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Abstract: Human induced pluripotent stem cells (iPSCs), since their discovery in 2007, open a
broad array of opportunities for research and potential therapeutic uses. The substantial progress in
iPSC reprogramming, maintenance, differentiation, and characterization technologies since then has
supported their applications from disease modeling and preclinical experimental platforms to the
initiation of cell therapies. In this review, we started with a background introduction about stem cells
and the discovery of iPSCs, examined the developing technologies in reprogramming and charac-
terization, and provided the updated list of stem cell biobanks. We highlighted several important
iPSC-based research including that on autosomal dominant kidney disease and SARS-CoV-2 kidney
involvement and discussed challenges and future perspectives.

Keywords: pluripotent stem cells; human induced pluripotent stem cells; kidney disease; autosomal
dominant kidney disease; SARS-CoV-2 infection

1. Introduction

Human pluripotent stem cells (PSCs) including embryonic stem cells (ESCs) are
generated by in vitro-cultivated inner cell mass cells from the early conceptus, and induced
pluripotent stem cells (iPSCs) can be derived from adult somatic cells [1,2]. Three important
reasons for the application of human PSCs in clinical research are that they aid the study of
human development, make the hard-to-obtain human cell types available for experiments,
and can generate cells, tissues, and even organs for transplantation [3–6]. Stem cells
are defined as having the capacity for both self-renewal and differentiation. Recalling
the history, the German biologist Ernst Haeckel first brought up the term “stammzelle”
(stem cell) in the scientific literature in 1868 with the fundamental questions of the continuity
of the germ-plasm and the origin of the blood system [7]. The concept of repopulation
from a single stem cell evolved with time and was confirmed nearly one hundred years
later after definite evidence of common hematopoietic stem cells was provided by the work
of James Till, Ernest McCulloch, and others in the 1960s [8]. Developmental and stem
cell biologists further characterize the stemness based on the differentiation capacity of a
single stem cell into totipotent, pluripotent, and multipotent stem cells. Totipotent cells in
mammals indicate the first few blastomeres formed by the division of the zygote, which
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are able to become an individual. Most of the adult stem cells identified from different
organ systems are multipotent cells with limited capacity for self-renewal. Multipotent
cells can form a particular subset of cell types and cover most of the tissue-specific cell
populations. On the other hand, PSCs including ESCs, as well as iPSCs, are able to
propagate indefinitely, to produce all cell types, and to contribute to germ cells and are
considered master cells [3,4,9,10].

2. The Evolving iPSC Technology: Generation, Characterization and Banking

Among PSCs, the iPSC technology bypasses the ethical issue related to the generation
of ESCs and is preferred due to its eligibility for all ages of subjects without limitation
theoretically. Human iPSCs were first generated by Professor Yamanaka’s group in 2007,
one year after the group’s achievement of mouse iPSC generation [2,11]. To reverse a
lineage-committed cell to a status with higher differentiation potency, the process of “repro-
gramming” requires the expression of four transcription factors, including OCT3/4, SOX2,
KLF4, and c-MYC (OSKM, the Yamanaka factors) [2]. The stochastic model of reprogram-
ming breaks down the molecular process into an early phase and a later phase. The early
phase includes inhibition of the expression of somatic cell genes, mesenchymal-to-epithelial
transition, and change in metabolism from oxidative phosphorylation to glycolysis. The
later phase includes activation of pluripotency-associated genes, the suppression of tissue-
specific transcription factors and developmental genes, and the bivalent methylation of
H3K4me3 and H3K27me3 on high CpG promoter regions [5]. Over the years, multiple
teams have successfully reprogrammed different types of somatic cells from various species,
for example, pig, rabbit, monkey, goat, horse, cattle, chicken, and fish, which follow a com-
mon molecular mechanism. Many other sets of reprogramming factors have also been
identified in addition to OSKM [5,12–14]. However, challenges still remain regarding
the heterogeneity and inefficiencies of iPSC derivation, suggesting that other approaches
may be required. The original method to reprogram human fibroblasts was to apply the
retrovirus vector to introduce the exogenous OSKM. Other viral vectors such as lentivirus
and adenovirus vectors showed promising and efficient results but raised the concern of
genome integration. Our team applied the Sendai virus method for iPSC generation, which
involves single-strand RNA replication in the cytoplasm without genome integration and
is considered the safest of the viral methods [2,5,15–18].

More direct methods including DNA-based, RNA-based, and protein-based approaches
have also been established. The initial approach with daily direct plasmid transduction
could be modified by simultaneous expression of the EBNA-1 and the OriP sequences to
enhance episomal amplification. The PiggyBac cassettes, one of the DNA-based vectors,
work as a transposon and could be removed successfully from the host genome without
a footprint. Recombinant B18R protein of the Vaccinia virus was used to minimize the
host immune response toward the RNA plasmids. The protein-based method needs to
fuse the protein with a cell-penetrating peptide to promote transduction. These methods
are nonintegrating methods and are candidates for future cell therapies [5]. A comprehen-
sive analysis was performed to compare several nonintegrating reprogramming methods
including the Sendai viral (SeV), episomal (Epi), and mRNA transfection (mRNA) meth-
ods with the lentivirus method in human ESCs using a number of criteria, including the
reprogramming efficiency, the success rate for generating at least three hiPSC colonies,
the direct hands-on workload, the karyotype and genetic alternations, the time required
for eliminating the exogenous reprogramming agents, and the RNA expressing patterns
of undifferentiated and completely reprogrammed markers. The results indicated that
all of the nonintegrating reprogramming methods generated high-quality human iPSCs;
however, there were significant differences in the aneuploidy rate, gene delivery efficiency,
success rate, and workload of the reprogramming process [19].

With the improved reprogramming methods, various human cell types have been
successfully applied to generate iPSCs. These include fibroblasts, peripheral blood mononu-
clear cells (PBMCs), T cells, B cells, hepatocytes, cord blood, dental pulp, skin, cardiomy-
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ocytes, and other somatic cells [18,20]. Theoretically, all cells in the human body have
the potential to be reprogrammed to iPSCs. With the advantages of being least invasive
and easy to assess, PBMCs have become the most common cell source for human iPSC
generation in biobanks [18–24].

Regarding the characterization of iPSCs, the most stringent criteria to demonstrate
the pluripotency of mouse iPSCs are the tetraploid embryo complementation test and
the ability to generate germline-competent adult chimeras. However, for human iPSCs,
most chimeric experiment is withheld due to ethical concerns and strict regulation. In
general, human iPSCs are assessed by the expression of the pluripotency genes, such as
NANOG, OCT3/4, SOX2, etc. The differentiation capacity toward all the cells of the three
germ layers can be confirmed by in vitro embryonic body formation and in vivo teratoma
formation experiments [3,17,18,24]. For stem cell biobanks, most institutes include the
following criteria for iPSCs: (1) ESC-like cell morphology; (2) silencing or removal of
the transgenes; (3) expression of pluripotency and renewal markers; (4) confirmation of
the differentiation potential into three germ layers; (5) karyotype analysis; (6) identity
confirmation using DNA fingerprinting and short tandem repeat PCR with the parent cells;
and (7) being free of biological contaminations by microbiological assay [18,21,22,24]. Other
characterization methods, such as post-thaw viability, virus screening, and endotoxin, are
important for cell manufacturing and clinical-grade application. More advanced analyses
such as pluripotency analysis, copy number variation analysis, RNA-seq, exome seq,
genotyping array, methylation array, mass spectrometry, whole-genome seq, and cellular
phenotyping may be applied in different settings [21]. Comprehensive and stringent cell
quality verification and validation are required for cell therapy trials.

Several national or cross-institutional initiatives have established iPSC biobanks to gen-
erate, deposit, and deliver high-quality iPSCs for researchers or for therapeutic applica-
tions [18,20,22]. For example, the iPS Cell Research and Application (CiRA), Kyoto University,
provides publicly available research-grade cell stocks including 29 human iPSC lines and 10
disease-specific iPSC lines. CiRA also works on establishing the iPSC stock with specified HLA
and aims to provide clinical-grade allogenic iPSC cell stocks to achieve 50%, 80% and 90%
coverage of Japan’s population [21]. In Europe, the European Bank for iPSC (EBiSC) supported
by EUROPEAN Commission took a fast-track “Hot Start” process in 2014, which is renowned
for establishing rigorous standardized pipelines and contributing to iPSC lines derived from
36 specific diseases. There are 852 donor-derived iPSC lines including 359 normal lines [23].
In the USA, government-funded biobanks such as the California Institute for Regenerative
Medicine, the Coriell Institute for Medical Research, and the WiCell Research Institute and
the privately owned Fujifilm Cellular Dynamics International are all active participants in
iPSC research and applications [18,20]. The Taiwan Human Disease iPSC Service Consortium
funded in 2015 by the government’s National Research Program and National Core Facility
for Biopharmaceuticals was initially joined by five core facilities and ten partner hospitals.
The consortium is now the only iPSC resource center in Taiwan and was transferred to be a
core facility in Academic Sinica (National Academy of Taiwan). This core facility applies the
Sendai virus reprogramming method and has banked 10 normal hiPSC lines and 74 disease
lines with 23 individual disease types, which are all publicly accessible. The consortium also
provides services and resources including hiPSC generation, characterization, iPSC-derived
cells (including cardiomyocytes, retinal pigmented epithelial cells, neuronal progenitor cells,
and cortical neurons), clustered regularly interspaced short palindromic repeats (CRISPR)
transfection and single-cell generation iPSCs, and iPSC-related training courses to facilitate
iPSC utilization and research development in Taiwan [17,18,20,25]. These advanced iPSC
technologies and increasing resources have made human iPSC research more accessible and
possible (Table 1).
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Table 1. Brief information of iPSC repositories.

Name Allies Geographic
Region Products Link

California Institute for
Regenerative

Medicine (CIRM)

Fujifilm Cellular
Dynamics

International (FCDI)
United States

40 diseases including
239 neurodevelopmental disorders,
131 liver disease, 442 heart disease,
65 neurodegenerative disease, 175
eyes disease, 191 lung disease, and

302 controls

https://www.cirm.ca.gov/resear
chers/ipsc-repository/about
(accessed on 30 October 2022)

https://www.fujifilmcdi.com/cir
m-ipsc-products/ (accessed on

30 October 2022)

Center for iPS Cell
Research and

Application (CiRA)

ATCC, RIKEN,
RUCDR Japan

39 lines including 3 diseases: two
neurodevelopmental diseases and

a bone disorder

https://www.cira.kyoto-u.ac.jp/e
/research/material_1.html

(accessed on 30 October 2022)

European Bank for
induced pluripotent
Stem Cells (EBiSC)

HipSci Europe 36 diseases, 895 iPSC lines
including 359 normal control lines

https://ebisc.org/search (accessed
on 6 December 2022)

Human Induced
pluripotent Stem Cell

Initiative (HipSci)
ECACC, EBiSC United Kingdom 15 disease statuses, 339 disease

lines, and 496 normal lines

https:
//www.hipsci.org/lines/#/lines

(accessed on 30 October 2022)

Institute of Physical
and Chemical

Research (RIKEN)
Japan

14 disease categories including 231
diseases, 753 patients, and 3110

iPSC lines; 718 health control lines

https://cell.brc.riken.jp/en/hps
/patient_specific_ips (accessed on

30 October 2022)

Human Disease iPSC
Consortium Resource

Center (Taiwan
Human Disease iPSC

Consortium)

BCRC Taiwan 10 normal lines, 74 disease lines of
23 diseases

http://ipsc.ibms.sinica.edu.tw/sc
hedule.html (accessed on

30 October 2022)

WiCell Research
Institute (WiCell) N/A United States

1377 iPSC lines including
308 disease lines of 40 disease

types

https://www.wicell.org/home/st
em-cells/catalog-of-stem-cell-line
s/advanced-search.cmsx (accessed

on 30 October 2022)

3. iPSC-Based Human Disease Modeling: Kidney Differentiation and ADPKD

As iPSCs can be prepared from patient cells, it indicates that we may generate a library
of patient somatic cells for recapitulating the key pathogenesis back to its early disease
process. The human genetic background and unlimited cell sources make establishing
iPSC-based disease models practical. Two advancing fields in iPSC-based disease mod-
eling are neural disorders and cardiac diseases, both for which the cells needed are the
most difficult to obtain [5]. The first patient-derived iPSC was from a case of amyotrophic
lateral sclerosis (ALS) [5,26]. This motor neuron degeneration disorder is mostly sporadic
and had no previous human models. Using the patient iPSC-derived motor neurons to
model ALS disease progression, the researchers studied the cytosolic phenotype among
the reported gene mutations. The cellular model recapitulated the cytosolic aggregation
and verified some identified mutations on gene Tar DNA-binding protein-43 (TDP-43).
Clonal variation and target cell variation were observed [5]. A novel approach using
the iPSC-derived neuromuscular junction to model motor neuron diseases such as spinal
muscular atrophy (SMA) was also reported [27]. For a prevalent neurodegenerative dis-
ease, Alzheimer’s disease, the iPSC-derived neurons from familial cases, sporadic cases,
and healthy controls demonstrated the correlation between amyloid precursor protein
(APP) proteolytic processing and P-tau. Moreover, the iPSC-based cellular model helped
in discriminating the variations in treatment efficiency of docosahexaenoic acid (DHA)
on cellular P-tau, which showed the promising role played by the patient-specific iPSC
models for future drug screening. Cell therapy with human iPSC-derived dopaminergic
progenitor cells for Parkinson’s disease is undergoing clinical trials [28]. Similarly, there
are successful examples of using human iPSC-derived cardiomyocytes for modeling hy-
pertrophic cardiomyopathy, dilated cardiomyopathy, and cardiac arrhythmias. Cellular
phenotypes such as changing cell sizes, sarcomere disorganization, intracellular calcium
homeostasis, prolonged ventricular repolarization, and increased risk of arrhythmia re-
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capitulated the human disease process [5,29]. Large-scale drug screening platforms are
in development, and cellular maturity is of note [30,31]. Preclinical and clinical trials for
cardiac repair with PSCs including ESC- and iPSC-derived cells or cell sheets for treating
heart failure or enhancing regeneration are in progress [32–34]. These in vitro disease
models demonstrate the capability of iPSCs to reproduce the pathophysiological features
and the genotyping–phenotyping systematic correlations.

To model human kidney diseases is of great challenge, since kidneys develop in
three stages: pronephros, mesonephros, and metanephros. The metanephros is the final
adult kidney, which requires a reciprocal interaction between two embryo tissues, the
metanephric mesenchyme (MM) and the ureteric bud (UB). By deciphering and mimicking
the natural developmental process, differentiation protocols start from the induction of the
iPSCs to the endo–mesoderm to the critical stage of intermediate mesoderm (IM). Osafune
et al. used the OSR1 gene reporter hiPSC line to optimize IM differentiation. Following
sequential treatment with chemicals and growth factors, these committed kidney lineage
cells were able to differentiate into adult renal cell types, including glomerular podocytes
and renal tubule cells [35,36]. Taguchi et al. established a selective differentiation method
through the posterior IM stage [37], and Takasato et al. reported the generation of kidney
organoids containing glomeruli, renal tubules, collecting ducts, stromal cells, and vascular
cells [38,39]. In 2015, the research groups of Freedman and of Morizane et al. published
self-organized kidney organoids from hiPSCs showing delicate structures recapitulating the
cellular repertoire and 3D structures [40–42]. Recently, Taguchi and Nishinakamura et al.
reported a 3D method that directly differentiated iPSCs toward MM and UB to form high-
order kidney organogenesis [43,44]. Osafune et al. used a different approach with 2D
methods to generate MM and UB and aimed to increase the efficiency of cell generation,
storage, and the reciprocal induction process and to enhance maturation and branching
potentials [6,45,46].

The first iPSC-based kidney disease model was applied to autosomal dominant poly-
cystic kidney disease (ADPKD), the most common monogenic kidney disease leading
to progressive renal cysts and accounting for 5–10% of cases of kidney failure [47,48].
The causative genes of ADPKD are PKD1 and PKD2, which encodes Polycystin 1 (PC1)
and Polycystin 2 (PC2), respectively [49]. In 2013, Bonventre and Freedman et al. first
applied iPSCs derived from ADPKD patients to model PKD. The PKD and control iPSCs
exhibited comparable rates of cell proliferation, apoptosis, and ciliogenesis. However, as
the iPSCs differentiated toward somatic epithelial cells, the patient iPSC lines showed
decreased PC2 expression levels in the primary cilia, which suggested that PC1 regulated
PC2 expression [50]. The same research group advanced the kidney differentiation protocol
and applied the CRISPR and CRISPR-associated protein 9 (CRISPR-Cas9) technologies in
modeling the ADPKD tissue-specific phenotype [41]. They reported that the human-PSC-
derived kidney cells could self-organize into kidney organoids when the cells were treated
with GSK3-beta inhibitor during the epiblast stage. The nephron-like structure contains
proximal tubules, podocytes, and the endothelium both morphologically and functionally.
Knockout of PKD1 or PKD2 induced cyst formation from kidney tubules in this model [41].
Little et al. supported the application of hiPSCs in modeling nephrogenesis and in iden-
tifying dysfunctional cellular pathways beyond the ciliopathic renal phenotype [38,51].
Morizane et al. identified the critical variable level of BMP4 in hiPSCs differentiating to-
ward MM, which further differentiated toward renal vesicles and nephrons. The generated
nephron organoids exhibited cell-type-specific responses to nephrotoxic agents [40]. After
optimization, they reported a high efficiency of 80–90% production of nephron progenitor
cells from hPSCs with a 9-day direct differentiation protocol [42]. On the other hand, a
refined protocol was also in progress for UB differentiation, which showed a better cystoge-
nesis phenotype of PKD [43,44,52]. The iPSC-derived UB showed PKD1 dose-dependent
cyst formation in PKD modeling [44]. Researchers also tried to coculture MM and UB cells
to enhance the functional maturity of iPSC-based organoids and disease models [45,46,52].
With mixed cell types, higher-order structures of nephrogenesis could be obtained [43].
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These 3D cyst models or kidney cell on a chip and organ on a chip technologies are in
development for future drug screening applications [53–58].

Our research team applied iPSC technology to decipher the direct or indirect ef-
fect of the mutation gene on the cardiovascular phenotype of ADPKD cases. We first
generated three ADPKD patient-derived iPSC lines and confirmed their pluripotency as
reported [17,59,60]. We then efficiently differentiated the iPSCs toward cardiomyocyte-like
cells, which were characterized as ventricular cardiomyocytes. The electrophysiological
analysis with calcium imaging, patch clamp, and drug challenges tests revealed the cell-
specific characteristics and recapitulated the patient’s clinical phenotype [29]. iPSC-based
experiments are invaluable in deciphering diseases with multiple organs involved. The
isogenic control lines were generated and will be used in our future experiments [61]
(Figure 1).
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Figure 1. Schema of the induced pluripotent stem cell (iPSC)-based experimental approach for
multiple-organ-involved diseases. Patients’ somatic cell-derived iPSCs can differentiate toward
specific cell types to decipher multiple-organ-involved diseases, for example, autosomal dominant
kidney disease. PBMC: peripheral blood mononuclear cell; iPSCs: induced pluripotent stem cells;
CRISPR-Cas 9: clustered regularly interspaced short palindromic repeats and CRISPR-associated
protein 9; scRNA-Seq: single-cell RNA sequencing.

4. Challenges

In December 2019, a series of unknown-cause pneumonia cases emerged in Wuhan,
Hubei, China. The causative pathogen was later identified as and named Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The infectious disease caused by this
highly contagious novel pathogen was named coronavirus disease of 2019 (COVID-19)
[62,63]. The world has been swept by the COVID-19 pandemic, which has resulted in
more than 641 million infected cases and 6 million deaths so far. Scientists worldwide have
worked relentlessly to tackle this challenge. The cellular entry of SARS-CoV-2 depends on
the Angiotensin-Converting Enzyme 2 (ACE2) receptor which has species differences [64].
SARS-CoV-2 could not bind to mouse ACE2 due to two amino acid differences at the critical
virus-contacting residues. The multiple organ systems involved in COVID-19 patients also
raised questions regarding whether it is a direct viral cytopathic effect or a consequence of
systemic inflammation [65–67]. The human-iPSC-based experimental platform provided
invaluable evidence for deciphering these tissue-specific effects. By means of the human
intestinal organoids, direct viral infection and replication within the intestinal cells were
identified [68]. SARS-CoV-2 also entered 3D human brain organoids, preferring targeted
neurons, and was associated with altered distribution of Tau, hyperphosphorylation, and
neuronal death. The results supported the potential neurotoxic effect of SARS-CoV-2 [69].
The iPSC-derived cardiomyocyte (iPSC-CM) experiments showed that SARS-CoV-2 can enter
iPSC-CM via ACE2, replicate, and cause cytopathic effects including apoptosis and cessation
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of beating. Pathways involved including the activated innate immune response, antiviral
clearance gene pathway, and inhibited metabolic pathway were identified [70]. An important
article demonstrated that the platform developed using hPSC-derived cells and organoids
could explore the SARS-CoV-2 viral tropism and cellular response to infection systematically.
Their results concluded that cardiomyocytes, pancreatic endocrine cells, liver organoids,
and dopaminergic neurons were permissive to the virus. These results obtained from hPSC-
derived cells were validated with humanized mice, adult human islets, adult hepatocyte
organoids, and adult cholangiocyte organoids [71]. For COVID-19 therapy exploration,
direct infection of SARS-CoV-2 to human blood vessel organoids and kidney organoids
engineered from ESCs and iPSCs could be inhibited by clinical-grade human recombinant
soluble ACE2 [72]. A recent study observed the presence of SARS-CoV-2 nucleocapsid
protein in the kidney proximal tubular epithelium and its association with tubular interstitial
injury in COVID-19 patients. The group also investigated the direct impact of the virus on
kidney cells using human iPSC-derived kidney organoids. Applying Little’s protocol, the
generated kidney organoids contained cells expressing nephrin (the marker of podocyte),
Lotus tetragonolobus lectin (the marker of the proximal tubule), ACE2 in the apical side,
and E-cadherin (the marker of the distal tubule). Increased organoid fibrosis and increased
collagen 1 protein expression improved after blocking TGFß, and inhibition of SARS-CoV-2
uptake by a protease inhibitor indicated that SARS-CoV-2 directly infects human kidney
epithelial cells, including the stromal compartment. These results supported the direct
cytopathic effect of SARS-CoV-2 in the kidney [73]. During this worldwide challenge of the
COVID-19 pandemic, the PSC-based technology provides a human-cell-based, tissue-specific
research platform, which is valid, invaluable, and can cover basic, preclinical, and clinically
relevant experiments.

Clinically, we still have many unmet needs. Understanding patients’ pathological
mechanisms is required for seeking effective treatment. By using the well-developed
technique of next-generation sequencing, such as whole-exome sequencing or whole-
genome sequencing, more and more disease-causing gene mutations can be identified.
However, the phenotypes and molecular mechanisms caused by the gene mutations of the
same disease cannot be well studied because of the lack of a suitable in vitro disease model
to recapitulate the disease pathology and to connect the relationship between the phenotype
and the genotype in the past. Nowadays, the genotype and phenotype of a disease can
be correlated thanks to or with the invention of iPSCs. The 3D human kidney organoids
derived from hPSCs combined with high-throughput screening (HTS) have established
a powerful tool to enable toxicity screening, make disease phenotype recording in large
volumes possible, and evaluate the safety and efficacy of future therapeutic regimens [74].
Furthermore, the use of isogenic control lines can pinpoint the molecular mechanisms
associated with diseases, which may lead to the development of new therapeutic targets.
The iPSC-dependent patient-specific disease models can significantly improve the vision
for new pharmacological cures and drug screening [75]. Multiple 3D organoids can be
further constructed to build a complex system, such as cardiovascular/respiratory systems,
to mimic the physiological conditions and to provide controllable factors to study the
disease mechanism in a more comprehensive way [76].

Regenerative medicine and cell therapy are still unmet needs in many fields. Renal
transplantation and dialysis are the major options of current treatments for severe kid-
ney damage. Shortage of donated organs is a major issue to evoke the development of
tissue-engineered organs or parts of the kidney to meet clinical demand. The structural
complexity and multiple functions of the kidney, including filtration, reabsorption, etc.,
make it challenging to rebuild a delicate kidney for clinical application. Based on Osafu-
nes’ achievement, hPSCs can differentiate directly into kidney progenitors and Nephron
Progenitor Cells (NPCs), including MM and UB. Not only were these progenitors able to
form the nephron and collecting duct organoids but the NPC-derived glomeruli and renal
tubules and UB-derived collecting ducts derived from the progenitors also interconnected
with each other to form the functional construct of the kidney [6]. Various approaches
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including bioprinting to optimize differentiation for the high-content screen, scaffolding
organoids on silk for scale-up of the structure, differentiating organoids on hydrogels
to improve maturation, and culturing organoids within the Polydimethylsiloxane (PDMS)
microchamber with flow to improve the developmental model were reported [74,77–80].
Although the combinatorial application of NPCs and UB with biomaterial scaffolds to
construct a functional kidney is promising, it is still a long journey to create a de novo
kidney for transplantation. To recover the function of the kidney with renal-cell-based
treatment seems to be a practical remedy in the near future.

5. Conclusions

We are at a great time of the convergence of previous multiple disparate technolo-
gies, including iPSC generation and differentiation, mixed cell culture capabilities, next-
generation sequencing and genome editing, 3D printing, sophisticated cell sensors, mi-
crofluidics, and microfabrication engineering. Integrating these advanced fields may lead
us to the success of further genetic and phenotypic correlation and also to the physi-
ological and functional maturation of an in vitro system. The substantial advances in
gene editing enable isogenic control to serve as the best control in disease modeling and
make the strategies for generating immune-compatible iPSC cell banks possible. The so-
phisticated cell sensors, image systems, and spatial transcriptomics demonstrated better
organoid characterization, which makes great progress in establishing a drug screening
system. Three-dimensional printing, microfluidics, and tissue engineering are efficient tools
for solving vascular and size issues. The expanding pharmaceutical industry and rapid
progression of space exploration also enhance the process of engineering tissue chip or
organ-on-chip models [81–84]. Individualized disease models are considered critical tools
for precision medicine. Organoid models derived from iPSCs have been used to reconstruct
specific physiological and pathological conditions and environments. In precision medicine
of many diseases, iPSC-based models are being evaluated in preclinical and clinical studies,
for example, by retransplanting autologous epithelial organoids to rebuild an integrated
intestinal barrier. Another particularly exciting feature of iPSC systems is the provision of
insights into organ systems and disease-progressing processes, which cannot be monitored
with clinical biopsies, such as the immune response in neurodegenerative disorders [85].
Precision medicine can offer patient-specific therapies for carriers of gene variants with
undetermined significance [86,87]. These achievements can accelerate the research of or-
phan diseases and the development of precision medicine. Considering that the genetic
background is specific and unique for every individual, this personalized approach can
achieve the real vision of precision medicine. To well-translate the genotype to phenotype
is urgently needed for both pathologic research and for time- and cost-efficient clinical
trials. The future applications of human-PSC-based technology are on a broad spectrum
and are promising to help humanity.
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