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Abstract: Currently, sensitive and specific methods for the detection and prognosis of early stage PCa
are lacking. To establish the diagnosis and further identify an appropriate treatment strategy, prostate
specific antigen (PSA) blood test followed by tissue biopsy have to be performed. The combination of
tests is justified by the lack of a highly sensitive, specific, and safe single test. Tissue biopsy is specific
but invasive and may have severe side effects, and therefore is inappropriate for screening of the
disease. At the same time, the PSA blood test, which is conventionally used for PCa screening, has
low specificity and may be elevated in the case of noncancerous prostate tumors and inflammatory
conditions, including benign prostatic hyperplasia and prostatitis. Thus, diverse techniques of liquid
biopsy have been investigated to supplement or replace the existing tests of prostate cancer early
diagnosis and prognostics. Here, we provide a review on the advances in diagnosis and prognostics of
non-metastatic prostate cancer by means of various biomarkers extracted via liquid biopsy, including
circulating tumor cells, exosomal miRNAs, and circulating DNAs.
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1. Introduction

In clinical practice, prostate cancer (PCa) is currently diagnosed by performing
prostate-specific antigen (PSA) blood tests and if the PSA serum levels are increased,
followed by tissue biopsy and pathological inspection. However, the PSA serum levels are
a relatively weak indicator of PCa due to its only moderate specificity [1]. Thus, a value of
a PSA serum level at >4 ng/mL, recommended by most clinical guidelines as suspicious
for PCa and therefore requiring the subsequent performance of a tissue biopsy, is often
recognized in patients with non-cancerous lesions of the prostate including benign prostatic
hyperplasia (BPH) [2] and prostatitis [3]. Furthermore, the poor effectiveness of the PSA
serum level monitoring has been considered one of the most prominent causes of diagnosis
of PCa at an advanced stage [4]. It is also worth noting that, in most countries, routine PSA
screening is recommended for men in their 55-69 years only to avoid overdiagnosis in other
age categories [5], which increases the risk of missing PCa in men under 55 years [6]. Thus,
to increase the probability for diagnosing PCa at its early form, more specific and sensitive
alternatives to the PSA blood test are required. The 12-core tissue biopsy [7] is the gold
standard for PCa diagnosis; however, even though the test has a specificity close to 99%,
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its sensitivity is relatively low [8] and requires ultrasound or magnetic resonance imaging
guidance for better precision, which significantly increase financial cost of the procedure [9].
Approximately only 40-50% of patients with elevated PSA serum level are tested positive
for PCa by tissue biopsy [10]. Moreover, the outcome of the procedure is highly dependent
on the experience of the operator, which compromises its objective diagnostic value. From
the patient’s perspective, tissue biopsy is a highly invasive, painful procedure, having
possible side effects such as local hematomas, abscesses, and even erectile dysfunction [11].

The most frequent initial tactics for managing localized prostate cancer are active
surveillance and watchful waiting [12]. These tactics imply monitoring of PCa after its
diagnosis by performing periodic PSA tests and tissue biopsies. In the case of cancer
progression, the strategy changes to prostatectomy. However, the tactics of active surveil-
lance and watchful waiting are not always appropriate due to genetic heterogeneity of
the disease, and variety of its forms from indolent localized to rapidly developing [13].
Thus, to increase specificity and sensitivity of PCa detection at an early stage, to provide
more accurate risk stratification and prognosis of the disease, timely identify the rapidly
progressing cases, and to therefore develop more efficient treatment approaches, liquid
biopsy via isolation and analysis of circulating biomarkers has been proposed [14].

To date, liquid biopsy has been considered one of the most promising techniques
that could potentially replace or substitute to the existing PCa diagnostic and prognostic
tests. Liquid biopsy techniques may be stratified in terms of the biomarker of interest,
which are: CTCs, extracellular vesicles (EVs) or exosomes, proteins, tumor-educated
platelets (TEPs), and circulating nucleic acids [15]. Thus, liquid biopsy has been termed as
sampling of biological fluids containing any of these biomarkers and has been investigated
as a minimally or non-invasive technique for cancer diagnostics and prognostics. As a
potential technique for diagnosis and prognosis of malignant tumors, liquid biopsy was
first described in literature more than a hundred years ago [16]. However, the technique
has not been broadly investigated until recently due to a lack of approaches that would
allow efficient isolation, identification, and analysis of CTCs. In the past two decades, the
development of nano- and micro-technologies led to significant evolution of liquid biopsy
via isolation of CTCs from diverse biological fluids, and resulted in discovery of novel
liquid biopsy methodologies based on isolation of EVs and nucleic acids [17] (Figure 1).
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Figure 1. Approaches for liquid biopsy of PCa via isolation and identification of circulating biomarkers.
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The approaches may be stratified into three primary groups depending on the type of isolated
biomarkers, which are: circulating tumor DNA (ctDNA), circulating tumor cells, and exosomal
miRNAs. The ctDNAs are the fragments of DNA, released into the bloodstream as a result of tumor
cell death or exocytosis; tumor cells are the cells that shed into the biological fluids from primary or
secondary tumor sites; exosomes are the microvesicles containing diverse biologically active agents
that have been considered biomarkers, including miRNAs presenting in EVs, which release from
tumor cells into the biological fluids as a result of cellular metabolism. In PCa, these biomarkers can
be mainly found into three biological fluids such as blood, urine, and semen.

CTCs are the cells that are shed into diverse biological fluids of a human body from
primary or secondary tumor sites, and therefore may be detected in cancer patients while
undetectable in healthy individuals [18]. The CTCs are vastly heterogeneous, first of all
in terms of antigen profile and gene mutations [19]. Cell-free ctDNA are the fragments
of DNA, which release into the body fluids due to lysis or apoptosis of tumor cells, or
exocytosis [20,21]. Exosomes are the extracellular vesicles which are formed as a result
of cell membrane blebbing and are released from tumor cells during their functioning.
These vesicles are bearing various agents, including miRNAs, which may be recognized
as tumor biomarkers [22]. The listed biomarkers are identified in such biological fluids of
PCa patients as blood, urine, and semen [23]. The aim of this systematic review was to
compile the existing data within the research field of liquid biopsy as the technique for early
diagnosis and prognosis of PCa, to analyze the collected data, and to provide potential
directions for investigations which would allow to implement the technique in clinic.

2. Search Strategy

The current review was prepared by selecting research articles, written in English,
from two data bases: PubMed and Web of Science. To identify original articles which report
on the application of diverse liquid biopsies for diagnosis and prognostics of localized
PCa, article search was performed by using such key terms or their combinations as:

v v

“localized prostate cancer”, “non-metastatic prostate cancer”, “circulating tumor cells” or
“CTCs” or “circulating cancer cells”, “exosomes” or “extracellular vesicles”, “circulating
miRNA(s)”, “circulating DNA(s)”, “circulating RNA(s)”, “liquid biopsy”. Further, a filter
for the publication dates from 1 January 2010 to 30 September 2022 was applied. Books,
review articles, letters to editor, case studies, studies of PCa animal models or cell lines,
and research articles that did not contain data on diagnostic and prognostic potential of
liquid biopsy biomarkers in management of localized PCa were excluded from the analysis.
Notably, from the research articles chosen for the current review, the data for both localized
(T1 and T2 clinical stages) and locally advanced (T3, T4 clinical stages) forms of PCa

was included.

3. Cell-Free DNA (cfDNA)

For the first time, cfDNA was isolated from human blood in 1948 [24]. DNA originating
from the tumor can provide information about the genomic make-up, such as point-
mutations and chromosomal aberrations, but also epigenetic changes that can be used
as potential biomarkers for the diagnosis and monitoring of cancer development [25,26]
(Figure 2). Among the entire amount of cfDNA, a small content called circulating tumor
DNA (ctDNA) corresponds to a specific cancer-related DNA bearing the most significant
diagnostic and prognostic information [27]. The average length of the ctDNA fragments is
approximately 167 and 320 base pairs [21]. The shorter fragments coming from apoptotic
degradation of the cellular DNA and the longer fragments as a result of necrosis in the
tumor [28]. ctDNA is one of the components of extracellular DNA originating from
tumor cells, and its total fraction is mainly dependent on the tumor stage [29]. Although
rare, longer ctDNA fragments of >1 kb have recently been investigated as well for the
identification of methylation profiles in hepatocellular carcinoma patients [30].
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Figure 2. ctDNA in PCa. ctDNA, originating from cancer cells, may be detected in biological fluids
of patients with non-metastatic PCa, and can be used as a biomarker of the disease.

One of the main features of ctDNA is the ability to contain the same mutations that can
be found in tumor tissue [31], including AR mutation, BRCA2 mutation, TMPRSS2:ERG
fusion, PTEN loss or mutation, TP53 inactivation, and MYC amplification [32]. Another
significant issue of ctDNAs, as diagnostic and prognostic biomarkers in PCa, is that the
molecular landscape of the tumor, which is significantly variable depending on its stage [13].
It was demonstrated that there is a direct correlation between the stage of the disease, the
amount of circulating cf(DNA) in biological fluids, and its variability. In the case of
the localized form of PCa, the total amount of cell-free DNA in blood plasma may be
relatively small [33] and is often insufficient to be determined even by modern, highly
sensitive techniques. Previously, detection and analysis of mutations in small amounts of
ctDNA, presenting as one of the fractions of extracellular DNA, posed a severe technical
challenge [34]. However, in the last ten years, rising advancements in the techniques of
ctDNA detection and analysis have led to broad investigation of ctDNA, predominantly
from blood plasma, as potential diagnostic and prognostic biomarkers [21]. At the same
time, although blood has been most widely investigated as the matrix for liquid biopsy,
alternative biological fluids have recently gained significant attention [35,36]. Particularly
in the case of urine, PCa biomarkers may be detected earlier, compared to blood [37]. In
urine, ctDNA are exposed to less aggressive effects of damaging agents than those found in
blood [38]. In addition, semen is the other perspective source of liquid biopsy biomarkers,
which has not been studied thoroughly so far [39].

Gradual development of genetic heterogeneity is the distinctive feature of PCa evo-
lution [40]. It is followed by the dominance of subclones, which promote metastasis and
drug resistance. In the case of PCa, heterogeneity was discovered by pathologists in 1970s:
it was found that diverse subtypes of PCa differ in nuclear morphology, cell proliferation,
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levels of immune cell infiltration, and several other features [41]. In addition to morpholog-
ical heterogeneity, heterogeneous copy number variations were reported for the primary
tumor [42]. Similarly, somatic single-nucleotide polymorphism was demonstrated among
both localized and metastatic tumors [43]. Tracking heterogeneity in the mutational land-
scape of the tumor made it possible to identify the evolution of clones within individual PCa
patients [44]. In its turn, ctDNA may be an object for identifying clinically relevant genomic
alterations and tumor subclones. Thus, in the study by Chen et al. [45], somatic tissue
alterations were identified in ctDNA derived from the blood plasma of PCa patients with
localized prostate cancer, in 57% of cases, including such alterations as nonsynonymous
variants in FOXA1, PTEN, MED12, and ATM.

It is known that cancer is accompanied by initial hypomethylation of DNA and further
hypermethylation in the promoter regions of tumor suppressor genes, which leads to
inactivation of transcription and translation of the corresponding protein complexes [46].
DNA hypermethylation is one of the earliest and most common aberrations in PCa [47]. In
the study by Brikun et al. [48], a panel of 32 epigenetic biomarkers of PCa was developed.
Using methylation-sensitive qPCR, biopsy samples of the prostate glands of 104 patients
were analyzed. The prostate tissues were investigated by using 24 well-known DNA
methylation biomarkers. According to the results, significant difference was demonstrated
between tumor and unaffected tissue in individual patients, and between PCa patients
and the control group. In the further study by Brikun et al. [49], ctDNA was isolated from
the urine of 94 patients. The expression levels of biomarkers, previously found in tissues,
were analyzed, and compared with the data obtained from tissue biopsies. A specificity
of the proposed technique was identified at 76%, with the sensitivity at 81%. In the other
study by the same group of authors [50], a panel of DNA methylation markers suitable for
a non-invasive diagnostic test for ctDNA in urine was identified. The urine was collected
after a digital rectal examination (DRE) [51] and/or after a first morning void (FV). A
specificity at 71% for both DRE and FV, and a sensitivity at 89% for DRE and at 94% for FV,
was reported. In the study by O'Reilly et al. [52], the epiCaPture multi-biomarker panel was
tested. Numerical alterations in DNA hypermethylation at the 5" end of 6 genes (GSTP1,
SFRP2, IGFBP3, IGFBP7, and PTGS2) were the targets for the panel. Previously, all these
targets were identified as potential PCa biomarkers [53]. More than 450 urine samples of
patients with elevated PSA were analyzed. According to the results, a higher degree of
DNA methylation correlated with an increased risk of developing an aggressive form of
PCa. It was also demonstrated that the specificity of the epiCaPture test was superior to
the PSA screening. At the same time, as in was demonstrated by Bjerre et al., in the case of
blood plasma, hypermethylation of ctDNA for DOCK2, HAPLN3, and FBXO30 genes, was
not detected in neither of the participants: patients with localized PCa, BPH patients, or
healthy volunteers [54].

Despite the existing positive data that determine ctDNA from blood plasma as a
perspective biomarker for PCa early diagnosis and prognosis [55], different studies report
on difficulties in ctDNA extraction from blood plasma of PCa patients predominantly due
to its low concentration. Thus, in the study by Hennigan et al., ctDNA could not have
been detected using ultra-low-pass whole-genome sequencing and targeted resequencing
in blood plasma of patients with localized PCa, even in the case of the clinically high-risk
patients. It has also been proven that concentration of ctDNA in blood plasma in patients
with localized PCa may be significantly increased due to inflammation or traumatization of
prostate, including traumatization due to tissue biopsy [56]. At the same time, even though
it may not be possible to differentiate between PCa and healthy status based on cfDNA
concentration in blood plasma, the cfDNA fragment size may be a reliable biomarker [57].

Recently, promising data has been obtained in the studies on isolation of cfDNA from
the seminal fluid, which, in comparison to blood, contains much higher concentrations of
cfDNA [58]. If comparing concentrations of cfDNA in seminal fluid of healthy volunteers
or patients with BPH and patients with localized PCa, approximately 10-fold difference
was identified [58,59]. However, despite great potential of seminal fluid as the source of
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PCa biomarker, limited number of investigations have been performed on identifying the
efficacy of seminal cfDNA as a biomarker of localized PCa.

In conclusion, the use of circulating extracellular and tumor DNA has great potential
as a biomarker for early detection and stratification of PCa. Nevertheless, effectiveness and
feasibility of using cfDNA as a biomarker of PCa has not yet been determined. Currently,
various techniques have been used to investigate cfDNA, including ctDNA, with different,
sometimes completely opposite, results.

4. Exosomal miRNAs

Exosomes are small EVs secreted by both normal and cancer cells. Exosomes are found
in almost all types of cells and were successfully isolated from blood, urine, semen, and
other body fluids [60]. Exosomes are released into the extracellular space via exocytosis
and may carry different contents, such as proteins and different types of RNA and DNA,
and function as intercellular messengers transmitting signaling molecules from one cell to
another [61] (Figure 3). A large body of evidence suggests a critical role of the exosomes in
tumor progression and metastasis. Another important feature of the exosomes is formation
of drug resistance by inducing a tumor-friendly microenvironment due to involvement of
the exosomes in proliferation, differentiation, and migration of fibroblasts, influence on
immune cells, and stimulation of tumor angiogenesis. In its turn, exosomal miRNAs are of
particular interest due to their ability to affect cancer progression by reducing apoptosis in
a tumor and by increasing proliferation, migration, and adhesion of cancer cells [62-64]. At
the same time, one of the main factors indicating the critical role of exosomal miRNAs in
PCa carcinogenesis is their role in the regulation of epithelial-mesenchymal transition of
PCa cells [65].

# miRNAs  / RNAs
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Figure 3. Production of exosomes in cancer cells and their impact on normal prostate cells. A
single exosome is formed due to the invagination of the early endosome into the cellular membrane.
Exosomes can carry not only miRNAs but also other nucleic acids, a broad spectrum of proteins and
lipids, and their combinations thereof. Exosomes, acting as intercellular messengers, are capable
of influencing tumor progression by stimulating the proliferation and migration of cancer cells,
enhancing cell adhesion, and inhibiting apoptosis. Additionally, exosomes play a crucial role in
formation of drug resistance. In addition, exosomes and exosomal miRNA may influence tumor
progression by modulating tumor microenvironment, metastasis, and tumor angiogenesis. Notably,
exosomal miRNAs in PCa plays a critical role in epithelial-mesenchymal transition.
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In recent years, exosomes containing miRNAs have been widely investigated as po-
tential biomarkers of various malignant tumors, due to their functional relationship with
tumor progression, including cell growth, differentiation, proliferation, angiogenesis, and
apoptosis [66-68]. Extracellular miRNAs have been isolated from various biological fluids,
such as blood, urine, saliva, breast milk, and semen [69]. They were found both inside
extracellular vesicles, such as exosomes, and in free form [70,71]. It was identified that
extracellular miRNAs influence targeted cells in the same way as intracellular miRNAs.
Notably, since exosomes consist of a lipid bilayer, they are stable in various body environ-
ments, which makes them a convenient object for being investigated as PCa liquid biopsy
biomarker. Additionally, it was demonstrated that PCa cells secrete more exosomes in
comparison with normal prostatic cells, which is another argument in favor of investigating
techniques for isolating and analyzing exosomes as a perspective approach for PCa liquid
biopsy [72].

MiRNAs are short non-coding RNA sequences from 17 to 25 nucleotides in length,
regulating gene expression at the post-transcriptional level [73]. Aberrant expression of
various specific miRNAs has been observed in various tumors, including breast [74,75],
lung [76], colorectal cancer [77], ovarian [78], and prostate cancer [79]. This feature allows
not only to distinguish tumor tissue from normal tissue but also to classify tumors according
to the tissue origin, and to perform tumor staging [80], which potentially makes miRNAs a
biomarker efficient for prognosing the development of oncological diseases [81]. Further, it
has been shown that dysregulated miRNAs contribute to tumor initiation and progression
by activating a so-called onco-miRNAs or disactivating a so-called tumor-suppressing
miRNAs. It was also revealed that one miRNA may have opposite functions, depending
on a type of cancer, which indicates the possibility of participation of the same miRNA
in different signaling pathways [82-84]. Thus, among all types of exosomes, those that
are loaded with miRNAs are considered the most promising for being introduced into
a clinical practice as biomarker for early diagnosis and prognosis of PCa. Moreover, it
was demonstrated that miRNAs presenting within exosomes have higher diagnostic and
prognostic value in comparison with the miRNA-free exosomes [85].

Various types of exosomal miRNAs, which may potentially be used as biomarkers in
diagnosing PCa at its early form, have been found in blood of patients with PCa. Thus,
Bryant et al., compared exosomal miRNAs isolated from plasma from patients with PCa
(n = 47) and healthy controls (HCs) (n = 28), indicating that both miR-107 and miR-574-3p
were upregulated in patients with PCa compared with HCs [86]. The role of miR-141 as
an onco-miRNA in PCa was further supported by a more recent study involving patients
with localized PCa (n = 20), patients with BPH (n = 20), and HCs (n = 20) [87]. The
result of this study confirmed the potential value of miR-141 as a diagnostic biomarker for
differentiating localized PCa from BPH. Additionally, in the study by Endzelins et al. [85],
free and exosomal miRNAs isolated from blood plasma were compared in 50 patients
with PCa and 22 patients with BPH. As the result, four miRNAs with diagnostic potential
were found (miR-375, miR-200c-3p+ miR-21-5p, Let-7a-5p, miR-141). At the same time,
in the study by Samsonov et al. [88], no significant differences in miR-141 blood plasma
concentration between PCa patients and HCs were identified. According to other results of
the study, miR-574-3p, miR-141-5p, and miR-21-5p were identified to be overexpressed in
exosomes of 10 PCa patients versus 10 HCs.

It was also proven that the use of a combination of two or more exosomal miRNAs
often provides more specific and precise results in PCa diagnostics. According to the study
by Foj et al. [89], it was determined that the combination of miR-21 and miR-375 extracted
from the urinary exosomes may potentially be more efficient in distinguishing patients
with localized PCa from healthy males, compared with the use of each of these miRNAs
independently. However, the results were limited by the size of the control group (n = 10)
and the localized PCa group (n = 3). Another example of miRNAs combination, with may
potentially be highly valuable in PCa diagnostics, is miR-217 and miR-23b-3p, reported by
Zhou et al. [90]. In this study, the blood plasma of patients, including those with early PCa
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and a Gleason score (GS) at <9, was analyzed for all possible types of the miRNAs. It was
demonstrated that 94 different types of miRNAs were expressed at the extent different in
PCa patients and HCs. The expression level of 60 of the miRNAs was increased in PCa
patients, including the mostly increased miR-217. At the same time, PCa patients had 34
of the miRNAs decreased compared to HCs, including the mostly decreased miR-23b-3p.
Further, it was demonstrated by in vitro and in vivo tests, that the increased expression of
miR-217 stimulated proliferation and invasion of cancer cells, while increase in the level of
miR-23b-3p suppressed it. Nevertheless, a limited group of patients and a short follow-up
period necessitates further research in this direction, and verification of the data obtained.

The usage of ratio of one miRNA to another was also proven promising in diagnostics
of localized PCa. Thus, Li et al. [91] conducted a study to elucidate the significance of
exosomal miR-125a-5p and miR-141-5p, obtained from plasma, as biomarkers for early
diagnosis of PCa. The study included 19 HCs and 31 PCa patients. It was demonstrated for
patients with PCa that the expression level of miR-141-5p was, on average, only slightly
increased, while miR-125a-5p level was significantly decreased. It was also demonstrated,
that the miR-125a-5p /miR-141-5p ratio was significantly higher in PCa patients compared
to HCs. According to the data presented, the miR-125a-5p /miR-141-5p ratio appeared to
perform better as an early PCa biomarker than either of the miRNAs taken individually.

It is worth noting that since recently, the attention for alternative sources of exosomal
miRNAs, particularly—semen, has been increasing. In the study by Barcelo et al. [92],
the expression level of exosomal miRNAs isolated from semen was analyzed to find
an appropriate biomarker for early diagnosis of PCa. The study included PCa patients
with moderately elevated PSA levels and GS from 6 to 8 points, patients with BPH and
HCs. A total amount of 400 different miRNAs was analyzed within all three experimental
groups. According to the results, the most valuable diagnostic potential was found in
the combination of PSA serum level, miR-142-3p, miR-142-5p, and miR-223-3p, which
demonstrated sensitivity at 91.7% and specificity at 42.9%. Moreover, it was found that
miR-342-3p may potentially help to distinguish between samples of patients with GS at
6 and 7 and facilitate to TNM staging of PCa. In the study by Ruiz-Plazas et al. [93], semen
samples from patients with PCa at various stages, including the early localized form, were
examined to determine the prognostic role of the cytokine tumor necrosis factor-like weak
inducer of apoptosis (TWEAK)-regulated exosomal miRNAs. With the miRNA biomarker
panel, composed of miR-221-3p, miR-222-3p, and TWEAK, it was possible to classify PCa
in terms of its aggressiveness with specificity at 85.7% and sensitivity at 76.9%.

At the same time, despite promising data on diagnostic potential of exosomal miRNAs,
it was indicated that diverse exosome isolation techniques may have a significant impact
on the results obtained. Thus, in the study by Mercadacal et al. [94], several different
techniques of exosome isolation from semen were tested. Their purifying effectiveness and
influence on the analysis of miRNAs was evaluated and compared with the results of the
standard ultracentrifugation technique. It was demonstrated that techniques originally
developed for exosome isolation from blood and urine were also suitable for semen, though
the results could vary depending on the method used.

Studies of exosomal miRNAs isolated from various biological fluids have revealed
several biomarkers with potential value for PCa prognosis. According to the study by
Endzelins et al. [85], the level of exosomal miR-let-7a-5p could be helpful for staging PCa
in patients with GS of >8 versus <6. Thus, it was demonstrated by the analysis of exosome
samples derived from the patients” blood plasma (26 with GS < 6 and 24 with GS > 8),
that the expression of miR-let-7a-5p was significantly lower in patients with a higher
GS (> 8) compared to the patients who had lower GS (<6). In contrast, in the study by
Watahiki et al. [95], let-7a demonstrated limited value for indicating the difference between
patients with metastatic castration-resistant prostate cancer (mCRPCa) and localized PCa.
In addition, in the study by Foj et al. [89], no significant differences in urinary exosome
profiles of miR-let-7a-5p were identified between the low-risk and high risk PCa patients.
Thus, the role of miR-let-7a-5p as a predictive biomarker of PCa remains controversial and
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requires further investigation. Additionally, it was demonstrated that the concentration
of miR-1246 in urine has an association with the aggressiveness of PCa. According to
the results of the study by Bhagirat et al. [96], the miR-1246 expression level could not
only be helpful to differentiate between HCs and PCa patients, but also might serve as a
predictor of metastases with specificity at 100% and sensitivity at 75%. In another study by
Bhagirat et al. [97], exosomal miR-4287 was investigated in terms of its potential to predict
the possibility of metastasis at an early stage of PCa. According to the results of this study,
specificity of the proposed method at 88.24% was demonstrated. Further, in the study by
Guo et al., the potential of six different exosomal miRNAs to predict the development of
castration-resistant prostate cancer (CRPCa) was investigated [98]. It was demonstrated
that MiR-423-3p was associated with the development of CRPCa.

In addjition to the studies where single exosomal miRNAs were investigated, it was also
identified that a combination of several miRNAs may also provide useful prognostic data.
Thus, in the study by Huang et al. [99], a combination of exosomal miR-1290 and miR-375
in urine was investigated in terms of the capacity to predict the overall survival rates of
patients with localized PCa. It was demonstrated that patients with high concentrations of
both miRNAs had overall mortality rates at around 80%, while patients with average or
low concentrations of both miRNAs had a mortality rate at 10% over the same follow-up
period. The obtained data necessitates further evaluation of the identified miRNAs in a
larger cohort of patients. The overall data on diagnostic and prognostic potential of diverse
miRNAs is presented in Table 1.

Table 1. Diagnostic and prognostic value of miRNAs in patients with non-metastatic PCa.

Patients/

miRNA Biological Fluid Healthy Controls Isolation Method Diagnostic Value Prognostic Value Reference
Discrimination between
miR-342-3p Centrifugation + GS>7and GS=6
. . 11 HC, 7 BPH, e . (Sn: 63.6%; Sp: 90%)
Seminal fluid 40 PCa u{gfsg:::;ﬁ lzrtli:)—n Discrimination between [92]
miR-374b-5p & GS>7and GS =6
(Sn: 45.5%; Sp: 90%)
miR-342-3p+ Discrimination between
e RA7IE GS>7and GS =6
P (Sn: 54.5%; Sp: 80%)
miR-142-3p+ Discrimination between
miR-142-5p+ PCa and BPH
miR-223-3p (Sn:91.7% Sp:42.9%)
. Discrimination between
MiR-375 . .
Size exclusion PCa and BPH (N/A)
miR-200c-3p+ Plasma 50 PCa, 22 BPH chromatography Discrimination between (831
miR-21-5p PCa and BPH
Let-7a-5 Discrimination between
P GS>7andGS=6
Discrimination between
let-7c HC and low-, Discrimination between
. Differential intermediate-, GS>8and GS=6
Urine 10HC, 52 PCa centrifugation and high-risk PCa (89]
miR-21 Discrimination between HC and low-, intermediate-,
and high-risk PCa
miR-375 Discrimination between HC and low-, intermediate-,
and high-risk PCa
. . . Discrimination between
miR-574-3p ' leferent}al HC and PCa (Sn: 0.71)
Urine 35HC, 35 PCa centrifugation + Discrimination b [88]
miR-141-5p Lectin-Based iscrimination between
Acolutinati HC and PCa (Sn: 0.66)
gglutination L
miR-21-5p Discrimination between
HC and PCa (Sn: 0.46)
Discrimination between
miR-196a-5p . Differential HC and PCa
Urine 20 PCa, 10 HC centrifugation (Sp: 89%, Sn:100%) (1001
. Discrimination between
miR-501-3p HC and PCa
. . . Discrimination between
miR-217 Differential
Plasma 10 PCa, 10 HC centrifugation + Di HC an.d Pga [90]
miR-23b-3p RNeasy Mini iscrimination between
Spin kit Di HC an.d Pg a
. . . tion between
miRNA-125a-5p Differential 1scrimina
Plasma 31 PCa, 20 HC centrifugation HC and PCa [101]

miR-141-5p

Discrimination between
HC and PCa
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Table 1. Cont.

miRNA Biological Fluid HealI.‘.)ﬁ;eCn(:i/trols Isolation Method Diagnostic Value Prognostic Value Reference
ExoQuick Exosome o
. 20 PCa, 20 BPH, o Discrimination between
miR-141 Serum 0 CZOIHOC . Prec1p1t‘at1on ;ICC + BPHOan dePCZe [87]
Solution
miR-141+ Qiagen miRNeas; Discrimination between
miR-375 Plasma 78 PCa (12 G5<8), 8 kit Y low-risk and high-risk PCa [86]
miR-107+ Urine 28 HC mirVana kit Discrimination between
miR-574-3p HC and PCa
Discrimination between
miR-205 localized and metastatic
PCa, correlation with
lower risk of poor outcome
Discrimination between
25 localized PCa, Differential low-risk and high-risk PCa, 95
Plasma 25 mCRPCa centrifugation strong correlation with 9]
miR-141 poor outcome;
Discrimination between
localized PCa and
mCRPCa
. Discrimination between
miR-151-3p localized and mCRPCa
. Discrimination between
miR-423-3p localized and mCRPCa
Discrimination between
miR-152 low-risk and high—risk'PCa,
strong correlation with
poor outcome
Discrimination between
miR-375 localized PCa
and mCRPCa
Discrimination between
. docetaxel-resistant and
miR-21 ..
docetaxel-sensitive
PCa patients
mr?ﬁll{;lg ;—+ Discrimination between
. mCRPC and localized PCa
miR-16
miR-126 Discrimination bgtween
mCRPC and localized PCa
Discrimination between
low-risk and high-risk PCa;
. association with poor
miR-1290 Differential outcome; predicti}())n of
Plasma centrifugation androgen deprivation (%]
(ADT) failure
Discrimination between
low-risk and high-risk PCa;
miR-375 association with poor
outcome; prediction of
ADT failure
Discrimination between
miR-1290 + low-risk_an‘d high—risk PCa;
miR-375 association w1'th.poor
outcome; predlctlon of
ADT failure
. Discrimination between
miR-221-3p low-risk and high-risk PCa
. . . . . Discrimination between
miR-31-5p Semme.ll fluid, 97 PCa D1ffg renhgl low-risk and high-risk PCa [93]
urine centrifugation Discrimination b
miR-222-3p 1sc_r1m1nathn emeen
low-risk and high-risk PCa
. Discrimination between
miR-193-3p low-risk and high-risk PCa
. Discrimination between
miR-423-5p low-risk and high-risk PCa
miR- Discrimination between
221-3p+ low-risk and high-risk
miR-222-3p+ aggressive PCa (Sp: 85.7%,
TWEAK Sn: 76.9%)
Total exosome Discrimination between Discrimination between
miR-1246 Serum 44 PCa isolation reagent HC and PCa localized and [96]
& (Sp: 100%, Sn: 75%) metastatic PCa
Total exosome Discrimination between Discrimination between
miR-4287 Serum 68 PCa, BPH, HC isolation reagent HC and PCa (Sp: 88.24%) localized PCa (GS 4-6) and [97]
g p: 06.2%70 metastatic PCa (GS > 7)
. 132 PCa, 66 Differential Discrimination between
miR-423-3p Plasma mCRPCa centrifugation mCRPC and localized PCa 98]
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5. Circulating Tumor Cells (CTCs)

Originating from a primary or secondary tumor site, CTCs are the tumor cells that
have shed into the vessels of the circulatory system or ejaculatory ducts of the prostate
gland or urethra [14]. CTCs may be released passively or as a result of active invasion with
subsequent intravasation of the CTCs. The CTCs can then be translocated to distant parts
of the body to form metastases. During the process of successful dissemination within a
human body, CTCs must also overcome the hydrodynamic stress of circulation and evade
the host’s immune system, as well as adapt to a new microenvironment to proliferate
and colonize [102]. Since the first discovery of CTCs by Thomas Ashworth in 1869 [103],
tremendous progress has been achieved in the field of CTCs as a diagnostic and prognostic
marker of cancer, including non-metastatic PCa. A significant rise of attention to the field
has occurred during the last decade, which is primarily associated with the progress in the
development of microelectromechanical systems for isolation and detection of CTCs, their
qualitative and quantitate analysis (Figure 4).
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Figure 4. CTCs in localized form of PCa. Originating in primary tumor, CTCs may release into blood,
semen, or urine. Thus, being isolated from one of the biological fluids, CTCs may be further detected
and quantified, or characterized via molecular analysis, including gene analysis.
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Quantitatively, CTCs may potentially provide an opportunity to determine the pres-
ence of PCa, its stage, and response to treatment. Initially, most of the studies in the field
of liquid biopsy were related to enumeration of CTCs detected in blood samples, which
still attracts significant attention. An approach based on detection and enumeration of
CTCs has been considered promising in PCa diagnosis and prognostics although clear
evidence has not been reached in this context so far. CTCs are considered the precursors
of metastases and their detection at early stage of cancer development may be a marker
aiding decision making between active surveillance and surgery [104]. In the diagnosis
and prognostics of localized PCa, CTCs have been primarily investigated as a parameter
for pathological risk stratification. It is anticipated that, as a diagnostic and prognostic
parameter, quantifying CTCs may successfully substitute other conventional parameters
such as PSA blood level, and GS. Additionally, a correlation between the quantity of CTCs
and other clinicopathological parameters is of a great interest.

Qualitatively, isolated CTCs are an object for characterization by means of diverse
approaches, including biomarker assay, gene expression analyses, and cultivation with
subsequent drug testing and identification of possible drug resistance mechanisms. With
biomarker assay and gene expression analysis, it is possible to perform antigen and genetic
profiling that allows the identification of molecular subtypes for diverse types of cancer
and selection of personalized treatment [14]. At the same time, even though cultivation
of CTCs is scientifically attractive, it is technically challenging and is currently far from
practical implication in clinic [105].

The techniques of CTC isolation and detection may be in general stratified into two
groups: label-free and affinity-based [14]. The affinity-based approaches imply isolation of
CTCs by means of adhesion of the CTCs to specific antibodies onto adhesive surface of a
liquid-biopsy tool. At the same time, the label-free group includes the techniques that allow
to keep the isolated CTCs intact, which may be further subjected to a versatile analysis.

Currently, the potential of label-free techniques for isolating tumor cells from blood of
PCa patients has been highlighted in few studies. In the study by Giesing et al., (2010) [106],
CTCs were obtained by means of filtration and then detected via RT-PCR analysis for antiox-
idant genes. As a result, with the described technique, CTCs could have been detected in
42 (32.5%) of 129 patients with localized PCa. Further, in the study by Kolostova et al. [107]
where CTCs were isolated from the blood with MetaCell filtration device, 28 (52%) of 55
patients were positive for CTCs and no correlation between the presence of CTCs and
GS or T-stage. In addition to the techniques of cell filtration, microfluidics-based tech-
niques of label-free isolation of CTCs have attracted significant attention. Thus, in the
study by Todenhofer et al., (2016) [108], microfluidic isolation of CTCs from blood fol-
lowed by immunostaining with the anti-epithelial cell adhesion molecule (anti-EPCAM)
antibody was successful in 25 (50%) of 50 patients, with the amount of isolated CTCs
varying from only few to few hundred CTCs among patients. However, no correlation
was observed between the CTC detection and clinical parameters of PCa. Considering the
results of similar studies, in which CTCs were subjected to the size-based isolation and
subsequent immunocytochemical detection, a vast antigen heterogeneity of the CTCs can
be inferred [109,110]. Particularly, in the study by Renier et al. [109], it was determined
that some of the isolated CTCs did not express keratin (K) while expressing mesenchymal
markers such as Vimentin and N-cad, which may signify the involvement of PCa CTCs
into the epithelial-mesenchymal transition [111]. In was also demonstrated that liquid
biopsy via the size-based microfluidic isolation of CTCs followed by their gene analysis is
valuable in terms of prognosis of the disease. Thus, in the study by Miyamoto et al. [112],
isolated from blood CTCs were investigated via whole transcriptome amplification, which
allowed to predict dissemination of the CTCs to seminal vesicles and lymph nodes In a
cohort of patients at 34 subjects. Another approach for label-free isolation of PCa CTCs,
gel centrifugation, was proposed by Murray et al. [113]. Notably, in this study, blood was
collected from patients at 3 months post-radiotherapy. According to the results of the study,
in intermediate-risk PCa participants CTCs were identified at approximately two times
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more often than in the low-risk participants. Further, it was determined that CTC positive
participants had a worse prognosis and shorter time period until biochemical recurrence,
and after 15 years of follow-up had a shorter survival rate.

Considering the inconsistent results of diverse studies where blood was used as a
source of CTCs, it can be inferred that investigation of other biological fluids in terms of
CTC isolation is highly demanded. Thus, in the past few years, CTC isolation from urine has
attracted substantial attention. In the study by Nickens et al. [114], urine samples collected
from PCa patients were filtered by using Swinney (Sterilitech Corporation, Kent, WA,
USA) filtration device, and the cell sediments were further immunocytochemically labeled
with anti-ERG, anti-AMACR, and anti-PSA antibodies. According to the results, such
approach demonstrated moderate sensitivity and specificity at 64% (16 out of 25 patients)
and 68.8% (22 out of 32 HCs), respectively. Further, Campbell et al. [115] investigated
urine sediments that were labeled with the MIL-38 monoclonal antibody against the GPC-1
antigen, which has recently been proven specific for several types of cancers, including
PCa [116]. The study included 41 patients with localized PCa and 37 patients with benign
prostate hyperplasia as a control group. As a result, the technique demonstrated sensitivity
and specificity at 71% and 76%, respectively, with the highest specificity at 89% for patients
with PSA serum level at >4 ng/mL. Later, in the study by Rzhevskiy et al. [117], the
same anti-GPC-1 antibody MIL-38 was applied for detecting PCa tumor cells isolated from
large volumes (30-100 mL) of urine with a microfluidic chip. Among 14 patients, 12 (86%)
contained GPC-1+ putative CTCs in their urine, while urine samples of 11 (79%) out of
14 HCs were free from GPC-1+ cells. The amount of putative tumor cells varied from 4 to
194 cells in patients and was up to 7 cells in HCs. Notably, moderate positive correlation
was identified between the amount of GPC-1+ cells per mL of urine and GS.

As well as in the case of cfDNA, in the case of CTCs semen is the most logical source
even though a very limited number of studies have been published in this area so far. For
the first time, presence of CTCs in the semen of patients with localized prostate cancer
was demonstrated in 1996 by Gardiner et al. [118]. In this study, CTC identification was
performed via making seminal fluid smears on the glass slides with further bright-field
microscopy. According to the results of the study, 75% of the PCa patients had abnormal
cells in their ejaculate while 80% of healthy volunteers were negative for the abnormal cells.
However, the technique of making smears accompanied by further bright field microscopy
is inconvenient and does not provide reliable cytology. Recently, Rzhevskiy et al. [119]
developed the technique of microfluidic label-free isolation of CTCs from the semen. With
this technique, it could have been possible to separate approximately 99% of sperm cells
and isolate 89% (£3.8%) of tumor cells. In the case of PCa patients, from tens to hundreds of
CTCs could have been identified in the seminal fluid while in the case of healthy volunteers
there were no or very limited number of abnormal cells in the semen.

In the majority of studies utilizing affinity-based approaches for CTC isolation, the
most well know liquid biopsy platform is the CellSearch System. The technique is based
on capturing EpCAM positive cells, followed by CTCs identification as DAPI and Keratin
positive, and negative for CD45. However, this concept leads to the enrichment of all
circulating epithelial cells including normal cells and may therefore be the cause for the
compromised specificity of the technique for detecting PCa CTCs. Namely, in the study
by Davis et al. [120], 4 out of 20 (20%) HCs were identified positive for CTCs. However,
it is worth noting that an increased amount of blood of 22.5 mL, instead of the standard
7.5 mL, was analyzed in the study. At the same time, in the study by Thalgott et al., (2015)
where 20 mL of blood was investigated, none of the HCs was identified positive for CTCs.
Furthermore, in other studies in which 7.5 mL blood of healthy controls was investigated,
all were CTC negative [121,122]. On the other hand, variable results on the sensitivity of
the technique have been reported. Depending on the study, CTCs have been found in
blood of 0% to 73% of PCa patients, with varying amounts of CTCs from 0 to 13 per mL
of the blood [121-128]. Nevertheless, it is difficult to perform direct comparison between
the results obtained in different studies due to the difference in cutoff value of the putative
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CTCs at which a particular patient or healthy volunteer was considered positive for CTCs.
For instance, in the study by Pal et al. [125], the threshold was set at 1 CTC per 22.5 mL
of blood, while most studies apply a threshold of 1 CTC/7.5 mL. Finally, in none of the
studies using the CellSearch System, a strong correlation between the number of isolated
CTCs and PSA serum level, GS score, PFS, or OS was found.

Considering the imperfections of the CellSearch System in terms of CTC detection,
mostly due to the EpCAM dependency, alternative affinity-based approaches have been
developed in recent years. As two of such approaches, CellCollector and EPISOT were
applied in the study by Kuske et al., (2016) [129], and compared with the CellSearch. In
the case of CellCollector, CTCs are captured by the EPCAM-based adhesion in vivo to the
antibody-coated wire introduced into a peripheral vein of the human body. At the same
time, EPISOT assay is the EPCAM-independent technique that is based on the negative
depletion of leucocytes with further identification of CTCs as the PSA-positive cells. In this
study positivity for CTCs was considered at >1 of the tumor cells per 7.5 mL. According to
the results of the study, CTCs were identified in blood samples of 58.7%, 54.9% and 37%
by the EPISOT, CellCollector and CellSearch assays, respectively. Additionally, significant
correlation between the amount of isolated CTCs and PSA serum level or clinical tumor
stage, was indicated only in the case of EPISOT, while, in the case of CellSearch and Cell-
Collector, no significant correlations were observed. Another EPCAM-dependent approach
based on the microfluidic enrichment of CTCs was tested in the study by Stott et al. [130].
In this study, circulating epithelial cells were identified in blood of 8 out of 17 HCs at the
amount of up to 14 cells. At the same time, CTCs were identified in blood of 8 (42%) out of
19 PCa patients, at a relatively high amount of up to 222 CTCs per mL with the median
value at 95 CTCs. Furthermore, among the eight patients identified positive for CTCs, six
patients had significant decline in the amount of CTCs isolated at 24 h post-prostatectomy.
In the study by Russo et al. [131] the immune-magnetic isolation relying on EpCAM and
anti-mucinl antigens was utilized. To identify the enriched CTCs, the immune-magnetic
enrichment was followed by the application of several kinds of AdnaTest: (1) AdnaTest
ProstateCancer, which detects the overexpression of PSA, PSMA, and EGFR mRNA ex-
pression, (2) AdnaTest StemCell, which evaluates expression of transcripts specific for
cancer stem cells, and (3) AdnaTest EMT detecting epithelial-mesenchymal transition in
the enriched CTCs. Additionally, enriched CTCs were assessed by PCR for AR, c-met,
c-kit and thymidylate synthase (TYMS). According to the results of the study, AdnaTest
ProstateCancer was positive in 3 (16.7%) out of 18 patients with the low-risk clinically
localized PCa and 2 (8.0%) out of 25 patients with the high-risk clinically localized PCa.
The AdnaTest StemCell was positive in 5 (27.8%) of 18 and 4 (16.0%) out of 25 patients with
the low-risk and high-risk localized PCa, respectively. At the same time, AdnaTest EMT
was positive in none of the cases of localized PCa. Moreover, expression of TYMS, AR,
c-met, and c-kit by the enriched CTCs was a rare event.

In addition to the EPCAM-dependent alternatives to the CellSearch System, several
EPCAM-independent approaches have also been tested. For instance, in the study by
Puche-Sanz et al. [132], in which a keratin-based immune-magnetic technique was applied,
CTCs at the small amounts ranging from 1 to 4 cells were detected in 16 (18.6%) out of
86 patients. Notably, despite a relatively low amount of CTC positive patients and small
numbers of isolated CTCs, a significant correlation was observed between the presence
of CTCs in blood and expression of AR in PCa tissue. It is worth noting that in the study
by Garcia et al. [133], assessment of AR-V7 splice variant in blood plasma through a
capillary nano-immunoassay was proposed as the technique for identifying CTCs. The
data from studies where CTCs were investigated as the diagnostic and prognostic marker
of non-metastatic PCa are summarized in Table 2.
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Table 2. Circulating tumor cells in patients with non-metastatic PCa.
Tyve of CTC CTC Isolation Technique Biological Fluid Number of PCa Cut-Off Number of Percentage of CTC+ Min-Max Number Correlation between the Amount or
}ip lati (Label-Free or (Vgl )u Patients/HCs and CTCs for CTC+ Patients/Healthy of CTCs per mL in Presence of CTCs and Ref.
solation Affinity-Based) olume BPH Patients Patients Volunteers Patients Clinico-Pathological Parameters of PCa
. . 129 patients with . .
Filtration + RT PCR for PSA Blood (NA) non-metastatic NA 32.5%/NA NA Strong correlation between the expression of [106]
and antioxidant genes PCa/NA SOD2 or TXNRD1, and tumor size or GS
. . 55 patients with No correlation between the presence of CTCs
Filtration -;g é< *dependent (lefr?]fl) non-metastatic >1 52%/NA NA and GS or T stage. No correlation between [107]
Label-free PCa/NA the CTC count and response to treatment
50 patients with No correlation between the presence of
Microfluidics + EPCAM. CK Blood P . o CTCs and the PSA serum level, age, GS, T :
non-metastatic >1 50%/NA 0.5-208.5 R [108]
dependent ICC (2mL) PCa/NA stage, or N stage. No correlation between the
a number of CTCs and GS, T stage, or N stage
R 41 patients with
F ‘gm“‘;’l‘é J;f{(éé“{ gl‘;’f) non-metastatic >1 100%/NA NA NA [110]
cpende PCa/NA
. L1 34 patients with d-PCR ** for 8 PCa-specific genes allowed to
I\gicfﬂlgglﬁs(g dc};?gt (;350;%) non-metastatic NA NA/NA NA predict dissemination of CTCs to seminal [112]
g PCa/34 HCs vesicles and lymph nodes
. . . 25 patients with
Filtration + ERG, AMACR, Urine R o o
PSA dependent ICC (NA) non-mitlacs;ahc/SZ >1 64%/21.2% NA NA [116]
41 patients with
Sedimentation + GPC-1 Urine non-metastatic o o o
dependent ICC (50-100 mL) PCa/47 HCs and 37 21 71%/30% and 24% NA NA [115]
BPH patients
241 patients with
Gel centrifugation + Blood non-metastatic PCa o
PSA dependent ICC (8 mL) at 3 months post- 21 47.8%/NA NA NA (113
radiotherapy /NA
. 1 . 14 patients with .
Microfluidics + GPC-1 Urine . o o Moderate correlation between the amount of
dependent ICC (30-100 mL) non-metastatic >8 79%/21% 0.1-49 CTCs and GS, or PSA serum level [117]
PCa/14 HCs
. 1 19 patients with .
M1crc(1)ﬂu1d1cs + EPCAM Blood non-metastatic >14mL-1 42%/47% 38-222 Poor correlation between the amount of [130]
ependent ICC (20 mL) PCa/17 HCs CTCs and PSA serum level
26 patients with .
CellSearch Blood non-metastatic >1 73% /0% NA No correlation between the number of CTCs [121]
(7.5 mL) PCa/7 HCs and GS, or PSA serum level, or T stage
10 patients with
CellSearch Blood non-metastatic >1 10%/NA 0.0-0.1 NA [123]
(7.5mL)
Affinity-based PCa/NA
Blood 20 patients with
CellSearch (7.5 mL) non-metastatic >1 5%/0% 0.0-0.1 NA [122]
’ PCa/15 HCs
Blood o )
CellSearch (7.5 mL) 36/NA >1 14%/NA 0.0-0.4 NA [124]
32 patients with .
Blood . o/ /N0 - No correlation between CTC amount and
CellSearch (225mlL) non-metastatic >1 45% /0% 0.0-0.1 biochemical recurrence of PCa [125]

PCa/5 HCs
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Table 2. Cont.

Type of CTC CTC Isolation Technique Biological Fluid Number of PCa Cut-Off Number of Percentage of CTC+ Min-Max Number Correlation between the Amount or
ype of, (Label-Free or 8 Patients/HCs and CTCs for CTC+ Patients/Health of CTCs per mL in Presence of CTCs and Ref.
Isolation (Volume) y P
sotatio Affinity-Based) otume BPH Patients Patients Volunteers Patients Clinico-Pathological Parameters of PCa
Blood 15 patients with No correlation between CTC detection and
CellSearch (20.0 mL) non-metastatic >1 20%/0% 0.0-0.2 GS, PSA serum level, T and N stages, [126]
’ PCa/15 HCs positive surgical margin
152 patients with . .
CellSearch Blood non-metastatic >1 11%/NA 0.13-13.3 Weak correlation between CTC detection [127]
(7.5 mL) PCa/NA and GS, PSA serum level, or T stage
CellSearch Blood 86 patients with 37%/NA 015-13 detection and PSA serum values, or clinical
EPISPOT 7.5 mL) non-metastatic >1 54.9%/NA 0.13-1.6 tumor stage. No correlations i;1 case of [129]
. o g X
CellCollector PCa/NA 58.7%/NA 0.13-1.7 CellSearch and CellCollector
Affinity-based Blood 59 patients with
CellSearch (7.5 mL) non-metastatic >1 0%/NA NA NA [128]
’ PCa/NA
Assessment of AR-V7 Blood 16 patients with Sienificant lation bet ¢
through a capillary 0 non-metastatic NA 18.7%/0% NA igniicant correiation between presence o [131]
nano-immunoassay (10 mL) PCa/11 HCs AR-V7 and expression of CD133 antigen
. 86 patients with
It K dependent (?é"rﬁi) non-metastatic >1 18.6%/0% 0-04 NA [132]
une-magnetic collectio: PCa/17 HCs
47 patients with
AdnaTest Prostate-Cancer glg?f) non-metastatic NA 25.5%/NA NA NA [109]
PCa/NA

*—immunocytochemistry. **—digital polymerase chain reaction.
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According to Table 2, the most commonly used affinity-based CTC isolation tech-
nique has is the CellSearch System, in which the positivity rate of CTCs in blood of non-
metastatic PCa patients ranges between 0-73%, with the number of detected CTCs ranging
between 0.0 and 13.3 per mL [114-122]. At the same time, in the study where the CellSearch
System was compared with such techniques as EPISOT and CellCollector, the techniques
demonstrated the least performance in isolating CTCs [123]. Other affinity-based iso-
lation techniques such as AdnaTest [109], multi-Keratin dependent immune-magnetic
collection [132], or assessment of AR-V7 through a capillary nano-immunoassay [133],
demonstrated a relatively low sensitivity with the highest rate for AdnaTest. Regarding the
label-free techniques, the majority did not demonstrate a clinically relevant specificity and
sensitivity that would be significantly superior to the standard PCa test. At the same time,
in the study where cell filtration was combined with subsequent Keratin and AR dependent
immunocytochemistry, the authors reported that CTCs could have been isolated from blood
of 100% of the patients [110]. However, it should be considered that blood from healthy
donors was not used in this study as a control. Overall, CTC detection from blood for the
diagnosis of early-stage PCa has relatively low efficiency. Nevertheless, other biological
fluids such as urine and semen are of a high interest for being thoroughly investigated as a
potential source of CTCs and alternative to blood.

6. Discussion

According to the results of the studies included in this review, all the investigated
biomarkers (i.e., ctDNA, exosomal miRNAs, and CTCs) demonstrate potential clinical
utility. Several types of miRNAs (Table 1) demonstrated high diagnostic and prognostic
value. In addition, it was identified that grouping of two or more miRNAs into the panels
could improve sensitivity and specificity in early detection of PCa. Additionally, in several
studies, additional conventional parameters, such as the PSA serum level, were added to
the miRNA-based biomarker panel, which could increase diagnostic and prognostic accu-
racy of the panel. Notably, in addition to blood plasma, urine and semen were successfully
investigated as the sources of exosomal miRNAs in several studies. In contrast, compar-
atively moderate sensitivity was demonstrated by ctDNAs as biomarkers for detecting
non-metastatic PCa. Even though several promising ctDNA-based biomarker panels were
developed, only few of them proof effective. However, ctDNA-based biomarker panels
are the least investigated among other types of liquid biopsy biomarkers, and therefore
further investigations are required in this field. Regarding CTCs, either weak or moderate
sensitivity, specificity, and prognostic value, is demonstrated in the studies where blood
was used as the source of CTCs. At the same time, significantly higher diagnostic and
prognostic values were identified in rare studies where urine was chosen as the CTC source.

Although liquid biopsy of PCa by means of isolation and detection of ctDNA, or
exosomal miRNAs, or CTCs, is a perspective diagnostic and prognostic technique, it
has a number of limitations that have to be considered. The majority of limitations are
the inconsistency in protocols, applied for isolation and analysis of the liquid biopsy
biomarkers, which leads to inconsistency in the results obtained in different studies. Thus,
due to such inconsistency, effectiveness of that or another liquid biopsy approach cannot
be reliably compared with alternatives. Therefore, standardization of the liquid biopsy
protocols is highly relevant. According to the results of the observed studies, liquid biopsy
by means of CTC detection is the mostly standardized compared to other liquid biopsy
approaches. Notably, even though the CellSearch System does not detect a high number
of CTCs in the blood of patients with non-metastatic PCa, it has already been cleared by
the FDA for prognostic use. Additionally, few other platforms for CTC isolation from
blood are currently on track for receiving the FDA approval. In the case of miRNAs, as
well as ctDNA, the data are limited and do not provide sufficient information to conclude
on the diagnostic or prognostic value. One of the most significant issues that has to
be thoroughly investigated is the dependance between a timepoint of biological fluid
sampling and an outcome of liquid biopsy test. Thus, it was demonstrated that diverse
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interventions [134], including ultrasound-guided tissue biopsy [135], may cause a release of
liquid biopsy biomarkers into the blood stream. Overall, optimization and standardization
of methodologies in liquid biopsy of PCa is highly demanded before it could be introduced
into a clinical practice. Additionally, while most of the liquid biopsy studies are based on
isolation of the biomarkers from blood, such biological fluids as urine and semen are of a
great interest for being investigated as the sources of the biomarkers.

Despite the outstanding diagnostic and prognostic value of CTCs in metastatic PCa,
several hurdles have to be overcome prior to introducing the technology as a part of medical
guidelines for early-stage PCa. For instance, it is known that a common diameter of a single
CTC is on average bigger compared to the width of small capillaries [136] and only the
smallest and elastic CTCs may release into a systemic circulation, which may be a cause of
a relatively low quantity of CTCs in blood at an early stage of tumor development [137].
Additionally, diverse cancers have different typical localizations of metastases. Hence,
difference in a quantity of CTCs collected from blood vessels at different sites of a human
body is inferred [138], and a conventional minimally invasive blood sampling from cubital
vein may not be appropriate in all cases. Further, most of the existing techniques of CTC
detection are at their early stage of development and require significant improvement. Par-
ticularly, CellSearch® (Menarini Silicon Biosystems Inc, Huntington Valley, PA, USA)—the
only FDA-cleared CTC test, is based on EpCAM-dependent immunofluorescent label-
ing [139]. In this setting, a heterogeneity of CTCs in terms of antigen expression between
individuals, and even within a particular individual, should also be considered. Hence,
the development of assays composed of multiple markers with an affinity to a particular
type of CTCs is needed, which would significantly increase specificity and sensitivity of the
corresponding tests. As an alternative to CTC detection via labeling with specific antibodies,
profiling of CTCs in terms of specific mutations is considered [140]. Lastly, cultivation of
isolated CTCs for tailored medicine is still challenging [141,142]. At the same time, even
though more novel techniques of liquid biopsy via isolation and analysis of exosomes or
ctDNA are thought to be highly efficient in diagnosis and prognosis of malignant lesions,
the cost-effectiveness of liquid biopsy via isolation of CTCs justifies its attractiveness.
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