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Abstract: Pancreatic cancer is the seventh leading cause of cancer-related mortality in both sexes
across the globe. It is associated with extremely poor prognosis and remains a critical burden world-
wide due to its low survival rates. Histologically, pancreatic ductal adenocarcinoma (PDAC) accounts
for 80% of all pancreatic cancers; the majority of which are diagnosed at advanced stages, which
makes them ineligible for curative surgery. Conventional chemotherapy provides a five-year overall
survival rate of less than 8% forcing scientists and clinicians to search for better treatment strategies.
Recent discoveries in cancer immunology have resulted in the incorporation of immunotherapeutic
strategies for cancer treatment. Particularly, immune-checkpoint inhibitors, adoptive cell therapies
and cancer vaccines have already shifted guidelines for some malignancies, although their effi-
cacy in PDAC has yet to be elucidated. In this review, we summarize the existing clinical data on
immunotherapy clinical outcomes in patients with advanced or metastatic PDAC.

Keywords: pancreatic cancer; immunotherapy; immune-checkpoint inhibitors; CAR T-cell therapy;
cancer vaccines

1. Introduction

Pancreatic cancer is the seventh leading cause of cancer-related mortality in both
sexes across the globe [1]. It remains a critical burden worldwide due to its low survival
rates and extremely aggressive nature [2]. A total of 95% of pancreatic malignancies arise
from exocrine parts (ductal epithelium, acinar cells and connective tissue), and another
5% develop from endocrine parenchyma [3]. Histologically, pancreatic ductal adenocarci-
noma (PDAC) accounts for 80% of all pancreatic cancers [4], and the majority of cases are
diagnosed at advanced stages (Figure 1) [5]. Localized cases can be treated with surgery,
however, the five-year overall survival (OS) rate does not exceed 25% [6]. Unfortunately,
there are no curative strategies for advanced stages, and palliative chemoradiotherapy
reaches a five-year OS rate of less than 8% [7]. Chemotherapeutic choices of treatment in-
clude either modified FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan, oxaliplatin) [8],
gemcitabine monotherapy or gemcitabine in combination with nab-paclitaxel [9].

Recent discoveries in cancer immunology resulted in the incorporation of immunother-
apeutic strategies for the treatment of various solid and hematologic malignancies [10].
Multiple clinical trials showed the higher efficacy of immune-checkpoint inhibitors (ICIs)
for melanoma, lung cancer, renal cell carcinoma, colorectal cancer and hepatocellular
carcinoma [11–15]. Adoptive chimeric antigen receptor (CAR) T-cell therapy is another
immunotherapeutic tool being established as effective for hematologic malignancies, par-
ticularly relapsed/refractory B cell lymphoma [16] or mantle-cell lymphoma [17]. Un-
fortunately, early-phase clinical trials have shown limited responses to immunotherapy
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in patients with PDAC [18,19]. Nevertheless, immunotherapy is still deemed the most
likely way to improve prognosis for patients with advanced PDAC (aPDAC) in the near fu-
ture [20]. In this review, we provide an overview of the clinical outcomes of immunotherapy
in patients with advanced and/or metastatic PDAC.
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phological differences between normal (left) and malignant (right) pancreatic tissue. (C) TNM
classification of PDAC.

2. Immune-Checkpoint Inhibitors

ICIs have heralded a new era in clinical oncology [22]. ICIs are monoclonal antibodies
that target immune checkpoints (e.g., cytotoxic T-lymphocyte antigen-associated protein
4 [CTLA-4], programmed cell death-1 [PD-1], programmed cell death ligand 1 [PD-L1]) on T-
, cancer and antigen-presenting cells (Figure 2) [23]. The inhibition of immune checkpoints
results in proper stimulation of T-cell receptor (TCR) signaling, differentiation of cytotoxic
T cells and further destruction of malignant cells [24].
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totoxic T lymphocyte-associated antigen 4; FDA—US Food and Drug Administration; APC—anti-
gen-presenting cell; IL—interleukin; IFN—interferon. 

2.1. Blockade of Cytotoxic T-Lymphocyte-Associated Antigen 4 
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IPI (3 mg/kg) monotherapy in aPDAC patients (74% [n = 20] pre-treated with gemcitabine-
based regimens) failed to show any durable response [27]. Furthermore, 11.1% (n = 3) of 
patients developed severe (≥grade 3) immune-related adverse events (irAEs) [27]. 
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IPI 3 mg/kg was considered safe; however, the efficacy outcomes did not exceed the re-
sults of gemcitabine monotherapy, and thus further exploration was halted. 

Another CTLA-4 inhibitor tremelimumab was studied in a phase 2 basket trial 
(NCT02527434) [29]. A pooled analysis of patients with aPDAC (pre-treated with gem-
citabine) revealed that 90% (n = 18) had disease progression [29]. The median OS reached 
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Thus, second-line tremelimumab monotherapy failed to show superior efficacy in patients 
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Figure 2. Overview of mechanisms of immune-checkpoint inhibitors and CAR T-cell ther-
apy. MHC—major histocompatibility complex; PD-1—programmed cell death protein-1;
PD-L1/2—programmed cell death ligand 1/2; CD—cluster of differentiation; TCR—T cell receptor;
CTLA-4—cytotoxic T lymphocyte-associated antigen 4; FDA—US Food and Drug Administration;
APC—antigen-presenting cell; IL—interleukin; IFN—interferon.

2.1. Blockade of Cytotoxic T-Lymphocyte-Associated Antigen 4

In 2011, Ipilimumab (IPI), an anti-CTLA-4 monoclonal antibody, became the first ICI
to be approved by the US Food and Drug Administration (FDA) [25]. Though it shifted
treatment guidelines for melanoma [26], trials elucidating IPI in patients with aPDAC did
not show any promising results. In particular, a single-arm phase 2 trial established that IPI
(3 mg/kg) monotherapy in aPDAC patients (74% [n = 20] pre-treated with gemcitabine-
based regimens) failed to show any durable response [27]. Furthermore, 11.1% (n = 3) of
patients developed severe (≥grade 3) immune-related adverse events (irAEs) [27].

A dose-escalation phase 1b trial (NCT01473940) presented that IPI in combination
with gemcitabine reached an objective response rate (ORR) of 14% (n = 3) [28]. More-
over, the median progression-free survival (PFS) was 2.78 months (95% CI, 1.61 to 4.83)
with a median OS of 6.9 months (95% CI, 2.63 to 9.57) [28]. A total of 19% (n = 4) devel-
oped irAEs of grade 3 or higher [28]. Overall, a combinatorial therapy of gemcitabine
1000 mg/m2 + IPI 3 mg/kg was considered safe; however, the efficacy outcomes did not
exceed the results of gemcitabine monotherapy, and thus further exploration was halted.

Another CTLA-4 inhibitor tremelimumab was studied in a phase 2 basket trial
(NCT02527434) [29]. A pooled analysis of patients with aPDAC (pre-treated with gemc-
itabine) revealed that 90% (n = 18) had disease progression [29]. The median OS reached
4 months (95% CI: 2.8 to 5.4) with 70% (n = 14) experiencing irAEs of grade 3 and higher.
Thus, second-line tremelimumab monotherapy failed to show superior efficacy in patients
with aPDAC [29].
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Similar to IPI, a dose-escalation phase 1b study revealed that the combination of
tremelimumab with gemcitabine showed better effectiveness than monotherapy [30]. In
particular, the median OS reached 7.4 months (95% CI, 5.8 to 9.4) with 6% (n = 2) reaching
PR [30] and only 3% (n = 1) developing serious irAEs [30].

A phase 2 trial (NCT02558894) established that a combination of tremelimumab
75 mg + durvalumab 1500 mg (anti-PD-L1 inhibitor) reached an ORR of 3.1% (n = 1) with
22% (n = 7) developing irAEs of grade 3 and higher [31]. The trial failed to reach the
pre-designed ORR threshold of 10%, and further exploration was stopped.

Finally, recent results of a randomized phase 2 trial (NCT02879318) comparing arm
A (gemcitabine + nab-paclitaxel) to arm B (gemcitabine + nab-paclitaxel + durvalumab
+ tremelimumab) established no significant difference in survival [32]. In particular, the
median OS was 8.8 months (95% CI: 7.2 to 11.2) and 9.8 months (95% CI: 8.3 to 12.2) in
arms A and B, respectively (Hazard Ratio [HR]: 0.94, p = 0.72) [32]. The median PFS
was 5.4 months (95% CI: 3.6 to 6.6) and 5.5 months (95% CI: 3.8 to 5.7) in arms A and B,
respectively (HR: 0.98, p = 0.91) [33]. Serious adverse events were reported in 44.8% (n = 26)
and in 68.9% (n = 82) of patients in arms A and B, respectively [33]. Thus, combinatorial
immunotherapy failed to show a significantly higher efficacy in aPDAC patients than the
current standard of care (SoC).

To sum up, the existing results do not show encouraging outcomes for CTLA-4
inhibitors in patients with aPDAC. Strikingly, even the combination of the PD-L1 in-
hibitor durvalumab + CTLA-4 inhibitor tremelimumab is not significantly better than SoC
chemotherapy. This data emphasizes the need for further studies on novel combinatorial
approaches able to overcome the unique immunosuppressive and fibrotic morphological
features of PDAC that potentially play a major role in the inhibition of existing ICI-based
regimens. Moreover, further trials should be designed for the head-to-head comparison of
a single ICI or a combination of CTLA-4 + PD-1 inhibitors to the current SoC or SoC + ICI.

2.2. Blockade of Programmed Cell Death-1 with Its Ligands

Pembrolizumab (PEMBRO) and nivolumab (NIVO) are humanized monoclonal anti-
bodies (mAbs) inhibiting the PD-1 inhibitory checkpoint [34]. They have been granted FDA
approval for the treatment of melanoma, lung cancer and aPDAC with MSI-H status [19].

A single-arm phase 2 trial (NCT01876511) reported that cohort C (non-colorectal cancer
patients [n = 7 out of whom n = 4 with PDAC] with a mismatch repair deficiency [dMMR]
or a high microsatellite instability [MSI-H]) treated with PEMBRO as a ≥2 line of therapy
reached an ORR of 71% with a median PFS of 5.4 months [35]. The authors concluded that
PEMBRO alone showed a durable clinical efficacy in the MSI-H patients from cohort C [36].
Later reports from the NCT01876511 trial also observed durable response in the cohort
of patients (n = 86) with PDAC (ORR 53% [95% CI: 42% to 64%]; 21% of patients reached
complete response [CR]) [37]. A recent report from the multicenter KEYNOTE-158 trial
reported that out of n = 22 patients only n = 4 (18.2%) had either CR or a partial response
[PR] [38]. Nonetheless, the prevalence of PDAC patients with MSI-H is between 0.8% and
2% [36], which stresses the extreme necessity for searching for other therapeutic strategies
effective for the majority of PDAC patients.

A single-arm phase 2 study (JapicCTI-184230) elucidated the efficacy of NIVO (480 mg
every 4 weeks) in combination with modified FOLFIRINOX (oxaliplatin 85 mg/m2, levo-
folinate 200 mg/m2, irinotecan 150 mg/m2 and fluorouracil 2400 mg/m2 every 2 weeks)
in treatment-naïve patients with metastatic PDAC [39]. The authors reported that the
ORR reached 32.3% (only PR) with a median OS and PFS of 13.4 and 7.39 months, respec-
tively [39]. Moreover, 54.8% (n = 17) of patients reached the one-year survival threshold.
Further validation of this regimen is currently ongoing.

A randomized multi-cohort phase 2 trial (NCT03214250) established that first-line
NIVO in combination with gemcitabine and nab-paclitaxel reached a primary efficacy
endpoint in n = 34 aPDAC patients [40]. ORR reached 50% (95%CI: 32 to 68) with a me-
dian OS of 16.7 months (95% CI: 9.8 to 18.4) [40]. A total of 57.7% of patients surpassed
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the one-year threshold disregarding their mutational status. In contrast, Wainberg et al.
reported that NIVO in combination with gemcitabine and nab-paclitaxel showed only 18%
(95% CI: 8.6 to 31.4) as a first-line therapy for patients with advanced/metastatic PDAC [41].
Moreover, n = 48 (96%) experienced grade 3–4 immune-related adverse events (irAEs) [41].
The concerning safety profile of this regimen did not support further investigation.

Finally, a randomized phase 2 CheckPAC study (NCT02866383) established that NIVO
in combination with IPI and stereotactic body radiotherapy (SBRT) of 15 Gy reached
a 37.2% ORR in patients with metastatic PDAC [42]. The authors concluded that the
studied regimen showed a favorable efficacy, and further studies are currently ongoing.
Nevertheless, the role of SBRT is unknown.

In summary, the current evidence supports that PEMBRO is effective for aPDAC
patients with MSI-H status, although the data were obtained from basket single-arm trials
primarily powered by elucidating PEMBRO’s efficacy in colorectal cancer patients. NIVO
in combination with (1) chemotherapy or (2) IPI + SBRT showed meaningful response
rates; however, the head-to-head comparison with current SoC chemotherapy regimens is
necessary to precisely elucidate the safety and efficacy profiles of this regimen.

A dose-escalating phase 1b trial (NCT02323191) determined the role of the PD-L1
inhibitor Atezolizumab (Atezo) in combination with Emactuzumab, an inhibitor of the
colony-stimulating factor-1 receptor (CSF1R) in patients with solid tumors [43]. Gomez-
Roca et al. reported that the ORRs in treatment-naïve aPDAC patients reached 9.8% and
12.5% for patients previously treated with other ICI-based regimens, albeit a separate
analysis of patients with only aPDAC was not conducted [43]. Further clinical studies were
not warranted due to the full potential of CSF1R being unknown and the high rate of grade
3–4 irAEs.

Another PD-L1 inhibitor, Avelumab, in combination with Binimetinib (MEK [mitogen-
activated protein kinase] inhibitor) was determined in a dose-escalating phase 1b trial
(NCT03637491) [44]. The ORR reached 0% (95% CI: 0 to 30.8) and 8.3% (95% CI: 0.2 to 38.5)
in metastatic PDAC patients from cohorts A (binimetinib 30 mg) and B (binimetinib 45 mg),
respectively [44]. n = 12 (54.5%) experienced irAEs of grade 3 and higher [44]. The study
was terminated before the optimal dose for phase 2 was established.

Finally, despite ICIs having demonstrated their superior efficacy in aPDAC with MSI-
H status, most phase 1 and 2 clinical trials failed to demonstrate any superior clinical
efficacy in a majority of aPDAC patients as compared to the current SoC. Perhaps further
data generated from ongoing clinical trials will reveal encouraging results for a combination
of ICIs + radiotherapy and/or chemotherapy (Table 1). Nonetheless, further studies are
critically needed to determine the mechanisms of PDAC’s resistance to ICI therapy.

Table 1. List of currently recruiting multicenter clinical trials determining immune-checkpoint
inhibitors in patients with pancreatic cancer. Rand—randomization; NIVO—nivolumab;
IPI—ipilimumab; PEMBRO—pembrolizumab; ATEZO—atezolizumab; TRAEs—treatment-related
adverse events; DLTs—dose-limiting toxicities; PFS—progression-free survival; ORR—objective
response rate; mAb—monoclonal antibody; CTLA-4—cytotoxic T-lymphocyte-associated antigen
4; PD-1—programmed cell death protein 1; SCCHN—squamous cell carcinoma of head and neck;
RCC—renal cell carcinoma; DOR—duration of response; TTR—time to response; EGFR—epidermal
growth factor receptor; TGFβ—transforming growth factor β.

NCT Phase Rand. Sponsor ICI Endpoint(s)
Estimated Date

for Primary
Results

NCT03816358 1/2 No National Cancer
Institute

Arm I: Anetumab + NIVO.
Arm II: Anetumab + IPI + NIVO.

Arm III: Anetumab + Gemcitabine +
NIVO.

Primary: maximum
tolerated dose.

Secondary: biomarker
analysis.

January 2024
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Table 1. Cont.

NCT Phase Rand. Sponsor ICI Endpoint(s)
Estimated Date

for Primary
Results

NCT04666688 1/2 No PureTech

Dose-expansion arm: LYT-200
(Galectin-9 inhibitor) + PD-1

inhibitor + Gemcitabine +
Nab-paclitaxel.

Primary: Incidence of
TRAEs, incidence of DLTs,

PFS and ORR.
Secondary:

Pharmacokinetics and
pharmacodynamics of

LYT-200.

December 2022

NCT04140526 1/2 No
National Cancer

Institute;
OncoC4 Inc.

Arm I: ONC-392 (CTLA-4 inhibitor).
Arm II: ONC-392 + Pembrolizumab.

Primary: DLT, maximum
tolerated dose, incidence of

TRAEs.
Secondary: ORR, PFS, OS.

December 2023

NCT04152018 1 No Pfizer

Dose-escalation arm: PF-06940434
(PD-1 inhibitor).

Dose-finding arm: PF-06940434 +
PF-06801591 (PD-1 inhibitor).

Dose-expansion form A:
PF-06940434 + PF-06801591 in

SCCHN.
Dose-expansion form B: PF-06940434

+ PF-06801591 in RCC.

Primary: DLT, PFS and
incidence of TRAEs.

Secondary:
Pharmacokinetics and
pharmacodynamics of

PF-06940434 and
PF-06801591, DOR.

September 2023

NCT04336098 1 No Surface Oncology;
MSD LLC

Arm III: SRF617 + PEMBRO.
Arm IV: SRF617 + PEMBRO +
Gemcitabine + albumin-bound

Paclitaxel.

Primary: DLT
Secondary:

Pharmacokinetics and
pharmacodynamics of

SRF617, PFS.

November 2022

NCT04332653 1/2 No NeoImmune Tech NT-I7 (Efineptakin Alfa, long-acting
human interleukin-7) + PEMBRO

Primary: Safety and
tolerability of NT-I7

Secondary: DOR, PFS, OS,
ORR, incidence of irAEs

May 2024

NCT05293496 1 No MacroGenics
MGC018 (B7-H3 inhibitor) +

Lorigerlimab (bispecific
CTLA-4/PD-1 inhibitor)

Primary: incidence of irAEs
Secondary:

Pharmacokinetics and
pharmacodynamics of

MGC018, DOR, OS, PFS,
ORR.

March 2024

NCT03915678 2 No Institut Bergonie ATEZO + BDB001 (Toll-like receptor
7/8 agonist) + Radiotherapy

Primary: assessment of
antitumor activity

Secondary: PFS, ORR
September 2023

NCT04548752 2 Yes National Cancer
Institute

Control arm: Olaparib.
Experimental arm: Olaparib +

PEMBRO.

Primary: PFS
Secondary: Incidence of
irAEs, OS, ORR, DOR

March 2025

NCT03485209 2 No Seagen Inc.; MSD
LLC

Arm IV: Tisotumab vedotin +
PEMBRO + carboplatin + cisplatin.

Primary: ORR
Secondary: incidence of

irAEs, DOR, TTR, PFS, OS
November 2023

NCT04429542 1 No Bicara
Therapeutics

Arm II: BCA101 (EGFR and TGFβ
fusion mAb + PEMBRO.

Primary: Safety and
incidence of DLTs

Secondary: ORR, PFS, DOR,
OS

December 2023

NCT04561362 1/2 No BicycleTx Limited
Dose-escalation cohort A2: BT8009 +

NIVO.
Dose-expansion B2: BT8009 + NIVO.

Primary: DLTs, ORR, PFS,
OS

Secondary: DOR
June 2023

NCT02834013 2 No National Cancer
Institute

Arm I: IPI + NIVO.
Arm II: NIVO.

Primary: ORR
Secondary: incidence of

irAEs, OS, PFS
October 2023

3. Adoptive CAR T-Cell Therapy

Adoptive CAR (chimeric antigen receptor) T-cell therapy is a technology of the ex vivo
expansion of a patient’s own T cells that have been genetically engineered to express CAR
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that recognizes a particular tumor antigen [45]. To date, no CAR T-cell therapy has been
approved for the treatment of solid malignancies [45]. Regarding PDAC, a few clinical
trials have demonstrated limited efficacy.

A single-arm phase 1 study (NCT01869166) determined the safety and efficacy of
anti-EGFR (epidermal growth factor receptor) CAR T cells [46]. Among n = 14 pre-treated
metastatic PDAC patients, the ORR reached 28.6% with a median PFS and OS of 3 and
4.9 months, respectively [46]. Each patient experienced a treatment-related adverse event
(TRAE) of different severity [46]. Further trials were not supported due to the limited
efficacy and the fact that EGFR is expressed by a wide range of tissues, which may explain
the high incidence of TRAEs.

Another single-arm phase 1 basket trial (NCT01935843) elucidated the safety and
efficacy of anti-HER-2 (human epidermal growth factor receptor 2). The median PFS
reached 4.8 months in n = 11 aPDAC patients with more than 50% of HER-2 positive tumor
cells. n = 1 (9%) reached PR, and n = 5 (45%) achieved stable disease (SD) [47]. No instances
of high-grade lymphocytopenia or cytokine release syndrome were detected, and most
low-grade toxicities were reversible [47]. The therapy showed encouraging clinical activity,
and further trials are ongoing.

Based on promising preclinical mouse studies, two trials elucidated the clinical out-
comes of anti-mesothelin CAR T cell therapy. A phase 1 trial (NCT01897415) showed that
among n = 6 patients with aPDAC, none experienced severe TRAEs [48]. n = 2 (33.3%)
reached SD [48]. Another phase 1 basket trial (NCT02159716) showed encouraging safety
profiles in patients with chemo-refractory solid tumors [49]. n = 11 (73.3%) of patients
achieved SD, and additional larger trials are currently ongoing.

Finally, a phase 1 basket trial (NCT02541370) elucidated the role of anti-CD133 CAR
T-cell therapy [50]. Wang et al. established that within the cohort of patients with aPDAC
pre-treated with cyclophosphamide/nab-paclitaxel, n = 3 (42%) reached SD, n = 2 (29%) PR
and n = 2 (29%) had DP [50].

To date, knowledge regarding the clinical efficacy of CAR therapy in patients with aP-
DAC is very limited, although it remains a viable and promising topic of pancreatic cancer
research. The identification of an ideal target is a major challenge for adoptive cell ther-
apy in PDAC. Secondly, PDAC’s immune microenvironment comprised of macrophages,
cancer-associated fibroblasts, myeloid-derived suppressor cells, dendritic cells, B cells and
infiltrating regulatory T cells [51]. These cells can create a physical barrier for trafficking
T cells and suppress T cell activation, resulting in a diminished efficacy of CAR T-cell
therapy [52]. Overcoming those hurdles may one day result in successful implications of
adoptive cell therapies for advanced and/or metastatic PDAC.

4. Cancer Vaccines

Cancer vaccines represent another promising strategy for PDAC treatment [53]. Vac-
cines can boost anti-tumor immunity by transferring the tumor antigens (Figure 3) in the
form of cells, proteins or nucleic acids [53]. A number of clinical trials have elucidated the
clinical efficacy of vaccines in patients with severely progressed PDAC.

4.1. Cell-Based Vaccines

A phase 2 open-label randomized trial (NCT02243371) determined the efficacy of the
GVAX and CRS-207 vaccines with or without NIVO in patients with metastatic PDAC that
progressed on one prior chemotherapy regimen [54]. GVAX is a cell-based vaccine that
transfers an allogeneic tumor cell, engineered to express granulocyte-macrophage colony-
stimulating factor (GM-CSF) [55]. CRS-207 is a microorganism-based vaccine that transfers
a live-attenuated Listeria monocytogenes (Lm) engineered to express the PDAC-associated
antigen mesothelin [56]. Recruited patients received Cyclophosphamide + GVAX + CSR-
207 with (cohort A, n = 51) or without (cohort B, n = 42) NIVO [54]. The median OS reached
5.9 (95% CI: 4.7 to 8.6) and 6.1 (95% CI: 3.5 to 7) months in cohorts A and B, respectively [54].
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The ORR was 4% and 2% in cohorts A and B, respectively [54]. The trial failed to meet its
primary endpoint of OS improvement, and durable response rates were not registered.
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Another phase 2 (NCT02004262) randomized trial (ECLIPSE study) compared the
efficacy of Cyclophosphamide + GVAX + CRS-207 (arm A) and CRS-207 (arm B) to a physi-
cian’s choice of an SoC chemotherapy [57] in patients with metastatic PDAC who previously
failed on >2 lines of chemotherapy. The median OS reached 3.7 (95% CI: 2.9 to 5.3), 5.4 (95%
CI: 4.2 to 6.4) and 4.6 (95% CI: 4.2 to 5.7) months in arms A, B and C, respectively [57]. No
significant difference as compared to control arm C was registered. The authors concluded
that the combination of GVAX + CRS-207 failed to show higher efficacy as compared to
SoC chemotherapy in patients with metastatic PDAC [57].

A phase 3 randomized PILLAR trial (NCT01836432) determined the clinical role of
Algenpantucel-L + FOLFIRINOX (arm A, n = 145), compared to FOLFIRINOX (arm B,
n = 158) alone [58]. Algenpantucel-L is a whole-cell vaccine that consists of two irradiated
allogeneic pancreatic cancer cell lines (HAPa-1, HAPa-2) engineered to express the murine
enzyme α (1,3)-galactosyltransferase (αGT) responsible for hyperacute rejection [59]. The
study results revealed that the median OS was 14.3 (95% CI: 12.6 to 16.3) and 14.9 (95% CI:
12.2 to 17.8) months in arms A and B, respectively [58]. Moreover, the median PFS was 12.4
and 13.4 months in arms A and B, respectively (Hazard Ratio [HR]: 1.33 [95% CI: 0.66 to
1.58], p = 0.59) [58]. Thus, Algenpantucel-L failed to show improved survival in patients
with local aPDAC compared to FOLFIRINOX [58].

Dendritic cells (DCs) are antigen-presenting cells and play a crucial role in the anti-
tumor immune response. A phase 1 single-arm trial (NCT01410968) determined the role
of DCs isolated from the peripheral blood of PDAC patients with HLA-A2 positive status.
DCs were pulsed with three distinct A2-restricted peptides: (1) human telomerase re-
verse transcriptase (hTERT, TERT572Y); (2) carcinoembryonic antigen (CEA, Cap1-6D) and
(3) surviving (SRV.A2) [60]. The median OS reached 7.7 months, and n = 4 (33.3 %) reached
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SD [60]. The treatment was well tolerated, and the flow cytometry analysis revealed that
patients with SD had a high expansion of antigen-specific T cells [60]. This method was
considered promising because DCs can be pulsed with other synthetic peptides, and further
larger trials were recommended.

4.2. Peptide-Based Vaccines

The vaccine KIF20A-66 is a human leukocyte antigen (HLA)-A24-restricted cytotoxic
T cell epitope derived from KIF20A, a member of the kinesin superfamily protein 20A that
is markedly upregulated in PDAC [61]. A phase 1/2 single-arm trial (UMIN000004919)
reported that vaccinated gemcitabine-pre-treated patients with metastatic PDAC had a me-
dian OS and PFS of 4.7 and 1.9 months, respectively [62]. n = 21 (72%) of patients reached
SD [62]. Asahara et al. concluded that KIF20A-66 showed higher survival rates in pa-
tients with metastatic PDAC as compared to the best supportive care, and further trials
were encouraged.

A phase 2 single-arm non-randomized VENUS-PC trial (UMIN000008082) determined
the role of HLA-A*2402-restricted KIF20A-derived peptide vaccine in combination with
the gemcitabine and antiangiogenic vaccines targeting vascular endothelial growth factor
receptor 1 and 2 (VEGFR1, 2) [63]. The median OS reached 9 months with an ORR of 10.8%
in n = 38 patients who had at least one allele of HLA-A*2402 (matched).

Finally, commonly tested KRAS and telomerase (GV1001)-targeting vaccines failed
to show durable responses and/or superiority to gemcitabine in phase 2/3 clinical tri-
als [64]. A phase 3 randomized TeloVac trial showed no significant difference in the OS
for treatment-naïve patients with metastatic PDAC treated with chemotherapy or the
GV1001 +/− chemotherapy vaccine [65].

Most of the trials determining the role of vaccines in patients with advanced PDAC
failed to show durable response. Perhaps a critical factor responsible for such failure is the
tumor microenvironment, which is characterized by an abundance of mesenchymal origin
fibroblasts, blood vessels and tumor-infiltrating immune cells surrounded by extracellular
matrix [66]. Those factors can inhibit the immune response, thus facilitating cancer escape
from immunosurveillance [66]. In addition, vaccine therapy is challenged by a complex
process of vaccine synthesis and the absence of a validated method to identify and/or
measure the immune response to the vaccine. Nevertheless, further assessment in larger
trials is necessary, especially in combination with other therapeutic strategies (Table 2).

Table 2. List of currently recruiting multicenter clinical trials determining clinical out-
comes of adoptive T-cell therapies and vaccines in patients with pancreatic adenocarcinoma.
Rand—randomization; CAR—chimeric antigen receptor; HER-2—human epidermal growth factor re-
ceptor 2; MUC1—mucin 1; MTD—maximum tolerated dose; DC—dendritic cell; DLTs—dose-limiting
toxicities; ORR—objective response rate; TRAEs—treatment-related adverse events; OS—overall
survival; CEA—carcinoembryonic antigen.

NCT Phase Rand. Sponsor Intervention Primary Endpoint(s)
Estimated Date

for Primary
Results

Adoptive cell therapies

NCT04404595 1/2 No CARsgen Therapeutics Co.,
Ltd. CAR T cells (Claudin 18.2) Incidence of TRAEs,

ORR June 2025

NCT04660929 1 No Carisma Therapeutics Inc CAR macrophages (HER-2) Incidence of TRAEs February 2023

NCT05239143 1 No Poseida Therapeutics, Inc. CAR T cells (MUC1) MTD; ORR and
incidence of TRAEs April 2026

NCT04157127 1 No Baylor College of Medicine Autologous DC vaccine MTD, DLTs January 2024

NCT04581473 1/2 Yes CARsgen Therapeutics Co.,
Ltd.

Experimental arm: CT041 (CAR T cells
[Claudin 18.2]).

Control arm: Chemotherapy or PD-1
inhibitor.

Incidence of TRAEs,
MTD, PFS June 2024

NCT04348643 1/2 No Chongqing Precision Biotech
Co., Ltd. CAR T cells (CEA) Incidence of TRAEs January 2023
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Table 2. Cont.

NCT Phase Rand. Sponsor Intervention Primary Endpoint(s)
Estimated Date

for Primary
Results

Cancer vaccines

NCT03323944 1 No University of Pennsylvania CAR T cells (Mesothelin) Response rate, PFS, OS September 2024

NCT03953235 1/2 No Gritstone bio, Inc. and Bristol
Myers Squibb

GRT-C903 + GRT-R904 + Nivolumab +
Ipilimumab

Incidence of TRAEs,
ORR December 2023

NCT04807972 2 Yes AbbVie

Control arm: FOLFIRINOX.
Experimental arm I:

FOLFIRINOX + ABBV-927
Experimental arm II: ABBV-927 +

Budiglimab +
mFOLFIRINOX.

OS August 2024

NCT04853017 1 No Elicio Therapeutics

ELI-002 (a lipid-conjugated
immune-stimulatory oligonucleotide
[Amph-CpG-7909] plus a mixture of

lipid-conjugated peptide-based antigens
[Amph-Peptides])

MTD, safety November 2024

NCT02600949 1 No M.D. Anderson Cancer
Center

Arm I: personalized vaccine +
imiquimod.

Arm II: personalized vaccine +
imiquimod + pembrolizumab.

Arms III and IV: vaccine + imiquimod +
pembrolizumab + APX005M.

Incidence of TRAEs May 2025

NCT04111172 2 Yes Thomas Jefferson University

Experimental arm I: adenovirus
5/F35-human guanylyl cyclase
C-PADRE vaccine (low dose)

Experimental arm II: medium dose
Experimental arm III: high dose

Incidence of TRAEs,
Antigen-specific T-cell
response to guanylyl

cyclase C (GCC)

March 2024

NCT02451982 2 Yes

Sidney Kimmel
Comprehensive Cancer

Center at Johns Hopkins and
Bristol Myers Squibb

Experimental arm I: CY/GVAX alone.
Experimental arm II: CY/GVAX with

nivolumab.
Experimental arm III: CY/GVAX with

nivolumab and urelumab.
Experimental arm IV: BMS-986253 and

Nivolumab.

IL17A expression,
Intratumoral CD8+

CD137+ cells,
Intratumoral granzyme
B PD-1+ CD137+ cells,
Pathologic Response

June 2023

NCT03767582 1/2 Yes

Sidney Kimmel
Comprehensive Cancer

Center at Johns Hopkins and
Bristol Myers Squibb

Arm I: Nivolumab/CCR2/CCR5 dual
antagonist.

Arm II: Nivolumab/GVAX/CCR2/
CCR5 dual antagonist

Percentage of
participants who have

>80% increase in
infiltration of CD8+

CD137+ T cells into the
PDAC after treatment
compared to baseline

March 2023

5. Conclusions

PDAC is associated with an extremely poor survival rate and prognosis if diagnosed
at late stages. To date, immunotherapy represents the biggest hope for improving clinical
outcomes for patients with advanced/metastatic PDAC. Although PEMBRO has been
approved for the treatment of aPDAC patients with MSI-H status, PDAC has demon-
strated remarkable resistance to immunotherapy in the majority of cases. Further trials
are extremely necessary to determine the role of combination approaches utilizing various
immunotherapeutic strategies. Importantly, further trials should focus on overcoming ther-
apeutic resistance by targeting multiple immune defects with several immunotherapeutic
arms. Early trials have already reported the synergistic effect of ICIs or CAR therapies
with chemoradiotherapy, albeit safety profiles should be closely monitored. In addition,
future studies should prioritize integrated or convergent targets that can reprogram the
tumor microenvironment rather than focusing on the depletion of a single/particular target.
Another important point to consider is that an immunotherapeutic strategy should be based
on an individual characterization of the tumor microenvironment of each patient. Such
approach can be achieved by deep profiling of the tumor tissue during the pre-treatment
stage with high-throughput technologies. This will promote the personalization of therapy,
thus increasing clinical outcomes in patients with advanced and metastatic PDAC. Overall,
such integration may facilitate the establishment of effective therapeutic strategies for the
majority of PDAC patients in the near future.
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