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Abstract: Severe acute respiratory syndrome (SARS)-CoV-2 from the family Coronaviridae is the
cause of the outbreak of severe pneumonia, known as coronavirus disease 2019 (COVID-19), which
was first recognized in 2019. Various potential antiviral drugs have been presented to hinder SARS-
CoV-2 or treat COVID-19 disease. Side effects of these drugs are among the main complicated issues
for patients. Natural compounds, specifically primary and secondary herbal metabolites, may be
considered as alternative options to provide therapeutic activity and reduce cytotoxicity. Phenolic
materials such as epigallocatechin gallate (EGCG, polyphenol) and quercetin have shown antibacterial,
antifungal, antiviral, anticancer, and anti-inflammatory effects in vitro and in vivo. Therefore, in
this study, molecular docking was applied to measure the docking property of epigallocatechin
gallate and quercetin towards the transmembrane spike (S) glycoprotein of SARS-CoV-2. Results
of the present study showed Vina scores of −9.9 and −8.3 obtained for EGCG and quercetin by
CB-Dock. In the case of EGCG, four hydrogen bonds of OG1, OD2, O3, and O13 atoms interacted
with the Threonine (THR778) and Aspartic acid (ASP867) amino acids of the spike glycoprotein
(6VSB). According to these results, epigallocatechin gallate and quercetin can be considered potent
therapeutic compounds for addressing viral diseases.

Keywords: SARS-CoV-2; transmembrane spike glycoprotein; severe pneumonia; natural compounds;
antiviral activity

1. Introduction

Fighting against viral, bacterial, and parasitic infections has been an ongoing medical
challenge of modern times [1–4]. A major concern in this regard is emerging mutant
strains having a wide range of resistance to conventional drugs [5–8]. On the other hand,
the treatment of cancer and metabolic diseases (e.g., type 2 diabetes, heart disease, and
stroke) has certain drawbacks, particularly adverse side effects associated with therapeutic
strategies [9,10]. These drawbacks can be overcome by new effective therapies based
on micro- and nanomaterials with lower or ideally no side effects [11–19]. In the case
of viral infections, severe acute respiratory syndrome (SARS)-CoV-2, from the family
Coronaviridae, is the cause of the outbreak of fatal pneumonia, coronavirus disease 2019
(COVID-19), which was first recognized in 2019 in Wuhan, China [20–23]. SARS-CoV-2
has a transmembrane spike (S) glycoprotein with two functional subunits: the S1 subunit
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having the receptor-binding domain (RBD), which can bind to the host cell receptor, and
the S2 subunit with the ability to fuse with the host cell membranes (Figure 1a,b) [24,25].
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The worldwide spread of SARS-CoV-2 has resulted in an urgent need to find effective
targets for the hindering of COVID-19 and associated viruses. Accordingly, blocking of
spike (S) glycoprotein is critical for the inactivation of SARS-CoV-2 before the initiation of
a cytokine storm, the production of many inflammatory signals by the immune system,
which can result in organ failure and death of patients [27]. The S glycoproteins and the
SARS-CoV-2 endoribonuclease Nsp15 have also been shown to be excellent targets for the
development of vaccines against coronaviruses [28–30]. Furthermore, several molecules
and moieties have been identified as antiviral agents thus far. Some of these therapeutic
compounds along with their mechanisms of action are listed in Table 1 [31–37]. However,
there are significant adverse side effects associated with these molecules and therapeutic
agents. As a result, it is a matter of urgency to find biocompatible therapeutic agents against
novel viral strains, particularly SARS-CoV-2 and other coronaviruses.



Biomedicines 2022, 10, 3074 3 of 17

Table 1. Some of the identified molecules and compounds with antiviral activity.

Molecule Mode of Action Ref.

chloroquine/hydroxychloroquine inhibiting glycosylation of host receptors [38]
azithromycin antibiotic/anti-inflammatory activities [39]

lopinavir/ritonavir inactivation of the viral 3CL protease [40]
ribavirin blocking RNA-dependent RNA polymerase [41]

tocilizumab inhibition of IL-6 signaling [42]
baricitinib/remdesivir blocking RNA-dependent RNA polymerase [43]

favipiravir selective inhibition of viral RNA polymerase [44]
abidol broad-spectrum antiviral compound [45]

ruxolitinib competitively blocking the ATP-binding catalytic site on Janus kinases 1 and 2 [46]

teicoplanin an antibiotic applied in the prophylaxis and therapy of bacterial infections caused by
Gram-positive bacteria [47]

ivermectin inhibition of the nuclear transport of viral proteins [48]
corticosteroid immunosuppressive and anti-inflammatory activities [49]
doxycycline blocking bacterial protein synthesis via binding to the 30S ribosomal subunit [50]

The natural compound–virus interface and the corresponding viral responses are cru-
cial for determining the level of antiviral activity for each natural therapeutic agent [51,52].
Natural compounds, particularly secondary metabolites of medicinal plants associated
with phenolic compounds having benzene rings with one or more hydroxyl substituents,
terpenoids (derived from the five-carbon compound isoprene), saponins (triterpene glyco-
sidic compounds), alkaloids (organic compounds containing at least one nitrogen atom),
and glucosinolates (sulfur-containing metabolites), have demonstrated prominent antibac-
terial, antioxidant, anticancer, antiviral, antiarthritic, anti-Alzheimer’s, cardiovascular, and
wound-healing activities [53,54]. Specifically, quercetin (C15H10O7), extracted mainly from
green tea, grapes, apples, berries, and onions, is a flavonol related to the flavonoid group of
phenolic compounds, which is known to have antimicrobial, anti-inflammatory, antioxidant,
and anticancer activities; and apoptosis-inducing effect; and therapeutic effects on metabolic
diseases such as nonalcoholic fatty liver disease, diabetes, and hyperlipidemia [55–58].
Effective doses for this metabolite have been reported as 500–1000 mg/day or 50 and
75 mg/kg [57]. In the case of epigallocatechin gallate (epigallocatechin-3-gallate (EGCG;
C22H18O11) extracted especially from green tea (~103 mg/g) and black tea (24.7 mg/g), a
variety of therapeutic effects have been reported that include antibacterial, antioxidant,
anticancer, anti-inflammatory, antiobesity, antidiabetic, chemopreventive, and antiviral
activities [59–64]. For example, inhibition of the uridylate-specific endoribonuclease Nsp15
from SARS-CoV-2 has been found for three bioactive compounds of EGCG, quercetin, and
baicalin [61]. It should be noted that despite in silico studies, new techniques including
tissue diffusion chambers, single-organ chips, and body-on-a-chip can help the clinical
development of natural drugs [65].

For the elucidation of drug–target interaction and optimization of therapeutic out-
come, comprehensive in vitro and in vivo investigations along with relevant computational
studies are required. In silico study is one of the main methods to evaluate the activity of
new drugs and bioactive agents by computational structure-based drug discovery [66]. Ac-
cording to the above discussion, docking of epigallocatechin gallate and quercetin towards
spike (S) glycoprotein of SARS-CoV-2 was evaluated by three docking programs: CB-Dock,
DockThor, EDock, and AutoDock Vina 1.5.7 (ADV).

2. Materials and Methods

Epigallocatechin-3-gallate (EGCG) and quercetin were selected as ligands, and spike
glycoprotein (PDB ID: 6VSB) and Nsp15, a uridine-specific endoribonuclease (PDB ID:
6VWW), were selected as the receptors (Figure 2a–d). In order to minimize the final
structures of epigallocatechin gallate and quercetin and remove all the water molecules,
the UCSF Chimera1.12 program (a program for the interactive analysis and visualization of
molecular structures including trajectories, sequence alignments, and density maps) was
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employed [67]. The web servers of Cavity-Detection Guided Blind Docking (CB-Dock)
(http://clab.labshare.cn/cb-dock/php/) (accessed on 1 September 2022) [68], DockThor
(https://www.dockthor.lncc.br/v2/) (accessed on 1 September 2022) [69], EDock (https:
//zhanggroup.org/EDock/) (accessed on 1 September 2022) [70], and ADV 1.5.7 [71] were
applied to evaluate and compare molecular docking. The affinity of docked quercetin and
EGCG with spike glycoprotein was presented as binding energy (kcal/mol). Results of
docking interaction were visualized by BIOVIA discovery studio 2016 (San Diego, CA,
USA) (Figure 2a,b). Gaussian 5.0.8 software was employed to optimize geometry and to
determine the electric field potential, lowest unoccupied molecular orbital (LUMO), and the
highest occupied molecular orbital (HOMO) of quercetin in the ground state, Hartee-fock
at default spin and basis set of 3–21G [72].
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Figure 2. (a) Spike glycoprotein (PDB ID: 6VSB), (b) Nsp15 (PDB ID: 6VWW), (c) epigallocatechin-3-
gallate (EGCG), and (d) quercetin.

3. Results and Discussion

According to the CB-DOCK results, for EGCG towards the receptor of 6VSB, cavity
volumes were 5396, 8798, 11,401, 7201, and 2780 Å3 for Vina scores of −9.9, −9.1, −9, −8.9,
and −8.4, respectively (Table 2). For this metabolite, higher score of −8.8 and cavity volume
of 1021 Å3 were observed toward 6VWW (Table 3).

Table 2. Binding mode and the related cavity size based on the results of CB-Dock for EGCG and the
receptor of 6VSB.

Vina
Score

Cavity
Volume (Å3)

Center Size

x y z x y z

−9.9 5396 207 244 243 35 23 35

−9.1 8798 252 231 233 32 35 35

−9 11,401 227 228 172 35 33 35

−8.9 7201 224 221 215 31 35 34

−8.4 2780 225 249 213 29 23 35

http://clab.labshare.cn/cb-dock/php/
https://www.dockthor.lncc.br/v2/
https://zhanggroup.org/EDock/
https://zhanggroup.org/EDock/
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Table 3. Binding mode and the related cavity size based on the results of CB-Dock for EGCG and the
receptor of 6VWW.

Vina
Score

Cavity
Volume (Å3)

Center Size

x y z x y z

−8.8 1021 −68 28 25 23 23 23

−8.7 1074 −73 26 −30 23 23 23

−8.2 627 −56 24 20 23 23 23

−7.7 615 −81 18 −21 23 23 23

−7.6 666 −53 32 −4 23 23 23

Four hydrogen bonds between OG1, OD2, O3, and O13 of EGCG with THR778 and
ASP867 amino acids of the 6VSB were the main chemical interactions between EGCG and
the receptor as depicted in Figure 3a,b. As illustrated in Figure 4a,b, the LYS71 (H-bond),
LYS90, GLY165, VAL166 (H-bond), THR167 (H-bond), ARG199, ASN200, GLU203, ASP268,
ILE270, PRO271, MET272 (H-bond), ASP273, SER274, LYS277 (H-bond), and TYR279
(H-bond) amino acids of 6VWW contributed in the interaction with EGCG. In the case
of quercetin and the receptor of 6VSB, cavity sizes were 2780, 8798, 11,401, 5396, and
7201 Å3 for Vina scores of −8.3, −8.2, −8.1, −8.1, and −7.7, respectively (Table 4). This
docking server revealed that amino acids TRP886, TYR904, GLY908, GLY1035, GLN1036,
LYS1038, GLY908, ILE909, GLN1036, SER1037, LYS1038, VAL1040, GLY1046, TYR1047, and
HIS1048 of the spike glycoprotein had docking interaction with the quercetin metabolite
(Figure 5a,b). Additionally, amino acids GLU69, LYS71 (H-bond), LYS90 (H-bond), THR196
(H-bond), SER198 (H-bond), ARG199, ASN200 (H-bond), LEU252 (H-bond), ASP273,
SER274, THR275, LYS277, VAL295, ILE296 (H-bond), and ASP297 of 6VWW interacted
with quercetin with a higher score of −8.2 (Figure 6a,b and Table 5).

Table 4. Binding mode and the related cavity size based on the results of CB-Dock for quercetin and
the receptor of 6VSB.

Vina
Score

Cavity
Volume (Å3)

Center Size

x y z x y z

−8.3 2780 225 250 213 29 21 35

−8.2 8798 253 232 233 32 35 35

−8.1 11,401 227 229 172 35 33 35

−8.1 5396 207 245 243 35 28 35

−7.7 7201 225 222 215 31 35 34

Table 5. Binding mode and the related cavity size based on the results of CB-Dock for quercetin and
the receptor of 6VWW.

Vina
Score

Cavity
Volume (Å3)

Center Size

x y z x y z

−8.2 1021 −74 26 −30 21 21 21

−7.7 631 −56 24 20 21 21 21

−7.3 605 −53 21 −13 21 21 21

−6.6 641 −82 18 −21 21 21 21

−6.1 667 −53 32 −4 21 21 21
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According to the results of DockThor docking for 6VSB, affinity, total energy, van
der Waals (vdW) energy, and electronic energy for EGCG against the receptor were
−7.287 kcal/mol, 14.876 kcal/mol, −2.202, and −44.070 eV, respectively. In the case of
quercetin, affinity, total energy, vdW energy, and electronic energy were −7.468 kcal/mol,
10.141 kcal/mol, −11.502, and −25.191 eV, respectively. In the case of 6VWW, affinity, total
energy, vdW energy, and electronic energy were −7.056 kcal/mol, 26.627 kcal/mol, −3.350,
and −30.466 eV for the EGCG ligand, respectively. Moreover, the affinity, total energy,
vdW energy, and electronic energy for quercetin towards 6VWW were −6.891 kcal/mol,
18.233 kcal/mol, −2.538, and −27.190 eV, respectively. In a comparative study, quercetin
and quercetin pentaacetate were evaluated against the human respiratory syncytial virus
(hRSV) F-protein by in silico analysis. In that study, researchers discovered that acety-
lation of quercetin improves anti-hRSV activity, as quercetin pentaacetate had a lower
binding energy with better stability with the value of ∆G= −14.22 kcal/mol in hindering
F-protein and thus reducing hRSV adhesion [73]. Based on the EDock results, for EGCG
and quercetin, three amino acids, namely ARG812, LEU813, and LEU816, of the receptor
showed interaction with the active site of the spike glycoprotein (Figure 7a,b). Figure 7c,d
show predicted binding residues of 6VWW with EGCG and quercetin.
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Van der Waals interaction and hydrogen bonding were indicated for this interaction.
3CLpro (3-chymotrypsin-like protease), the main protease with the critical role in cleaving
pp1a and pp1ab polyproteins, can be selected as the main target for the inactivation of SARS-
CoV-2. In this respect, 73 bioactive compounds related to the medicinal plant Withania
spp. were screened against 3CLpro. A study by Verma and co-workers revealed that there
was more negative energy for withacoagulin H (−63.463 KJ/mol) than for other natural
compounds [74]. Molecular docking of three secondary metabolites extracted from the
n-butanol and ethyl acetate fractions of Amphilophium paniculatum from the Bignoniaceae
family toward the SARS-CoV-2 main protease (Mpro) was evaluated. According to the
results, eight molecules, namely luteolin, luteolin 7-O-β-glucopyranoside (cynaroside),
acacetin 7-O-β-rutinoside (linarin), acteoside (verbascoside), Isoacteoside (Isoverbascoside),
(+)-Lyoniresinol 3α-O-β-glucopyranoside, (−)-Lyoniresinol 3α-O-β-glucopyranoside, and
amphipaniculoside A, were found with lower binding energies of −8.34, −9.54, −8.54,
−8.33, −8.46, −7.95, −7.45, and −7.56 kcal/mol, respectively. The major bond types
for luteolin 7-O-β-glucopyranoside were hydrogen bonds (GLU166, CYS145, GLY143,
ASN142, ASN142, ASN142) and π–π interactions (HIS41 and HIS41) [75]. In a similar
study, the docking of ten compounds (9-dihydroxyl-2-O-(z)-cinnamoyl-7-methoxy-Aloesin,
aloe-emodin, aloin A, aloin B, elgonica dimer A, feralolide, isoAloeresin, aloeresin, 7-O-
methylAloeresin, and chrysophanol) related to the Aloe vera plant species was evaluated
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toward 3CLpro. Three bioactive agents, namely feralolide, aloeresin, and 9-dihydroxyl-
2-O-(z)-cinnamoyl-7-methoxy-Aloesin, exhibited higher affinity for 3CLpro with binding
energies of −7.9, −7.7, and −7.7 kcal/mol, respectively, compared to standard drugs of
lopinavir (−8.4 kcal/mol) and nelfinavir (−8.1 kcal/mol) [76]. Moreover, according to the
results of a comprehensive docking study, coagulins, withanolides, pseudojervine, and
kamalachalcone groups of triterpenoid compounds demonstrated the potential ability to
block surface amino acids of the spike protein of SARS-CoV-2 (the head of S1 which binds
to the cellular receptor hACE2) [77]. In another study, a flavonoid (i.e., rutin) showed
inhibition of major proteins of SARS-CoV-2, namely the spike (S)-protein (S1 subunit
of S-protein), papain-like protease (PLpro), main protease (Mpro), and RNA-dependent
RNA polymerase (RdRp), with binding energies of −7.9, −7.7, −8.9, and −8.6 kcal/mol,
respectively. The numbers of hydrogen bonds were 3, 9, 10, and 6 for Mpro, RdRp, PLpro,
and S1 subunit of S-protein, respectively [78].

Al-Karmalawy and coworkers (2021) [79] employed molecular docking to investigate
the affinity of 14 angiotensin-converting enzyme inhibitors (ACEIs) towards the SARS-
CoV-2 binding site of chimeric receptor-binding domain bound by its receptor human
angiotensin-converting enzyme 2 (hACE2). For this study, alacepril, captopril, zofenopril,
enalapril, ramipril, quinapril, perindopril, lisinopril, benazepril, imidapril, trandolapril,
cilazapril, fosinopril, and moexipril were the tested ligands, and N-Acetyl-D-Glucosamine
(NAG) was employed as a reference ligand. This study revealed that there were the same
binding modes for lisinopril, alacepril, and NAG. Additionally, the binding scores for
lisinopril and alacepril were −4.7 and −5.1 with two hydrogen bonds, respectively [79].
In another similar study, in which lopinavir (a protease inhibitor drug) was used as a
reference drug (with a MolDock score of −114.628), the antiparasitic drug ivermectin
exhibited a MolDock score of −114.860, and the formation of three hydrogen bonds with
Asn2033, Asn151, and Asp153 amino acid residues was detected [80]. There was a MolDock
score of −95.414 for hydroxychloroquine with interactions of three hydrogen bonds with
Asn203, Gln109, and Ser158 amino acid residues. Moreover, chloroquine exhibited a
MolDock score of −93.634 and two hydrogen bonds with Ser158 [80]. Molecular docking of
three natural compounds, namely chrysin (flavonoid), hesperidin (flavonoid), and emodin
(anthraquinone), against the ACE2 protein and the complexed structure of the ACE2
protein and spike protein was investigated in a comparative study. The binding energies for
hesperidin, chrysin, and emodin were −8.99, −6.87, and −6.19 kcal/mol toward the bound
spike protein and ACE2 receptor, respectively. Depending on the results, the binding sites
of ACE2 protein for hesperidin and spike protein were in different sites of the ACE2 protein,
and this metabolite can lead to instability of the bound structure of spike protein and ACE2
by modulating the binding energy of the bound structure of the spike protein and ACE2.
In addition, hesperidin binds at the LYS74, ALA71, SER44, and ASN63 amino acids of
ACE2 with stabilized docking by two hydrogen bonds at PHE457 of the spike protein
with a distance of 2.618 Å and GLU455 of spike protein with a bond length of 2.067 Å [81].
Based on the results of ADV (Table 6), higher binding affinities towards 6VSB and 6VWW
were found for EGCG, namely −9.9 and −7.3 kcal/mol, compared to those found for
quercetin with the values of −7.6 and −6.1 kcal/mol, respectively. In a comparative study,
gallocatechin gallate, EGCG, quercetin, puerarin, and daidzein flavonoids exhibited IC50
(50% inhibitory concentration or half-maximal effective concentration) values of 47, 73,
73, 381, and 351 µM, respectively, for inhibition of SARS-CoV replication. Furthermore,
docking scores of −14.1, −11.7, −10.2, −11.3, and −8.6 have been found for gallocatechin
gallate, EGCG, quercetin, puerarin, and daidzein, respectively [82]. In another study, EGCG
had an IC50 value of 0.874 µM with the binding energy of −7.9 kcal/mol against 3CLpro

SARS-CoV-2 [83]. In the case of EGCG, plaque reduction neutralization antibody tests
confirmed the inhibition of a SARS-CoV-2 strain at PRNT50 = 0.20 µM titer [61].
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Table 6. The docking results of ADV for EGCG and quercetin toward 6VSB and 6VWW. Only two
best modes are presented for each compound (RMSD/L.B: root-mean-square deviation, lower bound;
RMSD/U.B: root-mean-square deviation, upper bound).

Ligand Binding Affinity (kcal/mol)
for 6VSB

Binding Affinity (kcal/mol)
for 6VWW

EGCG
−9.9 −7.3
−9.8 −7.2

Quercetin
−7.6 −6.1
−7.4 −5.9

Molecular Electrostatic Potential

Based on the optimized geometry obtained using GaussView 5.0.8 software, the electric
field potentials of EGCG and quercetin were identified as electrophilic and nucleophilic
regions by the ground state method, with Hartee-fock at default spin and basis set of 3–21G.
As depicted in Figure 8a,b, EGCG is a polyphenol, the ester of epigallocatechin and gallic
acid, and is composed of a 22-carbon skeleton bonded by 18 hydrogens and 11 oxygens.
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Quercetin as a flavonoid compound has three aromatic rings with a 15-carbon skeleton
bonded by oxygen atoms encapsulated in a heterocyclic ring (Figure 9a,b) [60–62]. In
Figures 8c,d and 9c,d, a higher density of electrons is shown in red color and a lower
density of electrons is shown in blue color. The aromatic ketone of EGCG and quercetin
with more electrons can be attacked by electrophilic residues in ligand-binding cavities. In
contrast, blue regions are suitable sites for nucleophilic attacks [84]. In this way, three amino
acids with basic side chains and positive charge, namely lysine (a propylamine substituent
on the β-carbon), arginine (guanidino group), and histidine (imidazole functional group)
can contribute to this interaction [85,86]. The high kinetic stability of a compound can be a
result of a large HOMO-LUMO gap [87].
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4. Conclusions

The global spread of SARS-CoV-2 has led to an urgent requirement for finding effective
targets for eradicating this virus. In silico study is one of the major strategies for surveying
the activity of new drugs and bioactive compounds by computational structure-based drug
discovery because it is cost-effective relative to the experimental studies. Active and passive
targeting of viruses by new effective biocompatible materials is a vital measure for hin-
dering viral infections, specifically SARS-CoV-2 infections. The natural compound–virus
interface and the corresponding viral responses are crucial for determining the level of
antiviral activity for each natural therapeutic agent. It is clear in the present time that
there are no certain effective therapies for COVID-19, while the side effects of available
antiviral drugs constitute a great disadvantage. In this in silico study, CB-Dock exhibited
Vina scores of −9.9 and −8.8 for EGCG against 6VSB and 6VWW and −8.3 and −8.2 for
quercetin against 6VSB and 6VWW. DockThor showed affinity values of −7.056 kcal/mol
and −6.891 kcal/mol for EGCG and quercetin toward 6VWW. According to the result of
ADV, higher binding affinities towards 6VSB and 6VWW were found for EGCG (−9.9 and
−7.3 kcal/mol, respectively) than for quercetin (−7.6 and −6.1 kcal/mol, respectively).
Additionally, molecular electrostatic potential showed that aromatic ketone of EGCG and
quercetin with a higher density of electrons can be attacked by the electrophilic amino
acids of the spike glycoprotein of SARS-CoV-2. It should be noted that docking comparison
of EGCG and quercetin with other main secondary metabolites is indispensable. Overall,
this study showed that EGCG had stronger affinities toward two receptors 6VSB and
6VWW compared to quercetin, which may be considered for formulation as micro- and
nanosized antiviral drugs against SARS-CoV-2 infections. Based on the results of molecular
electrostatic potential, the aromatic ketone of EGCG and quercetin with more electrons
can be attacked by electrophilic residues in ligand-binding cavities of 6VWW and 6VSB. In
this regard, three amino acids with basic side chains and positive charge, namely lysine,
arginine, and histidine, can contribute to this interaction. There are main limitations includ-
ing low tissue exposure/selectivity and low specificity/potency for clinical applications
of natural drugs. Therefore, it is critical to obtain effective doses and their stability (half-
life) in physiological conditions, which may be possible using nanoformulations (solid
lipid nanoparticles, liposomes, and polymeric nanoparticles) of these natural compounds.
Moreover, new technologies involving tissue diffusion chambers, single-organ chips, and
body-on-a-chip can accelerate clinical development of natural drugs.
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