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Abstract: Endothelial integrity maintains microcirculatory flow and tissue oxygen delivery. The
endothelial glycocalyx is involved in cell signalling, coagulation and inflammation. Our ability to
treat critically ill and septic patients effectively is determined by understanding the underpinning
biological mechanisms. Many mechanisms govern the development of sepsis and many large trials
for new treatments have failed to show a benefit. Endothelial dysfunction is possibly one of these
biological mechanisms. Glycocalyx damage is measured biochemically. Novel microscopy techniques
now mean the glycocalyx can be indirectly visualised, using sidestream dark field imaging. How the
clinical visualisation of microcirculation changes relate to biochemical laboratory measurements of
glycocalyx damage is not clear. This article reviews the evidence for a relationship between clinically
evaluable microcirculation and biological signal of glycocalyx disruption in various diseases in ICU.
Microcirculation changes relate to biochemical evidence of glycocalyx damage in some disease states,
but results are highly variable. Better understanding and larger studies of this relationship could
improve phenotyping and personalised medicine in the future. Damage to the glycocalyx could
underpin many critical illness pathologies and having real-time information on the glycocalyx and
microcirculation in the future could improve patient stratification, diagnosis and treatment.
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1. Introduction

Publication of research into the endothelial glycocalyx and microcirculation has in-
creased exponentially in the last decade. Our understanding of the glycocalyx has changed
from that of it being a ubiquitous, jelly-like layer to taking an active role in the interaction
between the intravascular and interstitial space. The glycocalyx plays a role in chronic
inflammation, diabetes, trauma, sepsis and ischaemia-reperfusion injury. The microcircu-
lation is deranged in approximately 17–20% of a heterogenous population of patients in
ICU [1,2]. Microcirculatory derangements can persist despite adequate macrocirculation
corrected by vasopressors or transfusion [3]. In those that the microcirculation cannot be
recruited or restored, morbidity and mortality is increased.

The glycocalyx is a carbohydrate rich layer responsible for maintaining not only the
oncotic pressure and barrier function within the circulatory system, but also antithrom-
botic and inflammatory signalling functions. It covers the luminal surface of endothelial
cells throughout the vascular network, but changes between tissues depending on its
primary function [4].

Made up of proteoglycans and glycosaminoglycans, the glycocalyx creates a strong
negative charge within the blood vessels to repel large molecules from escaping into the
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tissues. In vitro experiments have shown that the damaged glycocalyx becomes sensitised
to atherogenic and inflammatory mediators. This sensitisation causes release of chemotactic
molecules and by increasing the production of inflammatory mediators, it precipitates a
cytokine storm. Circulating components of the inflammasome bind to glycocalyx recep-
tors in a cycle of increasing inflammation. This leads to widening of gap junctions and
relaxing of the barrier between the lumen and the interstitium, marked by shedding of
glycocalyx molecules. The functionality of the endothelium is dependent on remaining
intact with all relevant sidechains and molecular structures in place. Glycocalyx shedding
and deterioration leads to loss of endothelial integrity and function [5,6].

Multiorgan dysfunction syndrome including encephalopathy, acute kidney injury,
acute liver injury, coagulopathy and acute respiratory distress syndrome can all be as-
sociated with endothelial damage. Mediators released in sepsis act on the glycocalyx to
produce a global response. By assessing the microcirculation in patients with sepsis, we
can better understand the changes that occur in response to insults such as endotoxin or
oxidative stress and link these back to markers of endothelial damage. The microcircula-
tion has been described as the largest organ in the body, comprising the capillaries and
venules <20 µm where red blood cells (RBCs) often travel in single file. It is where the
transfer of vital oxygen from the circulation to the tissues takes place and so it is where
our resuscitative efforts should be focused. Some previous studies have demonstrated
the usefulness of the microcirculation as a prognostic tool in ICU patients [7]. Sidestream
dark field (SDF) imaging has been assessed as a potential prognostic tool to guide therapy.
New technologies are emerging that would allow clinicians to directly examine the EG, a
potential huge step forward in personalised medicine and point-of care diagnostics.

This narrative review explores the relationship between endothelial damage, how
the glycocalyx relates to the clinically observable microcirculation and how we can use
this connection to improve patient outcomes. Personalised medicine revolves around our
ability to treat each patient and their unique pathology or phenotype individually.

Endothelial Glycocalyx in Clinical Practice

The loss of glycocalyx function, defence and configuration impairs vessel mechano-
transduction, platelet and leucocyte adhesion to the endothelial surface and causes invasion
of the vascular compartment with fluid and plasma proteins [8]. At the level of myocardium,
it was found that endothelial leak was responsible for swelling in the subendothelial space,
resulting in the compression of the capillary lumen and leading to oedema and myocar-
dial dysfunction [9]. Continuation of inflammation increases availability of leucocytes to
adhesion molecules by attacking the surrounding EG. Inflammatory mediators directly
influence the glycocalyx and its constituents and adjust the structure. Degranulation of acti-
vated inflammatory mediators such as mast cells and macrophages release reactive oxygen
species (ROS), reactive nitrogen species (RNS) that also participate to the degradation of
the EG [10]. Neutrophils are the most abundant circulating cells in the human body and
release proteases that damage the glycocalyx also.

Glycocalyx dysfunction can occur in any organ and so can be recognised in several
clinical conditions. One of the first syndromes that had recognised glycocalyx damage was
diabetes. The first studies that quantified the glycocalyx found that patients with diabetes
type 1 had a reduced volume of glycocalyx by 500 mL, compared to healthy subjects [11].
Glycocalyx involvement has been found in cardiovascular disease, including hypertension,
stroke and left ventricular remodelling after myocardial injury, as well as cancer, renal
failure, diabetes, obesity, cognitive impairment, pre-eclampsia, advanced age and COVID-
19 [12–22]. An analysis of the ProCESS trial patients showed that elevated markers of
glycocalyx damage in blood, angiopoietin-2 (Ang-2), vascular endothelial growth factor-1
and -2 (VEGF) and soluble fms-like tyrosine kinase (sFLT-1) were associated with increased
60-day in hospital mortality at baseline and at timepoints 6 and 24 h [23].

The widespread pathological effects of SARS-CoV-2 infection across various organ
systems made a strong case for a glycocalyx driven disease. Before widespread effective
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vaccination campaigns many infected patients required hospitalisation and up to 43% who
required invasive mechanical ventilation, after failure of non-invasive ventilation, and ICU
support would die [24,25]. Involvement of the angiotensin converting enzyme-2 (ACE-
2) receptor, the prevalence of systemic microthrombi, and large vessel thromboembolic
phenomena suggested a vascular pathology. The presence of this receptor throughout
not only the pulmonary epithelia but the renal, vascular endothelium and arterial smooth
muscle cells can explain these features [26]. Patients with COVID-19 had higher serum
concentrations of the glycocalyx marker syndecan-1 but had improved microcirculation at
Day-2 of admission than non-COVID sepsis patients in one observational study of 28 ICU
patients [27]. The authors concluded that the worse glycocalyx damage with conserved
microcirculation could represent a new sub-phenotype of septic shock with endothelial
remodelling. There was also evidence of persistent endothelial damage months after
infection that was attributed to oxidative stress, endothelial and vascular dysfunction [22].
The MYSTIC study demonstrated not only higher circulating plasma markers of endothelial
damage but also reduced small capillary density and an association of increased perfused
boundary region (PBR), glycocalyx damage and outcome [28]. The authors showed that
investigational biomarkers of glycocalyx damage ADAMST-13 and VEGF were better
correlated with outcomes than CRP and IL-6. Although this study included only a small
number of patients and should be considered as hypothesis generating, the results are
compelling. A large trial comparing moderate, severe COVID-19 and sepsis and septic
shock ICU patients would be intriguing, though possibly no longer feasible post-vaccine.

The multisystem inflammatory syndrome in children (MIS-C) frequently associated
with shock emphasises the multisystem nature of the disease [29]. Endothelial involvement
leads to disease sequelae in almost every organ [22]. The cardinal features of MIS-C are
hyperinflammation and cytokine storm, features also recognised in the adult illness [30].
Distributive shock results from endothelitis and systemic capillary leak while there is also
potential cardiogenic shock through myocardial oedema [22,31]. In a study including
COVID-19 paediatric patients [29], the authors found a significant negative correlation
between left ventricular ejection fraction (LVEF) and Ang-2 (p = 0.01). Varga et al. also
found extensive endothelial cell involvement with macrophage activation, capillary leak
and micro-thrombosis [32].

2. Measuring the Glycocalyx

Despite our increasing knowledge about the EG, it remains remarkably difficult to
assess. The glycocalyx is composed of sugar and proteins that are reactive with many
common laboratory fixation methods [33]. It was first visualised by staining with ruthenium
red, a substance with high affinity for the acidic mucopolysaccharides, generating detectable
electron density visible with an electron microscope [33,34]. Ruthenium red however is a
relatively large molecule and there were concerns that its charge induces conformational
change in the EG, leading to inaccurate characterisation of the glycocalyx structure [33].
Efforts were made with smaller molecular dyes (alcian blue) but other techniques were
developed as classic perfusion fixation was possibly removing side chains and structural
components of the system being examined.

The components of the glycocalyx are constantly being generated and shed, so damage
to the glycocalyx can be assessed by measuring the concentrations of circulating endothe-
lial components in plasma. The most reliable and widely used is syndecan-1, however
levels of heparan sulfate, chondroitin sulfate, endocan and hyaluronan have also been
used. Syndecan-1 is a member of the family core glycocalyx proteoglycans varying from
25–40 kDa that is measured by ELISA. They have a single-span transmembrane domain
connecting to the cell membrane. Syndecans have 4 subtypes that each binds a different
sidechains, either 3–5 chains of heparan sulfate or chondroitin sulfate [35]. As the syndecan
sidechains are shed from the endothelium they can be measured in circulation.

Soluble shed portions of syndecans can be used as biomarkers as the process of shed-
ding is specifically regulated under disease conditions [36]. Leukocyte-derived proteases
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and growth factors, associated with cellular injury or wound healing, can initiate shed-
ding [36]. Thus, shed syndecans are found in inflammatory fluid and associated with tissue
damage in a variety of disease and critical illness. During inflammation the total expression
of syndecans is increased [37,38]. SDC1 plays an important role in leukocyte adhesion,
vascular permeability and mechanosensation [39]. It has been studied as a biomarker in
a wide range of diseases including kidney disease, heart failure and as an indicator after
major surgery [40]. Soluble SDC1 is found in the peripheral blood of patients with sepsis,
ischemia-reperfusion injury and graft-versus-host disease [41–44].

SDC2 plays a role in endothelial damage and vascular dysfunction when endothelial
cells are damaged [45]. Inflammatory signals such as hypoxia and TNF-α increase expres-
sion of SDC2 in fibroblasts, endothelial cells and intestinal epithelia [46,47]. SDC3 is the
largest of the syndecans but is the least studied and understood. It has been implicated in
alzheimer’s disease, human immunodeficiency virus-1 (HIV) disease, angiogenesis and
arthritis [48]. Cleaved portions of SDC3 disassemble endothelial cell junctions in the lung
which has implications for sepsis and diseases where thrombin is activated [49]. Knockout
experiments show that lack of SDC1 or SDC4 increases the inflammatory response, possibly
indicating an anti-inflammatory role as well [50,51]. SDC4 is involved the development of
fibrosis in the lung during inflammation [52,53]. Levels of SDC4 increase in acute pneu-
monia and correlate with pneumonia severity, indicating it could be a useful biomarker in
these patients [54].

Glycosaminoglycans are disaccharide polymers of L-iduronic acid, D-glucuronic acid
or D-galactose linked to either D-N-acetyl galactosamine or D-N-acetylglucosamine [35].
Proteoglycans, mainly heparan sulfate, provide abundant binding sites for circulating me-
diators courtesy of their various sulfation combinations [55]. Heparan sulfate also performs
vital antioxidant function binding superoxide dismutase to protect the glycocalyx from
oxidative stress. This mechanism is challenged in sepsis and septic shock, leading to glyco-
calyx damage and extravasation of plasma proteins and fluid into the subendothelial layer
(Figure 1). Reduced concentrations of heparan sulfate in serum subsequent to exposure to
damaging enzymes increase coagulation and micro-thrombosis, increase adhesion molecule
expression and increase leucocyte tracking along the glycocalyx [35]. In an observational
study of 38 patients, blocking heparanase, an enzyme that targets heparan sulfate, with
heparin eliminated glycocalyx damage in vitro [56]. Hyaluronan is attached to the cell
surface via CD-44 receptor; it is not a core protein but contributes to the glycocalyx volume
by its length and by binding water ~10,000 times its mass [5].
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A prominent drawback of using plasma measurements is their dependence on re-
nal clearance, which can be altered in critical illness, impacting on reliability of these
tests [57,58]. Another drawback is that chronic inflammatory state also leads to increase
in circulating endothelial components [6,10,35,59,60]. Metabolic, vascular and surgical
diseases such as diabetes, atherosclerosis, hypertension, ischaemia reperfusion injury and
trauma result in increased numbers of plasma glycosaminoglycans that correlate to inflam-
matory marker serum concentrations.

Other biomarkers for endothelial damage include hyaluronic acid, angiopoietin-2,
VEGF and vonWillebrand Factor cleaving protease ADAMTS-13, soluble thrombomodulin
and soluble angiopoietin receptor (TIE-2) [28,61,62]. Ang-1 and Ang-2 are in opposition to
one another, their action on the glycocalyx being mediated by the TIE-2 receptor. Ang-2 is
the leakage inducing form and is raised in systemic inflammatory syndromes, indicating
glycocalyx damage [63]. In vitro studies on human sepsis sera showed that the TIE-2
pathway regulates the glycocalyx in sepsis in a non-redundant fashion. When endothelial
cells were incubated with sepsis serum and TIE-2 pathway inhibitors, the damage to
glycocalyx was prevented [63,64].

3. Visualising the Microcirculation and the Endothelial Glycocalyx

Following observations that 40 kDa dextrans equilibrate with the EG, efforts to visu-
alise and quantify the glycocalyx began by comparing dilution of fluorescently labelled
RBCs to dilution of 40 kDa dextran at the time of injection [65]. Studies of the glycocalyx
in cremaster muscle of mice found that the glycocalyx repelled RBCs and slowed plasma
while being compressed by passing leucocytes it serves as both a barrier and a gateway to
the tissues [65,66]. Visualising the glycocalyx in vivo and how it behaves in clinical practice
has become more important as we come to understand its importance. The development of
intra-vital microscopic techniques has transformed this area of practice.

Developed to examine the movement of RBCs within the circulation, Orthogonal
Polarisation Spectroscopy (OPS) allowed clinicians to have a view of the microcirculation
in clinical practice. The most recent iterations of this technology—SDF and Incident Dark
Field (IDF) imaging, have improved the clinical applicability of the microcirculation. The
implications of damage to the microcirculation in a variety of diseases in ICU has been
studied since these devices have been available [67–69].

As techniques have improved, our field of view has grown. The most recent descen-
dant of the OPS devices, the IDF microscope has an increased field of view and improved
contrast to better identify cells and perfused capillaries [70]. In the past, the image would
be manually divided into sections and the boundaries of vessels individually marked out
and perfused vessels counted individually. This is presently done objectively by a piece of
software, AVA (Microvision Medical, Amsterdam, The Netherlands). Similarly, because the
device uses 540 nm light in a dark field created by circumferential light-emitting diodes
(LEDs), it highlights the RBCs themselves [71]. While this gives excellent information about
availability of haemoglobin and functional capillary perfusion, the glycocalyx that controls
the flow remains invisible.

The PBR is the area at the limit of a blood vessel where RBCs can permeate, represent-
ing the luminal aspect of the glycocalyx accessed by the RBCs in circulation. It is quantified
by observing the microscopic lateral motion of the cells under SDF microscopy in com-
bination with proprietary Glycocheck™ 5.2 software (Capiscope handheld, KK Research
technology Ltd., Honiton, UK). If the glycocalyx is shed or disturbed, the lateral motion of
RBCs increases so PBR has an inverse relationship to glycocalyx thickness.

The GlycoCheck™ system makes it possible to calculate the degree of lateral motion
of RBCs within small capillaries [72]. The reliability of this system has been established
both due to its interobserver consistency and accessibility to all clinical staff as a potential
standard monitoring tool [14,73]. The success of the GlycoNurse study established the
system’s potential to bring the microcirculation from the research realm into daily clinical
practice in a busy Emergency department environment [74]. The GlycoCheck system is a
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great leap forward from other in vivo glycocalyx measurement methods such as atomic
force microscopy and microparticle image velocimetry (µ-PIV), used on animal models in
laboratory conditions. The PBR may be elevated in microvascular thrombosis, inflammation
or sepsis, and it has been used to visualise the glycocalyx in vivo [75].

The NOSTRADAMUS study used RBC velocity measurements together with PBR
thickness to improve discrimination between patients with sepsis and healthy controls [76].
This study showed that the PBR tends to increase when the velocity of RBCs decreases,
indicating increased permeability and porosity of the glycocalyx in an environment of
reduced shear stress.

3.1. The Sublingual Target Region

The sublingual region is most commonly used area to study the microcirculation
because of the proximity to the lingual artery as a branch of the external carotid artery,
giving the clinician insight into the reactivity of the central circulation. However, other
vascular beds such as the intestinal bed, renal bed, conjunctival and peripheral muscular
microvasculature have also been used to study the microcirculation.

The sublingual region is the most clinically accessible however, its reliability relies on
how representative it is of all vascular beds. In a pig model, where septic cholangitis was
induced by Escherichia coli into the common bile duct, OPS imaging of the intestine and
the sublingual region correlated well in timing and specific observable microcirculation
changes [77]. A prospective study of patients with sepsis after formation of an intestinal
stoma correlated OPS images from within the stoma with sublingual images [78]. This
study found no relationship between the two regions on postoperative day 1, but the
relationship normalised by day 3. MFI in the stoma of the sepsis group was significantly
lower than healthy controls and the non-septic new stoma group. Sublingual region
MFI at day 1 correlated well with macrohaemodynamic measures such as sequential
organ failure assessment (SOFA) and length of stay, this relationship was not significantly
related on day 3.

However, another clinical observational study of postoperative ostomy patients before
and after fluid challenge found dissociation of the intestinal and sublingual microvascular
beds [79]. In response to a fluid challenge on the first postoperative day, the sublingual
but not the intestinal microcirculation showed increased RBC velocity. This study did not
perform follow up imaging to see if this dissociation resolved or persisted. A study of
patients undergoing gastrointestinal surgery were assessed by SDF imaging of their bowel
and sublingual region intraoperatively. Studying the sublingual region allowed for more
stable image acquisition, less pixel loss and faster image acquisition [80]. There was good
correlation of MFI, PVD and TVD between sublingual and gastrointestinal microcirculation.

3.2. Near Infrared Spectroscopy and the Microcirculation

Near infrared spectroscopy (NIRS) is a non-invasive tool that measures microvascular
reactivity by oxygenation in muscle, commonly the deltoid or thenar eminence. Studies on
patients with sepsis have associated low thenar eminence saturations with poor outcome
in sepsis. Using a vascular occlusion test in the forearm, microcirculation reactivity can
be assessed by analysis of tissue saturations changes during an ischaemic challenge. This
illustrates oxygen extraction by tissues and reactivity of the microvascular bed. A meta-
analysis of static and dynamic NIRS and mortality in sepsis found that septic patients had
lower tissue saturations, decreased reperfusion slope and lower reperfusion hyperaemic
maximum tissue saturation. These results were also associated with higher mortality in
septic patients [81]. A prospective study of patients in septic shock found an association
between septic shock and lower initial tissue saturations, impaired occlusion slope and
recovery slope, implying microcirculation dysfunction. SOFA score was also associated
with recovery slope in the septic shock cohort with AUC 0.81, meaning NIRS could be an
interesting non-invasive prognostic monitor in the future [82]. Moreover, other studies ICU
found microcirculation failure measured by NIRS predicted mortality [83].
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4. Clinical Applications of Microcirculation Monitoring

Systemic inflammation causes specific changes in the appearance of the sublingual mi-
crocirculation. Cellular hypoxia resulting from loss of coherence between the macro and the
microcirculation is due to specific changes in the distribution of flow in the microcirculatory
vessels [84]. Cellular hypoxia is a result of microcirculation failure and not the cells altering
the flow distribution in response to hypoxia [85,86]. These changes have been characterised
as being of four types; heterogeneous, haemodilution, constriction/tamponade and oedema
formation [87] (Figure 2). Septic patients’ capillaries can be blocked with microthrombi,
next to perfused vessels. This leads to differential perfusion of cells in tissue and increased
hypoxic metabolism. Haemodilution increases the distance between oxygen rich RBCs in
the capillary and the respiring cells in the tissue, this increased diffusion distance is similar
to the mechanism of cellular hypoxia following interstitial oedema formation. Finally, sys-
temic variables such as increased vascular resistance or increased venous back pressure can
cause tamponade and flow restriction, leading to sluggish flow or complete stagnation [84].
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Figure 2. Observable microcirculation changes in the sublingual region. 1. Heterogenous flow;
microthrombi in vessels next to regions of hyperdynamic flow, resulting in heterogeneous oxygen
delivery; 2. Haemodilution; adequate microvascular density but low haematocrit results in low
oxygen delivery; 3. Tamponade; increased venous back pressure leading to stagnation and sluggish
flow; 4. Oedema; increased distance between vessels increases oxygen diffusion distance [87].

4.1. Haemorrhage and Trauma

Patients with traumatic haemorrhage experience microcirculation effects, including
reduced MFI and PPV, that is greater in patients with higher sequential organ failure as-
sessment (SOFA) score and lasts for at least 72 h [88]. A prospective observational study of
patients with traumatic haemorrhagic shock found that those with multiple organ dysfunc-
tion (MOD) had lower MFI and PVD at day 0 but similar cardiac index to patients without
MOD [89]. This study showed that the phenomenon of haemodynamic incoherence is
preserved in different forms of shock and supported microcirculation monitoring in trauma
as a treatment target and prognostic indicator. As part of this study, safety and feasibility
of performing sublingual microscopy in trauma patients was also assessed. The authors
concluded that emergency department monitoring of sublingual microcirculation is safe
and appropriate given the valuable prognostic information available [90]. SDF monitoring
did not interrupt clinical management and it was possible to acquire high quality images.
Another observational study of 17 trauma patients monitored syndecan-1 and thrombomod-
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ulin to assess endothelial damage and correlate it to microcirculation dysfunction. They
found that, compared to healthy controls, patients had increased syndecan-1 associated
with worse MFI, TVD, PVD, PPV and heterogeneity index as well as higher thrombomod-
ulin associated with worse PPV and MFI [91]. The association between endothelial damage
and microcirculation failure was conserved over the 50 h post-injury study period.

4.2. Cardiac Component

The microcirculation is also altered in patients with cardiogenic shock. Patients with
cardiac failure or cardiogenic shock have lower perfused small vessel density and lower
PPV than controls [92]. In a pig model of ventricular fibrillation and precordial compres-
sion, the animals in whom the microcirculation improved with compressions had a greater
proportion of return of circulation [93]. This is conserved in humans also. A sub-study
of the culprit lesion-only percutaneous coronary intervention versus multivessel percu-
taneous coronary intervention in cardiogenic shock (CULPRIT-SHOCK) trial found that
normotensive patients with microcirculation failure were at increased risk of 30-day all-
cause mortality than normotensive patients with preserved proportion perfused capillaries
and perfused capillary density [94]. A randomised study of intra-aortic balloon pump
therapy for cardiogenic shock complicating acute myocardial infarction published a sub-
study of glycocalyx markers over the first 48 h post-percutaneous coronary intervention
(PCI). This sub-study of 184 patients found that survivors at day 30 had lower levels of
syndecan-1 and a trend towards lower levels of heparan sulphate [95]. Univariate logistic
regression and multivariable adjustment found syndecan-1 to be an independent predictor
of mortality. Thirty-three patients with cardiogenic shock on veno-arterial extracorporeal
membrane oxygenation (VA-ECMO) were recruited to an observational study of the micro-
circulation over the course of ECMO. The 19 patients that survived demonstrated higher
small vessel density, perfused small vessel density and MFI, than non-survivors [96]. This
study also identified a novel biomarker that correlated with microcirculation variables as
well as 30-day hospital mortality in a multivariate logistic regression model. Another study
of ECMO and microcirculation found that the sublingual microcirculation could be used as
a useful predictor of those patients that will successfully wean from ECMO within 48 h.
Those patients who maintained their TVD and PVD during a reduction of ECMO flow by
50% were more likely to wean successfully from ECMO support [97]. The results of these
studies demonstrate the importance of clinical monitoring of sublingual microcirculation
in various types of shock in ICU.

One area that has shown an association between the glycocalyx and the microcircu-
lation is patients undergoing cardiopulmonary bypass (CPB) [98,99]. Studies in this field
have shown associations between glycocalyx marker serum concentrations and visualised
microvascular changes during CPB. The authors postulate that intraoperative glycocalyx
damage with CPB plays a role in microcirculation perfusion dysfunction in the following
postoperative days [99]. This is supported by other studies associating CPB and micro-
circulation changes with plasma markers of glycocalyx damage. Measuring glycocalyx
degradation marker serum concentrations, together with sublingual PBR, during CPB with
heparin coated or phosphorylcholine coated bypass circuits found a correlation between
phosphorylcholine circuits and microvascular changes intraoperatively. This study showed
the close association between the glycocalyx damage and the microcirculation [98]. An-
other study showed that endothelial damage markers persist in blood up to 72 h following
CPB [100]. It is possible that there is a spatiotemporal disconnect when attempting to repli-
cate similar studies in ICU and patients with sepsis. The timing of insult and appearance
of measurable markers of glycocalyx damage are not so discreet as a single insult such as
CPB. This study used syndecan-1, heparan sulfate and hyaluronan to measure endothelial
response to CPB. Syndecan-1 has been shown to correlate closely with in vivo PBR and was
also in close agreement with glycocalyx thickness measured by atomic force microscopy
(AFM), a technique that closely measures nano-mechanics of the glycocalyx [24,53].



Biomedicines 2022, 10, 3150 9 of 20

4.3. Sepsis and Septic Shock

The glycocalyx is degraded in sepsis, as circulating inflammatory mediators cleave
hyaluronic acid and heparan sulfate through oxidation reactions with ROS [10]. Cell
culture experiments have shown that following enzymatic degradation, full recovery of
the glycocalyx occurs over 72 h [101,102]. These experiments were carried out in vitro
and not under septic conditions. Thus, in reality, recovery could potentially take even
longer for the glycocalyx after an initial but persisting insult. This time delay could explain
the difference between macro- and microcirculation recovery time. One animal model
study found that following a single bolus of enzymatic degradation with hyalurodinase,
heparinase or tissue necrosis factor-α (TNF-α) it took 7 days for mouse cremaster muscles
to regenerate meaningful endothelial architecture [103].

Raised Ang-2, a marker of increased glycocalyx permeability, correlates with microvas-
cular injury demonstrated by sublingual PBR measurements in ICU patients [56]. The
MYSTIC study showed higher sublingual PBR in the 40 septic patients compared to controls
as well as higher Ang-2 serum concentrations [28]. Developing their cell culture model,
they showed that the glycocalyx damage in vitro from sepsis patients sera correlated well
with sublingual PBR values. A prospective cohort study of 66 patients found a statistically
significant increase in median Ang-2 levels between patients with sepsis vs. those with
septic shock (19 ng/mL vs. 11 ng/mL, p = 0.01) [104]. Ang-2 correlated with illness severity
scores, IL-6, lactate and significantly correlated with in hospital mortality. A prospective
study of 28 patients found that increased PBR was correlated inversely with TVD and PVD,
demonstrating a link between glycocalyx stiffness and microcirculation impairment in
sepsis [105].

Impairment of the sublingual microcirculation of sepsis and septic shock patients has
been linked to MODS, severity of sepsis and mortality [3,67]. De Backer et al. reported that
the microcirculation is better in the later phases of sepsis than earlier [3]. Importantly, if
mean arterial pressure (MAP) is below 60 mmHg then the microcirculation is disrupted in
almost all patients [106,107]. However, another report showed that if the microcirculation
is measured early in the course of sepsis it is more likely to respond to treatment than those
who have impaired microcirculation 48 h after admission [98]. Even once the microcircu-
lation has been corrected, it remains disrupted in about 50% of patients who are then at
an increased risk of death. Those patients whose microcirculation responds to treatment
and recovers within 48 h have associated increased survival [108]. Dubin et al. showed
that when the MAP is augmented with noradrenaline, there were no changes in sublingual
microcirculation (MFI, PPV) for MAP value of 65, 75 or 85 mmHg. In fact, they showed a
trend towards an inverse relationship between the sublingual perfused capillary density
and MAP [109]. The MAP target of 65 mmHg in septic shock has previously been found
to be sufficient, although its relationship to the adequacy of the microcirculation deserves
more attention in the future [110].

5. Haemodynamic Coherence and Personalised Treatment in ICU

Restoration of macro-haemodynamic stability does not reliably re-establish the mi-
crocirculation [111]. This has been dubbed haemodynamic coherence and ICU research
and resuscitation should aim to understand and improve it [87,112]. A physiological state
where despite the gross improvement of macrohaemodynamic markers such as blood
pressure and heart rate, the microcirculation remains impaired [87]. ICU resuscitation relies
on appropriate restoration of cellular respiration. Haemodynamic coherence represents the
potential downfall of many large trials of heterogeneous groups of ICU patients [113].

Reclassification of acute respiratory distress syndrome (ARDS) biological and clinical
phenotypes has increased prognostic and predictive enrichment by defining homogenous
groups within this particular disease [114]. By recognising separate cohorts within large
heterogeneous groups, treatments can be targeted at those that will benefit most. Those
at increased risk of a particular adverse outcome may be more likely to benefit from a
certain intervention, increasing a study’s power or a biologically homogenous group may



Biomedicines 2022, 10, 3150 10 of 20

be more likely to benefit from an intervention targeting a specific biological mechanism. For
example, the PaO2:FiO2 ratio <150 mmHg cut-off was used in ACURASYS and PROSEVA
to show benefit of muscle blockade and proning in the most severe cases of ARDS [115,116].
Similarly, by recognising fluid responders and non-responders, treatments for sepsis can be
studied more effectively.

Recognising the changes in the microcirculation in different pathological states could
help to identify homogenous patient cohorts [67,117,118]. Studies of the microcirculation
response to RBC transfusion have shown a heterogeneous response of groups of patients
clinically diagnosed as sepsis or septic shock [119]. These results indicate the existence of
subsets of microcirculation changes that may respond differently to therapies. Previous
studies have shown that despite individual haemodynamic incoherence, sepsis induced
dysfunction of the microcirculation can recover following resuscitation of arterial pressure.

6. Prognostic Value of Glycocalyx Damage in Critical Illness

The connection between glycocalyx degradation, microvascular parameters and sys-
temic clinical markers has been difficult to identify. In non-septic ICU patients only a weak
correlation could be found between syndecan-1 and the glycocalyx thickness measured
in the sublingual region [120]. Rovas et al. found that PBR, MFI and PPV correlated with
measures of critical illness including mean arterial pressure, CRP, IL-6 and procalcitonin
(PCT) [121]. They also found an association with systemic inflammatory response (SIRS)
and SOFA score. The interest of this study was to attempt to draw together disparate
prognostic indicators and to associate bedside microcirculation assessment with glycocalyx
function. However, another study showed that PBR and syndecan-1 serum concentrations
did not correlate with microcirculation variables. The NOSTRADAMUS study attempted to
link the macro and microcirculation by suggesting the Microvascular Health Score (MVHS).
The MVHS depends on the correlation Rovas et al. found between flow dependent capillary
density and SOFA [76]. This study used RBC velocity measurements together with PBR
thickness to improve discrimination between patients with sepsis and healthy controls [76].
One of the largest biomarker trials conducted was the Protocolized Care for Early Septic
Shock (ProCESS) randomised controlled multicentre trial [122]. An analysis of 1341 of these
patients showed that elevated markers of endothelial permeability in blood, angiopoietin-2
(Ang-2), vascular endothelial growth factor-1 and -2 (VEGF) and soluble fms-like tyrosine
kinase (sFLT-1) were associated with increased 60-day in hospital mortality at baseline
and at timepoints 6 and 24 h [23]. Though no difference was found between the treatment
groups of the trial, there was a significant difference in mortality according to baseline
serum concentrations of endothelial markers. A systematic review of 17 studies investigat-
ing the relationship between markers of glycocalyx degradation and outcomes in sepsis
showed that concentrations of syndecan-1 and endocan were higher in patients who died,
developed MODS or experienced renal failure [123]. In a prospective study of 21 sepsis
patients PBR correlated positively with plasma concentrations of Ang-2 (R = 0.52, p = 0.03)
but not with APACHE, SOFA, lactate or syndecan-1 [124]. Increased endothelial permeabil-
ity can be clinically detected as microalbuminuria-urinary creatinine ratio (MACR), as a
result of glomerular inflammatory injury. MACR is an early marker of sepsis and a marker
of severity that correlates with Acute Physiological Score II (APACHE), SOFA, Simplified
Acute Physiology Score II (SAPS) [125–127].

7. Restoration of Glycocalyx Function
7.1. Fluid Therapy and the Glycocalyx

Protocolised treatment for sepsis has focused on fluid resuscitation to restore the
circulating volume [128–130]. Distributive shock in sepsis, secondary to glycocalyx damage,
leads to reduced systemic vascular resistance and hypotension. Guidelines recommend
treatment with fluid bolus, aiming to optimise the cardiac preload. Aggressive fluid
resuscitation and the use of hyper-oncotic solutions may actually damage the glycocalyx
further in disease states [131,132]. The results of large trials of fluid resuscitation techniques
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and their failure to demonstrate benefit or in some cases cause harm may stem from our
fundamental misunderstanding of the function of the endothelium [133]. Large studies
such as The FINNAKI trial with over 600 ICU patients found that vascular adhesion
protein 1 (VAP-1) decreased and IL-6 increased with increasing amounts of administered
fluid [132]. This study also found that 90-day non-survivors had higher levels of circulating
Syndecan-1 and soluble Thrombomodulin (sTM) compared to those who survived. The log
Syndecan-1, log sTM and logAng-2 were significantly associated with an increased risk for
90-day mortality [132]. Moreover, other studies conducted in patients with sepsis patients
found that for each 1 L of intravenous fluids administered there was a significant rise in
heparan sulfate, independent of age and clinical severity, suggesting increased glycocalyx
destruction [131].

Recent studies demonstrating that “restrictive” or “conservative” fluid resuscitation
strategies are safe and non-inferior to traditional protocols have challenged the idea that
more fluid is better in sepsis [134–136]. Excessive fluid resuscitation can induce and increase
endothelial glycocalyx degradation [6,137,138]. The association of excess fluid and poor
outcomes has been examined in several studies [139–142]. A study comparing prolonged
infusion to fluid bolus found no difference in plasma markers of endothelial damage in ICU
patients [143]. Atrial natriuretic peptide (ANP) causes degradation of the glycocalyx and is
released in response to volume loading with fluid in healthy patients preoperatively. Raised
ANP concentrations were associated with increased serum concentrations of hyaluronan
and syndecan-1 showing glycocalyx shedding in one observational clinical study [144].
These markers of glycocalyx damage were found only in those who had been volume
loaded but not who had received normovolemic fluid replacement, which should encourage
further study and suggests a damaging effect of fluid resuscitation. More work to correlate
the glycocalyx status of patients with bedside diagnostics and parameters is warranted.

One study, using both a caecal ligation and puncture (CLP) and LPS-induced pul-
monary inflammation mouse model showed that the pulmonary glycocalyx deteriorates
8 h following sepsis induction. Interestingly this study also found a protective effect of
6% hydroxyethylstarch (HES) that reduced plasma concentrations of glycocalyx damage
and conserved glycocalyx thickness to reduce vascular permeability [145]. HES has had
its European licence revoked, because of studies demonstrating a possible link between
HES and acute renal injury [146]. The Starling model and its explanation of colloid osmotic
forces leads us to the conclusion that supplemental albumin should improve intravascular
volume and recruit interstitial fluid. The most recent proposed mechanism suggests that
the sub-glycocalyx, being protected by the negative charge of the glycocalyx, prevents
transcapillary flow, rather than the luminal colloid osmotic pressure. However, this does
not appear to be strictly true colloids do tend to improve hypovolemia in spite of the revised
Starling model [147]. In animal studies, fluid resuscitation with albumin reduced glycocalyx
permeability and leucocyte adhesion, similar to fresh frozen plasma (FFP), also lowering
syndecan-1 levels [148]. Glycocalyx effects have been recognised in a recent review to
be maximised by resuscitation with plasma and albumin are superior to crystalloid and
colloid [149]. A randomized, multi-centre study of abdominal surgery patients receiving
crystalloid, 20% albumin or 20% albumin and dexamethasone intra-operatively found no
difference in syndecan-1 levels post-operatively [150]. Albumin acts on the glycocalyx
primarily through sphingosine-1-phosphate (S1P) and the potential role of this molecule
in resuscitation on the glycocalyx has also been explored recently [151]. In vitro shock
models exposed to S1P, albumin + S1P or carrier protein + S1P found endothelial damage
repaired best by the carrier protein + S1P, which raises the possibility of new treatments for
endotheliopathy for future research [152].

7.2. Corticosteroids and the Glycocalyx

Dexamethasone became important to treat COVID-19 in ICU patients during the pan-
demic [153]. The effect of dexamethasone on the endothelium has been explored in other
studies, with effects possibly mediated through inhibition of nitric oxide synthase [154].
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This animal model of acute lung injury secondary to endotoxin injection showed a possible
mechanistic link between dexamethasone and one of the main contributors to glycocalyx
damage. Experimental studies support the possible endothelial protective effects of hy-
drocortisone, reducing vascular leak following injury due to systemic inflammation or
injury [155–157]. A guinea-pig heart model of ischaemia-reperfusion injury found that the
benefit of hydrocortisone relies directly on its effect on the glycocalyx, as this mechanism
was both visualised under electron microscopy and measured by syndecan-1, heparan
sulfate and hyaluronan shedding, rather than systemic anti-inflammatory effects [156].

The effect of dexamethasone in repairing cerebral endothelium after haematoma and
protecting the vascular endothelium from statin induced damaged also provides evidence
for this anti-inflammatory glucocorticoid acting on the glycocalyx [158,159]. In an observa-
tional study of patients with COVID -19, one group found that those 63% of patients that
received dexamethasone had improvements in oxygenation and exhibited lower levels of
Ang-2, intercellular adhesion molecule-1 (ICAM-1) and soluble Tie-2 receptor. This study
suggests that disease severity is related to endothelial damage and also that this can be
modified with dexamethasone administration [160]. Sepsis guidelines highlighted a num-
ber of studies, including systematic reviews on randomised controlled trials underlining
conflicting evidence regarding the use of hydrocortisone in septic shock [128]. However,
they did emphasise the potential benefit of using hydrocortisone in septic shock patients
with ongoing high vasopressor requirement.

7.3. Anticoagulants and the Glycocalyx

Anticoagulants have also been examined as treatments targeting the endothelium.
Sepsis reduces the circulating levels of antithrombin-III (AT-III), which coincides with
glycocalyx injury and derangement of the coagulation cascade leading to disseminated
intravascular coagulation (DIC) [161]. Supplemental AT-III has been studied as a treatment
for sepsis and DIC, though evidence is sparse [162]. A rat model of sepsis found that AT-III
reduced leucocyte adhesion and rolling and plasma syndecan-1 concentrations. AT-III also
maintained serum albumin concentrations and prevented hyperlactatemia, preserving mi-
crovascular function observed by SDF intravital microscopy [163]. Unfractionated heparin
is a similar molecule to the glycocalyx component heparan sulfate, through which AT-III
has its anticoagulant effect [164]. Heparin coating on CPB circuits to prevent endothelial
damage and microvascular dysfunction has a protective effect [100]. The anticoagulant
heparin has been used to antagonise cleavage of endothelial components and restore the
integrity of the glycocalyx barrier [165].

8. Future Directions

The concept of personalised medicine arises from clinical enrichment, referring to
patient subgroup selection of those who are more likely to respond to particular therapy
as opposed to an unselected population, was mainly developed in the field of oncology.
Its success in that field led to publication of Food and Drug Administration (FDA) guide-
lines and a statement of intent from the Obama Whitehouse to emphasize, prioritise and
pursue enrichment strategies to develop novel therapies for diseases [166,167]. Prognostic
enrichment is important in the design of clinical trials, identifying those patients more
likely to encounter an outcome or complication, thus increasing the power of a study and
reducing the required sample size [168]. Predictive enrichment requires exact knowledge
of a biological mechanism to select patients that will respond to an intervention.

Prognostic enrichment has been used in ICU research to define acute respiratory
distress syndrome phenotypes, which enhanced research uncovering therapeutic strate-
gies. However, ICU syndromes such as sepsis lack a specific biological target, precluding
predictive enrichment.

Microvascular imaging of glycocalyx behaviour and response to treatment could be
the biological target needed to stratify patients into clinically relevant phenotypic groups.
Using bedside diagnostics and imaging techniques together with machine learning and
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latent class analysis, better trials could be developed to identify effective therapies for
patient subclasses.

Further tests on drugs like Sulodexide, a combination of heparin-sulfate like compound
shown to regenerate the glycocalyx in a mouse model of sepsis, that also restores glycocalyx
volume in diabetics, should be studied further in critical care [169]. FFP has shown benefit
in animal models as well as models of haemorrhagic shock but there are no high quality
studies of its effects restoring the glycocalyx in critical illness [170,171].

The glycocalyx spans all organs and therefore is exposed to variable rates of flow, as
well having different thresholds for onset of glycocalyx damage leading to spatiotemporal
uncoupling of insult and reaction. This could explain the differences in microcirculation
measurements between organs seen in studies relating intestinal SDF microcirculation
measurement to sublingual imaging [79]. Several studies noted the potential uncoupling
of glycocalyx damage and the microcirculation variables. It is possible that the effect of
glycocalyx damage undergoes a certain lag or that the recovery of the glycocalyx while
bathed in septic plasma takes longer than in vitro. There could be immediate precipitation
of glycocalyx change with delayed changes in perfusion, followed by prolonged repair
of the glycocalyx. In studies of patients on CPB the microcirculation is affected almost
immediately at the point of initiation with glycocalyx degradation markers not returning to
baseline levels for 72 h [98,99]. We do not know at what point in sepsis the microcirculation
becomes impaired, or similarly, how long it takes to improve. Further delineation of
the relationship between the functional microcirculation and the detectable markers of
glycocalyx damage could elucidate a novel therapeutic target in this syndrome.

9. Conclusions

Damage to the glycocalyx is present in a range of critical illness syndromes in the ICU
and can be recognised in the lab and at the bedside. New technologies mean that real time
monitoring of the glycocalyx could become important to patient treatment in the future.
The development of new methods to examine the microcirculation at the bedside offers us
the opportunity to understand the etiopathogenesis of ICU syndromes, advance patient
monitoring and to personalise care in the ICU.

The development of new methods to examine the microcirculation at the bedside
offers us the opportunity to advance patient monitoring and to personalise care in the ICU.
Moving towards personalised medicine requires individualising treatments and enhancing
our understanding of etiopathogenesis of ICU syndromes will improve patient outcomes.
Phenotyping subsets of patients according to the reaction of their physiology to infection,
inflammation, trauma or surgery will allow better clinical decision making. Large trials of
therapeutic interventions have been affected by heterogeneity in ICU trials, combining the
information from bedside imaging with biological tests will improve prognostication and
therapy. Future research will benefit from combining systemic tests of endothelial integrity
with bedside clinical evaluation of the microcirculation.
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