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Abstract: Pregnancy morbidity induced by anti-phospholipid antibodies (aPL+/PM+) is mainly
thought to arise from placental abnormalities. We attempted to investigate the effect of aPL on
the activity of Yes-associated protein (YAP) in the trophoblast and how YAP regulated human
trophoblasts function. Thus, HTR-8 cells were treated with IgG purified from aPL+/PM+ women or
normal controls. We found that aPL+/PM+ IgG impacted YAP activity via abrogating YAP expression.
Further investigation of the anti-β2GPI-IgG/β2GPI complex showed an inhibition of nuclear YAP
level and translocation in a dose-dependent manner, which might be rescued by progesterone in
HTR-8 cells. YAP overexpression or knockdown HTR-8 cells were established for the evaluation of
cell function and related gene expression in vitro. Loss of YAP arrested cell cycles in the G2/M phase,
accelerated cell apoptosis by increasing the ratio of Bax/Bcl2, and disrupted MMP2/9-mediated cell
migration and angiogenesis tube formation by VEGF. These findings support a new mechanism of
PM associated with aPL through which YAP inactivation induced by aPL perturbs the trophoblast
cell cycle, apoptosis, migration, and angiogenesis, finally developing into pregnancy failure.

Keywords: antiphospholipid antibody; trophoblast; Yes-associated protein; cell biological
function; progesterone

1. Introduction

Antiphospholipid antibodies (aPL) are a heterogeneous population of autoantibod-
ies that recognize phospholipid-binding proteins interacting with anionic phospholipids,
such as β2-glycoprotein I (β2GPI) [1]. They are currently categorized into three main sub-
types: anti-beta2 glycoprotein I (aβ2GPI), anti-cardiolipin (aCL), and lupus anti-coagulant
(LAC) [2]. Persistent aPL positivity in serum has an intense relationship with anti-phospholipid
syndrome (APS), a systemic autoimmune disease clinically characterized by thrombotic
events and/or pregnancy morbidity [3]. Multiple case–control studies have shown that up
to 50% of patients with pre-eclampsia (PE) or fetal intrauterine growth restriction (IUFGR)
can be detected for aPL positivity in serum, compared with 7% or less in healthy pregnant
women [4]. Another two meta-analyses concluded that aPL is a risk factor for consecutive
early and late pregnancy losses [5,6]. It is considered that subsets and combinations of
aPL contain certain value in predicting the risk of adverse pregnancy outcomes in aPL
carriers [7,8].

Although human placental injury provoked by aPL was initially reported as thrombo-
sis and infarction at the maternal–fetal interface, subsequent large-scale histological studies
revealed that the fingerprint of placental change related to aPL involved trophoblast dys-
function and death, impaired spiral artery remodeling, and placental inflammation [9].
With research progress on the pathogenic mechanisms of APS subtypes, more clues point to
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discrepancies in pathogenicity between aPL+ with vascular thrombosis (VT) and aPL+ with
pregnancy morbidity (PM) [10,11]. There is a significant difference in the N-glycan profiles
of purified aβ2GPI IgG associated with thrombotic and obstetric APS: higher galactosyla-
tion in VT but lower galactosylation in PM [12]. In addition to thrombosis, aPL-induced
pregnancy complications arise from failures in embryo development initiated by the attack
of aPL on the trophoblast. β2GPI-dependent antibodies exert a role on placenta biology,
appearing to be the central pathogenesis in APS [13]. They recognize the trophoblast cell
surface protein β2GPI and then start the process of damage generation [14]: attenuating the
proliferation and migration of the trophoblast via ApoER2 [15], eliciting secretion of pro-
inflammatory cytokines such as IL-8 [16,17], weakening the invasion through MAPK [18],
and inhibiting the secretion of β human chorionic gonadotropin hormone (β-hCG) and
proangiogenic factors through TLRs [10,19,20]. The occurrence of aPL-positive adverse
pregnancy outcomes might be a result of joint action of aPL on the maternal–fetal interface,
initiated by the direct trophoblast injury provoked by aPL [21,22].

Yes-associated protein (YAP, also known as YAP1), a transcription co-activator, plays
a crucial role in orchestrating the intricate programming of embryo growth and de-
velopment [23–25]. Multifarious upstream intracellular signaling pathways, including
Hippo, MAPK, and TLR [26–28], were demonstrated to mediate YAP protein activity on
downstream target gene transcription, triggered by cell polarity, cell density, and energy
status [29–31]. For example, when the Hippo signaling pathway is in the “on” state, se-
quential phosphorylation of upstream kinases phosphorylates YAP which is retained upon
binding to 14-3-3 and then degraded in cytoplasm [30]. Unphosphorylated YAP is translo-
cated into the nucleus and interacts with the transcriptional enhanced associate domain
(TEAD) family of transcription factors to dually regulate target gene expression [24,32].
Verteporfin in vitro induced YAP cytoplasmic degradation in human embryonic stem cell-
derived blastocyst-like spheroids greatly reduced the attachment rate and outgrowth area
on receptive endometrium epithelial cells [23]. The accumulated phosphorylated YAP
represses trophoblast cell stemness and cytokinesis, moving towards the development
of early miscarriage, IUFGR and PE [33–36]. All that solid evidence seems to imply that
excessive inactivation of YAP contributes to trophoblast dysfunction during placental early
development and expansion. Nevertheless, detailed expression patterns of YAP and its
specific roles in human trophoblasts exposed to aPL have not been revealed.

Taken together, we propose the hypothesis that YAP might act as a key effector integrat-
ing intracellular upstream signals triggered by aPL and modulating different trophoblast
functions, a possible cellular mechanism to address the pathogenesis of pregnancy compli-
cations associated with aPL. Our study investigated the effect of circulating aPL from the
serum of women with PM on YAP activity and cellular distribution in trophoblasts, and
the biological role of YAP in trophoblast apoptosis, migration, and angiogenesis.

2. Materials and Methods
2.1. Antibody Preparation

Peripheral blood samples from aPL women carriers with pregnancy morbidity history
and normal controls were collected in the anti-coagulant tubes. The study design was
approved by the Ethics Committee of the Gynecology and Obstetrics Hospital, Fudan
University (No.2021-70). The aPL women carriers were all identified with at least two con-
secutive aPL IgG positive results in hospital laboratory tests. Detailed information on the
recruited individuals (normal control group, n = 6; aPL women carriers, n = 8) is provided
in Supplemental Table S1. The serum was separated from the blood by centrifugation and
purified with Melon™ Gel IgG Spin Purification Kit (Thermo Scientific, Rockford, IL, USA),
following the manufacturer’s instructions. The purified polyclonal IgG was identified by
ELISA (CUSABIO, Wuhan, China). After detecting the concentration, each IgG sample was
diluted to 1 mg/mL and then sterilized through a 0.22 µm filter (Millipore, Darmstadt,
Germany). The samples were stored at −80 ◦C for downstream application.
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2.2. Cell Culture and Treatments

The human chorionic trophoblast cell line HTR-8/SVneo cells (referred as HTR-8
cells in the following text) were cultured in phenol red-free RPMI1640 (Gibco, Paisley,
UK) supplemented with 10% fetal bovine serum (FBS, Gibco, Auckland, New Zealand)
at 37 ◦C in a humid atmosphere with 5% CO2. When the cell confluency reached 80% on
6-well plates, cells were exposed to 100 µg/mL aPL negative (aPL−) or aPL positive (aPL+)
IgG for 24 h (h). Cells were also exposed to mouse-IgG (M-IgG, 10 µg/mL, Beyotime,
Shanghai, China)/bovine serum albumin (BSA, 100 µg/mL, Sigma) or anti-β2GPI-IgG
(Sino-Biological, Beijing, China)/β2GPI (ProBio, Wuhan, China) at different concentrations
[anti-β2GPI-IgG (0.1 µg/mL)/β2GPI (1 µg/mL) to anti-β2GPI-IgG (10 µg/mL)/β2GPI
(100 µg/mL) with a binding ratio of 1:10] for 6 h with or without progesterone pretreatment
for 24 h. Progesterone and RU486 (Sigma, Saint Louis, USA) were dissolved in dimethyl
sulfoxide (DMSO, Sigma) respectively. Progesterone solution was added to the culture
medium at different concentrations (10−7 to 10−5 M) alone or with progesterone antagonist
RU486 (10−5 M). DMSO vehicle control was included.

2.3. Plasmid and siRNA Transfections

YAP1 overexpression (OE) plasmid and YAP small interfering RNA (siRNA) were
constructed by Genomeditech company (Shanghai, China). Full-length human YAP1
DNA (NM_001130145.2) was inserted into the PGMLV vector. The siRNA was designed
against human YAP sequences: 5′-GACCAAUAGCUCAGAUCCUUUtt-3′. When HTR-8
cells were 70% confluent in 12-well plates, they were transfected with YAP1-OE plasmid
(2 µg/well) or YAP siRNAs (30 pmol/well) using Lipofectamine 3000 transfection reagent
(Invitrogen, Carlsbad, USA). The empty PGMLV vector or negative scrambled siRNA
was used as controls, respectively. Gene expression was confirmed using RT-qPCR and
immunoblotting. HTR-8 cells transfected with either the scrambled or YAP siRNAs were
used for functional assays.

2.4. RNA Isolation, cDNA Synthesis, and Real-Time Quantitative PCR

The total RNA was extracted from HTR-8 cells through isolation with an EZ-press RNA
purification Kit (EZBioscience, Roseville, USA). First-strand cDNA was then obtained with
the Reverse Transcription Kit with gDNA Remover (EZBioscience). Real-time quantitative
PCR was performed using SYBR Green qPCR Master Mix (ROX1 plus, EZBioscience) and
the ABI 7900 system (Applied Biosystems, Foster, USA). The samples were run in triplicate
and comparative cycle threshold method was used to calculate relative mRNA expression
normalized to GAPDH (Table 1).

Table 1. Real-time quantitative PCR primer sequences used in this study.

Sequence5′-3′

YAP-F ATGAACTCGGCTTCAGGTC

YAP-R AGCCAAGAGGTGGTCTTGTT

MMP2-F GATACCCCTTTGACGGTAAGGA

MMP2-R CCTTCTCCCAAGGTCCATAGC

MMP9-F AGACCTGGGCAGATTCCAAAC

MMP9-R CGGCAAGTCTTCCGAGTAGT

GAPDH-F GGAGCGAGATCCCTCCAAAAT

GAPDH-R GGCTGTTGTCATACTTCTCATGG

2.5. Immunoblotting

All cells were lysed in radioimmunoprecipitation assay (RIPA) buffer plus 1% phos-
phatase inhibitors (New Cell & Molecular Biotech, Suzhou, China). All lysates were
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quantitated with a BCA Assay and mixed with 5× SDS loading buffer and boiled for
10 min. Equal amounts of total protein were loaded into each lane of a 10% polyacrylamide
gel and separated by electrophoresis, followed by transfer onto a polyvinylidene fluoride
(PVDF) membrane (Invitrogen). Membranes were blocked in 5% nonfat dry milk/Tris-
buffered saline-0.5% Tween 20 and then incubated with primary antibodies overnight at
4 ◦C. GAPDH was used as a loading control. The membranes were further probed with
horseradish-peroxidase-conjugated secondary antibody for 1 h at room temperature. The
protein levels were detected by using the enhanced chemiluminescence (ECL) Immunoblot
Analysis Detection System.

The primary antibodies used were as following: YAP (ab52771, Abcam, Cambridge,
UK); phospho-YAP (ser 127) (ab76252, Abcam); ERK1/2 (#4695, CST, Danvers, MA, USA);
phospho-ERK1/2 (#4370, CST); p38 MAPK (#8690, CST); phospho-p38 MAPK (#4511, CST);
BAX (50599-2-Ig, Proteintech, Rosemont, USA); BCL2 (12789-1-AP, Proteintech); and VEGF
(19003-1-AP, Proteintech).

2.6. Immunofluorescence Staining

HTR-8 cells were cultured on glass coverslips and treated with M-IgG/BSA or anti-
β2GPI-IgG/β2GPI with or without progesterone pretreatment for 6 h at 37 ◦C. After being
fixed with 4% paraformaldehyde and permeabilized with 0.2% Triton X-100, cells were
blocked with 5% goat serum for 2 h at room temperature and subsequently incubated
with 488-conjugated YAP antibody (1:100, Proteintech) overnight at 4 ◦C. The nuclei were
stained with 4′-6-diamidino-2-phenylindole (DAPI, Beyotime) for 8 min. The images were
captured by inverted fluorescence microscope (Olympus, Tokyo, Japan).

2.7. Cell Apoptosis and Cell Cycle Assays

For the cell apoptosis assay, HTR-8 cells transfected with YAP siRNA after 48 h
were detected by Annexin V-FITC Apoptosis Detection Kit (Dojindo, Kumamoto, Japan)
following the manufacturer’s instructions. Cells stained with FITC and propidium iodide
(PI) solutions were analyzed by flow cytometer. For the cell cycle assay, the HTR-8 cells
were collected after transfection with YAP siRNA for 48 h and then fixed by ethanol. The
cell cycle distribution of fixed cells stained by using Cell Cycle Staining Kit (Multi Sciences,
Hangzhou, China) was determined by flow cytometry. Both assays were carried out in
triplicate. Flow cytometry data were plotted and quantified with FlowJo software (version
10; Ashland, OR, USA).

2.8. Cell Migration Assay

Cell migration ability was determined by using wound-healing assay. HTR-8 cells
were seeded at 1 × 105 cells on 12-well plates. After transfection with YAP siRNA for 24 h,
the plates were scratched with a 200 µL pipette tip and the culture medium was replaced
with RPMI1640 containing 1% FBS. The scratch areas in the same fields per well were
recorded under a light microscope (Olympus) at 0 h, 20 h, and 30 h. The wound recovery
rate was calculated as the scratch areas at different time points over the initial scratch areas
(0 h) in percentages.

2.9. Tube Formation Assay

A 50 µL/well of cold Matrigel (Corning, Bedford, USA) was added to pre-cooled
96-well plates and then incubated at 37 ◦C for 30 min until Matrigel solidified. After HTR-8
cells were transfected with YAP siRNA or scrambled siRNA for 48 h, the medium was
replaced with fresh culture medium and collected after another 24 h. Human umbilical
vein endothelial cells (HUVEC) were resuspended in the collected conditioned culture
medium and seeded on the Matrigel-coated plates (2000 cells/well). Tubules formed after
3 h in the cell culture incubator and were observed under inverted microscope. The digital
images were analyzed by Image J angiogenesis analyzer.
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2.10. Statistical Analysis

All data are presented as the mean ± SEM. The significance of the results was as-
sessed by Student’s t test, one-way ANOVA test, or Mann–Whitney U test using the
GraphPad Prism software package (version 8.0; La Jolla, USA); p < 0.05 was considered to
be significant.

3. Results
3.1. aPL+ IgG Affects YAP Expression but Does Not Promote the Phosphorylation of YAP Protein
in HTR-8 Cells

To investigate the aPL-induced variation of YAP protein in the trophoblast compared to
the normal one, we treated human trophoblast cell lines HTR-8/SVneo with polyclonal aPL+
IgG from aPL women carriers or aPL− IgG from normal controls for 24 h. Furthermore,
the expression of YAP and phosphorylated YAP (p-YAP) protein in human trophoblast
cell lines was determined by immunoblotting (Figure 1A). YAP expression was evidently
decreased between the aPL+ IgG group and the aPL− IgG group (p < 0.01), especially
in non-pregnant women (p < 0.05) (Figure 1B). It is worth noting that YAP levels in the
obstetric aPL+ IgG group remained without significance change. Phosphorylation of YAP
promotes cytoplasmic retention and culminates in degradation [37]. The expected increase
in p-YAP levels induced by aPL+ IgG was not observed (p > 0.05). In the obstetric aPL+
IgG group, there was merely a slight uptrend in the p-YAP level without significance.
Downregulation of YAP expression in HTR-8 cells after aPL+ IgG treatment might be
through other potential molecular mechanisms, not only subsequent to phosphorylation.
Additionally, we analyzed the alteration of YAP expression in HTR-8 cells treated with
single or double positive aPL subsets (Figure 1C). A declining trend of YAP level in HTR-8
cells was presented with double aCL IgG and anti-β2GPI IgG positivity (p = 0.08). The
p-YAP/YAP ratio was significantly increased between the >1 aPL+ IgG group and the
normal control group (p < 0.05), but not the single aPL+ IgG group vs. the normal control
group, suggesting that the number of aPL IgG subsets may affect YAP activity.

3.2. Anti-β2GPI-IgG Monoclonal Antibody and Human β2GPI Complex Function in a
Dose-Dependent Manner to Reduce YAP Expression and Nuclear Localization in HTR-8 Cells

To determine whether the variation of YAP affected by aPL+ IgG is indeed caused
by antiphospholipid antibodies, we used anti-β2GPI-IgG monoclonal antibody combined
with β2GPI (anti-β2GPI-IgG/β2GPI complex) to mimic the placenta-site damage of aPL.
The anti-β2GPI antibody is well proven to target endogenous β2GPI upon trophoblasts,
considered as the primary antigen in APS, with good specificity in prediction for preg-
nancy morbidity. The relative level of YAP protein in HTR-8 cells exposed to anti-β2GPI-
IgG (1 µg/mL)/β2GPI (10 µg/mL) complex for 6 h significantly decreased compared
to isotype IgG (1 µg/mL)/BSA (10 µg/mL) control (p < 0.01). The administration of
the anti-β2GPI-IgG/β2GPI complex at different concentrations [anti-β2GPI-IgG/β2GPI,
from 0.1/1 (µg/mL) to 10/100 (µg/mL), with a binding ratio of 1:10] inhibited YAP pro-
tein expression in a dose-dependent manner, with maximal inhibition at anti-β2GPI-IgG
(10 µg/mL)/β2GPI (100 µg/mL) (Figure 1D). In parallel, YAP protein was restored in
cytoplasm upon treatment with the anti-β2GPI-IgG/β2GPI complex (Figure 1E). These
results implied that the anti-β2GPI-IgG/β2GPI complex shows a dose–response effect on
YAP downregulation and inhibits YAP nuclear translocation in HTR-8 cells.
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different concentrations of anti-β2GPI-IgG/β2GPI. Scale bars, 50 μm. NC, control; IC, anti-β2GPI-
IgG/β2GPI complex. 
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Figure 1. aPL-positive IgG affects YAP expression and nuclear localization in HTR-8 cells. aPL+
IgG was extracted from serum aPL-positive women carriers with pregnancy morbidity history and
aPL− IgG from normal women for comparison. (A) YAP and phospho-Ser 127 YAP in HTR-8 cells
treated with aPL− IgG (100 µg/mL) and aPL+ IgG (100 µg/mL) for 24 h were immunoblotted.
Subgroup analysis was performed based on pregnancy status (B) and single or more aPL+ IgG
(C). Single aPL+ IgG indicated that only aCL IgG or anti-β2GPI IgG was positive. More than one
aPL+ IgG indicated both aCL IgG and anti-β2GPI IgG positivity. The anti-β2GPI-IgG monoclonal
antibody and human β2GPI (anti-β2GPI-IgG/β2GPI) complex was also prepared. (D) The anti-
β2GPI-IgG/β2GPI complex suppressed YAP expression of HTR-8 cells in a dose-dependent manner,
with concentrations ranging from 0.1/1 to 10/100 µg/mL with a binding ratio of 1:10. Quantitation
of total YAP and p-YAP levels from blots (normalized to GAPDH) are shown as the mean± SEM
(B–D). Mann–Whitney U test; ns indicates no significance, * p < 0.05, ** p < 0.01. (E) Incubation with
the anti-β2GPI-IgG/β2GPI complex for 6 h caused cytoplasmic retention of YAP in HTR-8 cells. The
cellular distribution of YAP was shown with representative immunostaining images of HTR-8 cells
after 6 h of exposure to different concentrations of anti-β2GPI-IgG/β2GPI. Scale bars, 50 µm. NC,
control; IC, anti-β2GPI-IgG/β2GPI complex.

3.3. Progesterone Enhances the Expression of YAP and Is Partly Reversed by RU486 in
HTR-8 Cells

Considering the difference of YAP regulation between pregnant women with APS
and non-pregnant women with APS, we discovered the effect of hormones associated with
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pregnancy on YAP expression. To determine whether progesterone has the same behavior
in the trophoblast, we further applied progesterone at certain gradient concentrations
(10−7 M to 10−5 M) to culture medium to detect the alteration of YAP expression after 24 h
(Figure S1). However, there were no significant changes. When progesterone treatment was
extended for another 24 h, the expression of YAP protein was promoted at 10−6 M (p < 0.05)
(Figure 2A). Blocking the progesterone receptor with its inhibitor RU486 compromised the
stimulatory effect of progesterone on YAP expression. To further verify the protective action
of progesterone on YAP expression, we pre-incubated HTR-8 cells with progesterone for
24 h before the addition of the anti-β2GPI-IgG/β2GPI complex. Immunostaining results
showed that, after HTR-8 cells were treated with anti-β2GPI-IgG/β2GPI complex for 6 h,
the 10−6 M progesterone pretreatment group showed relatively reduced cytoplasmic reten-
tion of YAP compared with the control group (Figure 2B). It is suggesting that progesterone
might partly rescue the reduction of YAP affected by anti-β2GPI-IgG/β2GPI complex and
promote YAP translocation into the nucleus of HTR-8 cells.
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Figure 2. Progesterone regulates the expression of YAP in HTR-8 cells. (A) Progesterone enhances
the expression of YAP and is partly reversed by RU486 in HTR-8 cells. HTR-8 cells were treated with
control vehicle (DMSO) or progesterone (P4) (10−6 M), alone or in combination with RU486 (10−5 M),
for 24 h or 48 h. The YAP protein expression in each group was analyzed by immunoblotting and
GAPDH served as internal control. The results of quantification are presented as the mean ± SEM.
One-way ANOVA test; ns indicates nonsignificant, ** p < 0.01, *** p < 0.001. (B) Pre-treatment of P4

(10−6 M) for 24 h promotes nuclear translocation of YAP in HTR-8 cells administrated by anti-β2GPI-
IgG (1 µg/mL)/β2GPI (10 µg/mL). Scale bars, 100 µm. NC, control; IC, the anti-β2GPI-IgG/β2GPI
complex; IC+P, the anti-β2GPI-IgG/β2GPI complex with progesterone pretreatment.

3.4. YAP Depletion Induces Cell Cycle Arrest and Cell Apoptosis of Trophoblast

To directly detect the role of YAP in the trophoblast cell cycle and apoptosis, HTR-8
cells transfected with YAP siRNA (si-YAP) and compared with those transfected with
scrambled siRNA (si-NC) for 48 h (Figure 3A) were collected for flow cytometry analysis.
After YAP knockdown, the cell cycle of HTR-8 was stopped at the G2/M phase (p < 0.05)
(Figure 3B). The proportion of HTR-8 cells at the S phase (DNA synthesis period) was
significantly reduced (p < 0.05). Furthermore, we found that the apoptosis rate of si-YAP
HTR-8 cells was increased by 36.9% in contrast to that of the control (p < 0.001) (Figure 3C).
YAP was also overexpressed in HTR-8 cells (YAP-OE) by transfection with PGMLV-YAP1
plasmid. The immunoblotting results showed that the absence of YAP led to a higher
ratio of pro-apoptotic protein Bax to anti-apoptotic protein Bcl2, while the result of YAP
overexpression was the opposite (Figure 3D). These results indicated that YAP depletion of
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HTR-8 cells interfered with cell cycle distribution and induced cell apoptosis dependently
of Bax/Bcl2 ratio.
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Figure 3. Downregulated YAP induces cell apoptosis and blocks cell cycle progression. (A) Confirma-
tion of YAP overexpression and knockdown in HTR-8 cells after transfection with YAP-OE plasmid
(YAP-OE) or YAP siRNA (si-YAP) by immunoblotting. Vector plasmid and control siRNA served
as controls. (B) Analysis of cell cycle in HTR-8 cells transfected with YAP siRNA transfection was
performed using flow cytometer. The si-NC group served as the control. The phases of G0/G1, S, and
G2/M were calculated. (C) The percentage of apoptotic cells in si-YAP HTR-8 cells was determined by
using flow cytometer. (D) Immunoblotting of Bax and Bcl2 protein levels in HTR-8 cells transfected
with YAP-OE plasmid or YAP siRNA. The ratio of Bax and Bcl2 protein level was quantified. All
results are shown as mean ± SEM. Student’s t test; * p < 0.05, *** p < 0.001.

3.5. Downregulated YAP in Trophoblast Impairs Cell Migration and Tube Formation

We studied the effect of YAP protein on the ability of trophoblast migration in vitro by
wound healing assay 48 h after knockdown of YAP by siRNA. As shown in Figure 4A,B,
the scratch recovery rate was significantly descending in the si-YAP group along with the
si-NC group. Over 20 h and 30 h, the migration of si-YAP HTR-8 cell was inhibited by
18.9% (p < 0.05) and 22.2% (p < 0.01), respectively. The mRNA levels of MMP2 and MMP9
were decreased in cells depleted of YAP (Figure 4C), but they were not seen significantly
changed under YAP overexpression (Figure S2).

The supernatant of cell culture medium 72 h later was additionally harvested for co-
culture with HUVECs to assess the tube formation ability of the trophoblast. Four indices
showed a magnificent decrease in HUVECs cocultured with the culture medium super-
natant from the si-YAP group (the number of branches by 34%, the total branching length
by 44%, the number of segments by 69%, the total segments length by 62%) (Figure 5A).
Based on the immunoblotting results, the expression of VEGF (vascular endothelial growth
factor) in YAP siRNA-treated cells was largely downregulated (Figure 5B). Thus, YAP
aberration attenuated the ability of trophoblast migration and tube formation, which was
necessary for spiral artery remodeling in the placenta.

3.6. YAP Knockdown Results in the Activation of ERK1/2 in HTR-8 Cells

The MAP kinase (MAPK) signaling pathway was proven to be one of the critical links
between YAP activation and its downstream target gene expression in mammalian cells. In
addition, earlier research showed that ERK (MAPK family) inhibition treatment induced
YAP inactivation in the trophoblast [34]. To further study the underlying association
between YAP protein and MAPK activation in the trophoblast, we examined the relative
Thr202/Tyr204 phosphorylation of ERK1/2 protein level and the relative Thr180/Tyr182
phosphorylation of p38 protein level which are indicative of their activation (Figure 6A). In
HTR-8 cells with YAP silencing, ERK1/2 activation was stimulated significantly, but this
effect was not observed in HTR-8 cells overexpressing YAP (Figure 6B). In contrast, neither
YAP overexpression nor knockdown inhibited or activated p38.
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Figure 5. YAP-mediated VEGF expression from HTR-8 cell is essential for tube forming capability
of HUVECs. HUVECs were seeded onto Matrigel and incubated with culture supernatant from
HTR-8 cells transfected with scrambled siRNA or YAP siRNA. (A) The tube formation assay was
analyzed after 3 h. Representative images are shown. Scale bars are 100 µm. (B) The VEGF protein
expression in HTR-8 cells 72 h after transfection with scrambled siRNA and YAP siRNA was measured
by immunoblotting (normalized to GAPDH). Results are shown as mean ± SEM. Student’s t test;
*** p < 0.001, **** p < 0.0001).
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served as internal control. All values are presented as mean ± SEM. Student’s t test; * p < 0.05.

4. Discussion

Our work uncovered a strikingly new discovery that aPL induced a decrease in YAP
protein expression in human trophoblast cell lines. Anti-β2GPI-IgG binding to β2GPI func-
tions in a dose-dependent manner to reduce YAP expression and causes a corresponding
cytoplasm YAP translocation in HTR-8 cells. The aberrant downregulation of YAP will
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display a reduction in cellular functional output—cell cycle, apoptosis, migration, and
angiogenesis. These findings about YAP suggest a potentially critical mechanistic link
between aPL stimulus and alterations in trophoblast function.

YAP, like an “on-and-off gate” transcription co-activator, defines the cell fate decision
in trophectoderm lineage specification during preimplantation [38] and guides trophoblast
differentiation throughout the early placenta development [39]. Our in vitro experiments
identified that downregulating YAP in HTR-8 cells augments cell apoptosis via raising
the ratio of Bax/Bcl2 and blocks the cell cycle in the G2/M phase leading to cell growth
arrest. In cytotrophoblast progenitors, YAP fully binding with TEAD4 manipulates the
transcription of cell-cycle regulators, including CDK1 and CYCLINs, to maintain the self-
renewal of the trophoblast [32]. Similarly, CDK1 and CCNB1, controlling the G2/M phase
transition, are enriched in the most proliferative CTB subset in the first-trimester human
placenta by a single-cell RNA-seq analysis [40]. Loss of YAP in the trophoblast may affect
cell-cycle-restricted gene expression in the process of cell stemness and cell–cell fusion [33].
Rapid activation and maintenance of a robust YAP transcriptional program is necessary
for trophoblast population expansion and functional human placental syncytia. Moreover,
trophoblast invasion and migration were attenuated through unexplained activation of
the Hippo-YAP1 signaling pathway [35,36]. Consistent with this, we further revealed that
YAP depletion impaired the transcription of proteolytic enzymes MMP2/9 and secretion
of the angiogenic factor VEGF in the trophoblast. MMPs and VEGF are critical cytokines
involved in invasive trophoblast replacement of the uterine spiral artery endothelium in
the process of placentation. Unsuccessful placentation and abnormal placental function
in APS patients result in insufficient blood supply to the fetus in the uterus, ultimately
increasing the incidence of early-onset pre-eclampsia, IUGR, and preterm labor.

The Hippo-signaling-dependent coactivator YAP activity control determines human
and murine trophoblast maintenance and expansion [41,42]. Activation of the Hippo
signaling pathway encourages the engagement of the core phosphorylated kinase cassette,
regulated by interplay and feedback with other signaling such as Wnt and Notch signaling
during early placental development, allowing for context-specific responses [43,44]. We first
discovered that aPL+ IgG attenuated YAP expression in HTR-8 cells, rather than accelerated
the phosphorylation of YAP. Considering the anti-β2GPI antibody, among all subtypes of
anti-phospholipid antibodies, is one of the most frequently used prognostic indices for
pregnancy morbidity in APS patients [14], we further found that the aβ2GPI-IgG/β2GPI
complex reveals dose-dependent characteristics in reducing YAP expression and nuclear
localization. It is not yet known whether the anti-β2GPI-IgG inhibition on YAP relies on a
phosphorylated kinase cassette or direct abrogation of YAP gene expression, and whether
this impact on YAP is widespread in the trophoblast stimulated by other criteria than aPL,
such as aCL and LA. Our current understanding of the principle of YAP degradation is
merely limited to subsequent phosphorylated kinase cascade. The molecular mechanism
employed appears uncertain, indicating a promising study on how exactly aPL work on
YAP1 protein downregulation or degradation during placental dysfunction.

The aPL binding to β2GPI on the trophoblast surface inhibits invasion through
MAPK [18]. In human IUFGR placenta, ERK/MAPK inhibition acts on YAP phospho-
rylation as an upstream signaling pathway [34]. MAPK-ERK and YAP were demonstrated
to share similar effects on cell apoptosis, proliferation, and oncogenesis in different cancer
cells [26]. To determine the correlation between YAP and ERK, we knocked down YAP
expression in the trophoblast and further found that YAP negatively regulates ERK activa-
tion in turn. MAPK/ERK signaling influences the expression of downstream genes such
as MMPs and cadherins in the regulation of trophoblast cell invasion and migration [45].
We consider that there is a negative feedback mechanism between YAP activation and
ERK phosphorylation in the trophoblast that helps rescue cellular homeostasis against the
external disturbance. It will be interesting to explore whether ERK activation occurred in
response to balance YAP downregulation in aPL-treated trophoblasts and the consequent
outcomes when both ERK and YAP pathways are inactivated.



Biomedicines 2022, 10, 3296 13 of 17

In this study, we observed that aPL from these obstetric aPL carriers neither signif-
icantly induced the decline of YAP nor accelerated the phosphorylation of YAP in the
trophoblast. Could this variation of YAP come from the protective support of pregnancy-
related hormones at the maternal–fetal interface after medicine intervention?

Progesterone, a hormone critical to pregnancy protection, is produced by the corpus lu-
teum and the placenta after the corpus luteum regression [46]. It promotes the endometrial
decidualization, modulates mammalian maternal–fetal immune tolerance and decreases
the resistance of the spiral arteries to maintain a successful gestation [47,48]. In an APS
mouse model, progesterone supplementation inhibits complement-activation-mediated
thrombosis and inflammatory injury in the placenta and avoids spontaneous pregnancy
loss [49]. YAP has been proved to be a progesterone-responsive gene in fetal mouse car-
diomyocytes [50]. Recent research in ovariectomy mice also explored whether progesterone
support in estrogen deprivation induced the formation of YAP-TEAD4 complex contribut-
ing to CDX2-mediated trophectoderm differentiation during peri-implantation [51]. Our
results revealed that a high physiological concentration of progesterone in pregnancy
facilitates YAP expression of human trophoblast cell line HTR-8 in a progesterone-receptor-
dependent manner. The enhancing effect of progesterone on YAP expression promotes YAP
nuclear translocation which is attenuated by aPL. It is indicated that progesterone might
reverse the negative effect of aPL on YAP activity. Studies of progesterone action on YAP
expression in the trophoblast in the presence of aPL or not in vivo are now warranted. Fur-
thermore, more research groups have started to propose alternative treatment approaches
in addition to the traditional routine therapy of low molecular weight heparin alone, or
in combination with low-dose aspirin or hydroxychloroquine treatment. The promis-
ing alternative treatment options include but are not limited to hydroxychloroquine [52],
aspirin-triggered lipoxin [53], progesterone [49], and ApoER2 gene knockout [15]. Apart
from aPL-mediated PM, the blockade of YAP nuclear translocation has been reported in
other pregnancy complications owing to poor placentation such as early pregnancy loss,
PE, and IUFGR. Our findings provide a firm research basis for YAP serving as a potential
therapeutic target in the prevention of pregnancy morbidity in future.

5. Conclusions

In summary, treatment of the trophoblast with aPL+ IgG from non-obstetric clinical
donors with pregnancy morbidity induced YAP inactivation. Moreover, the monoclonal
aβ2GPI-IgG together with β2GPI administration confirmed the dose-dependent effect on
decrease of YAP expression and nuclear translocation. Knocking out the YAP gene disturbs
the normal trophoblast cell function involved with cell cycle, apoptosis, migration, and
angiogenesis. A high physiological concentration of progesterone in pregnancy facilitates
YAP expression in the trophoblast. We propose that the attack of aPL blocks the nuclear
translocation and activity of YAP, resulting in consequent trophoblast dysfunction and
progesterone may rescue YAP expression in maintaining pregnancy against the impact of
aPL (Figure 7).
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Figure 7. Schematic diagram of the hypothesized molecular mechanism for YAP protein involvement
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be rescued by progesterone.
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