased NLRP7 expression has been 

reported to be associated with poor prognosis of colorectal cancer [60] and to play a crucial 

role in testicular tumorigenesis [61]. In relation to the female reproductive system, Ohno 

et al. demonstrated that, in endometrial cancer, a strong relationship exists between the 

depth of tumor myometrial invasion and NLRP7 expression [33]. The staining of NLRP7 

was heterogeneous in advanced tumors and NLRP7 was frequently located at the inva-

sion front of the tumor. The authors proposed that the expression of NLRP7 in the inva-

sive front of cancer may provide malignant tissue with a suitable environment for their 

growth and spread through inducements to immunosuppression [33]. 

5.1. NLRP7 and Gestational Trophoblastic Diseases 

Distinct from normal placental development, GTDs are a rare subgroup of placental 

pathologies, encompassing PHM or CHM and their non-molar counterpart such as CC, 

which constitutes the most aggressive form of placental cancer [62]. CC is a highly prolif-

erative and invasive tumor as trophoblast cells forming the tumor metastasize into multi-

ple organs, including the vagina, lungs and brain [18,62]. CC has an estimated incidence 

of 2 to 7 in 100,000 pregnancies in Europe and North America. This incidence is higher in 

Asia and Africa, with 5 to 202 in 100,000 pregnancies [62]. CHM is a morbid pathology 

that is associated with a high risk (20%) for patients to develop post-molar CC [62]. More 

often, CC may also develop after normal delivery. The incidence of this type of CC is 1 

per 67,000 live births [19,63]. Recent studies have shown that 50% of patients with recur-

rent HM have mutations in the gene nlrp7 [62]. While the association of biallelic mutations 

in nlrp7 with recurrent HM is well established, its role in the development of GTDs, espe-

cially CC, is poorly understood and often controversial [28]. 
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5.2. NLRP7 and Choriocarcinoma 

Since the identification of nlrp7 as a highly mutated gene in recurrent HMs, no study 

has been conducted to determine whether deregulations in the expression of this gene 

may contribute to the change in the behavior of the tumor trophoblast cells and their me-

tastasis. Recently, we investigated the role of NLRP7 in these processes [64]. We used three 

approaches to define the role of NLRP7: (i) a clinical study in which we used human sera 

and placentae that were collected from normal pregnant women and from patients with 

CHM or CC; (ii) an in vitro study in which we investigated the influence of NLRP7 knock-

down on the tumorigenesis of the choriocarcinoma cell line, JEG3, which used both 2D 

and 3D culture systems; and (iii) an in vivo study in which we used an orthotopic model 

of CC and a metastatic model of this cancer [65]. This study demonstrated that NLRP7 

was upregulated in tumor cells, and in CHM and CC placentae. In JEG3 cells, NLRP7 

increased proliferation and 3D organization of malignant cells. 

NLRP7 increased expression in JEG3 cells and in CHM and CC tissues strongly sug-

gested that its inflammasome is highly activated. Nevertheless, no production or secretion 

of mature IL-1β have been observed in JEG3 cells. This finding strongly suggests that 

NLRP7 may function in an inflammasome-independent pathway in malignant tropho-

blast cells. This statement is in line with previous studies reporting that overexpression of 

NLRP7 exerts negative feedback on the production and maturation of IL-1β. [9,30]. Recent 

studies from the literature demonstrated that IL-1β might negatively control the prolifer-

ation of trophoblast cells through the deregulation of the cell cycle [66,67]. Importantly, 

Chow et al. demonstrated that another member of the NLR family, the NLRP3, promotes 

metastasis in an inflammasome independent manner and that knock-out mice for NLRP3 

exhibit lower numbers of lung metastases upon intravenous inoculation of prostate or 

melanoma malignant cells [25]. It has also been reported that overexpression of NLRP12 

is associated with the aggravation of prostate cancer without any increase in the levels of 

mature IL-18 or IL-1β by these cells [55]. Overall, these results roughly suggest that 

NLRP7, similar to NLRP12 and NLRP3, functions in an inflammasome independent man-

ner in malignant cells [55,68]. 

Importantly, the in vivo study that used the orthotopic model of CC, which was in-

jected within its placenta with NLRP7 invalidated-CC cells, showed higher maternal im-

mune response and that the mice developed smaller tumors and displayed less metasta-

ses. Furthermore, we observed a strong increase in the levels of IL-1β, both locally in 

mouse placenta and in the maternal serum. This finding strongly suggests that the expres-

sion of NLRP7 by the trophoblast cells contribute to its camouflage by the maternal envi-

ronment (Figure 2). In line with this assumption, we observed that malignant cells that 

were inactivated for NLRP7 exhibited significant decrease in the expression of proteins 

that contribute to maternal immune tolerance. These include PD-L1, HLA-G and hCG. 

The latter hormone has recently been reported to increase the activity of regulatory T cells 

(Treg) and to retain the tolerogenic activity of dendritic cells [69,70]. Importantly, these 

findings strongly support a local immune tolerance that is mediated by malignant cells- 

secreted hCG. This hormone is known to act as a strong chemoattractant for T-suppressors 

that are apoptotic actors for T-lymphocytes. 

From a clinical standpoint, the results obtained in vivo may elucidate what may occur 

in patients with CHM who go on to develop CC. Several studies have suggested that CC 

develops in patients with a weak immune system that facilitates a favorable environment 

for tumor growth [9,23]. The mouse model used in our study is an immunodeficient model 

that mimics the weak immune system of CHM or CC patients. These mice miss mature B 

and T lymphocytes, but have normal natural killer cells, macrophages and granulocytes 

[71]. 

Altogether, these findings have demonstrated that NLRP7 plays a key role in chang-

ing the behavior of trophoblast malignant cells (Figure 2). This occurs through its contri-

bution to the establishment of an immunosuppressive maternal microenvironment that 

downregulates the maternal immune response and facilitates trophoblast tumorigenesis. 
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Figure 2. Proposed model for the role of NLRP7 protein in the development of gestational chori-

ocarcinoma. 
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5.5. PDL-1 in Normal and Tumor Trophoblast Cells 

The survival of the trophoblast cells depend on their ability to evade the immune 

system through the inhibition of their anti-tumoral activity [39,72]. A common ligand 

found in several aggressive cells is the protein PD-L1 (programmed death ligand -1), 

which mediates immunosuppression upon binding to its receptor PD-1, commonly ex-

pressed by immune cells [79]. During normal pregnancy, the immunosuppressive role of 

PD-L1 is major, as it is expressed on the ST. PDL-1 interaction with these cells promotes 

an immune tolerance to the fetal tissues [80]. 

In CC, PD-L1 is expressed by the ST and CT. PD-L1/PD-1 interaction provides an 

immune tolerance through the activation of the paternal antigen-specific naïve helper T 

cells Tregs [81]. Importantly, we demonstrated that NLRP7 knockdown caused a decrease 

in PD-L1 expression, suggesting that this protein is directly involved in the NLRP7-medi-

ated immunosuppression [64]. Altogether, these findings suggest that a tight relationship 

exists between the maternal immune system and the NLRP7 inflammasome. Ongoing 

studies are in progress to decipher the mechanisms by which this occurs at the fetomater-

nal interface. 

6. Concluding Remarks 

It clearly appears that appropriate NLRP7 expression and NLRP7 inflammasome 

activity are essential during early pregnancy. However, further investigation is required 

to establish how HM-associated NLRP7 overexpression and variants might affect NLRP7 

function and lead to reproductive wastage. 

Overall, it appears that the NLRP7 mode of function will tightly depend on the cel-

lular status. Under physiological conditions, NLRP7 will function in an inflammasome-

dependent pathway to contribute to the maintenance of the required fine balance between 

pro-inflammatory and anti-inflammatory settings. This will be ensured through the pro-

cessing of pro-IL-1β to IL-1β [64]. This is what clearly has been reported in normal troph-

oblast cells and in placental explant model systems [20]. The NLRP7 inflammasome activ-

ity can be exacerbated in the context of pregnancy pathologies such as FGR pregnancy to 

overcome the stressful conditions of the trophoblast cells [20]. 

During CC development, NLRP7 appears to function in an inflammasome-independ-

ent pathway, as no IL-1β was produced. As demonstrated by numerous studies, NLRP7 

overexpression might explain its function in an inflammasome independent pathway 

[22,23,64]. However, the underlying mechanism is yet to be elucidated. A likely explana-

tion drifts toward an abnormal interaction between NLRP7 protein and the NFkB path-

way, leading to an inhibition of the transcription of Pro-IL-1β. The above data clearly 

show that the physiological expression of NLRP7 in trophoblast cells contributes to their 

acquisition of a normal immune tolerance and controls their precocious differentiation. In 

contrast, its overexpression in tumor conditions exacerbates immune tolerance, permit-

ting these cells to proliferate and invade the maternal tissue (Figure 2). 

To better illustrate the actual understandings of NLRP7 functions in normal and in 

malignant trophoblast cells, we designed the cartoon reported in Figure 3. 

Panel A reports a normal trophoblast cell that expresses NLRP7 protein at normal 

levels. In this cell, NLRP7 functions in an inflammasome pathway, as it mediates the mat-

uration of pro-IL-1β, produced upon the activation of the NF-kB pathway, into IL-1β. This 

maturation is due to the activation of the enzyme caspase-1. It was also supposed that 

NLRP7 activity in an inflammasome pathway controls the expression of HLA-G and PD-

L1 [20,64], allowing trophoblast cells to further proliferate, especially during the first tri-

mester of pregnancy. This process is driven by the hypoxic environment that dominates 

during early pregnancy and positively regulates NLRP7 expression [3,20,52,82]. 

Panel B reports a malignant trophoblast cell that overexpresses NLRP7 protein. In 

this cell, NLRP7 inhibits pro-IL-1β production, likely through downregulation of the NF-

kB pathway. The absence of mature IL-1β in malignant cells strongly suggests that NLRP7 
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functions in an inflammasome-independent pathway, which contributes to the exacerba-

tion of tumor-dependent cell proliferation and invasion. As the IL-1β free environment 

allows tumor cells to escape maternal immune control, these cells undergo camouflage 

through an increase in the expression of a selected repertoire of proteins that includes 

check point proteins such as PDL1; HLAG and βhCG. 

In conclusion, this review summarizes the current knowledge on NLRP7 expression 

and function in early normal pregnancy, in FGR, and in choriocarcinoma. While a signif-

icant progress has been made to establish NLRP7 association with molar pregnancies, fur-

ther investigations are required to establish its role during the early stages of pregnancies. 
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Figure 3. Representation of the mode of function of NLRP7 in normal and tumor trophoblast cells. 

(A): NLRP7 is normally expressed in trophoblast cells and functions in an inflammasome-depend-

ent manner to allow maturation of pro-IL-1β to IL1β. The transcription of pro-IL-1β depends on the 

activation of NF-κB that translocates into the nucleus and increases the transcription of pro-IL-1β. 

NLRP7 also regulates the expression of HLA-G and PD-L1 to allow normal tolerance of the tropho-

blast by the maternal immune system and favors the polarization of macrophages to M1 subtype. 

All these processes allow the protection of the fetus and ensure the progress of the pregnancy. (B): 

In malignant trophoblast cells, NLRP7 is overexpressed and functions in an inflammasome-inde-

pendent manner. NLRP7 in turn mediates the increase in HLA-G and PD-L1 expression. This exac-

erbates maternal immune tolerance and camouflage of the tumor cells, creating a favorable, ant—

inflammatory environment for tumor growth. NLRP7 overexpression mediates the excessive pro-

liferation of trophoblast cells and suppresses their differentiation, allowing for further migration 

and invasion that ultimately leads to metastasis of distinct maternal organs. 
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