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Abstract: Hypoxia–ischemia encephalopathy results from the interruption of oxygen delivery and
blood flow to the brain. In the developing brain, it can lead to a brain injury, which is associated with
high mortality rates and comorbidities. The hippocampus is one of the brain regions that may be
affected by hypoxia–ischemia with consequences on cognition. Unfortunately, clinically approved
therapeutics are still scarce and limited. Therefore, in this study, we aimed to test three repurposed
drugs with good pharmacological properties to evaluate if they can revert, or at least attenuate, the
deleterious effects of hypoxia–ischemia in an in vitro model. Edaravone, perampanel, and metformin
are used for the treatment of stroke and amyotrophic lateral sclerosis, some forms of epileptic status,
and diabetes type 2, respectively. Through cell viability assays, morphology analysis, and detection of
reactive oxygen species (ROS) production, in two different cell lines (HT-22 and SH-SY5Y), we found
that edaravone and low concentrations of perampanel are able to attenuate cell damage induced by
hypoxia and oxygen-glucose deprivation. Metformin did not attenuate hypoxic-induced events, at
least in the initial phase. Among these repurposed drugs, edaravone emerged as the most efficient
in the attenuation of events induced by hypoxia–ischemia, and the safest, since it did not exhibit
significant cytotoxicity, even in high concentrations, and induced a decrease in ROS. Our results also
reinforce the view that ROS and overexcitation play an important role in the pathophysiology of
hypoxia–ischemia brain injury.

Keywords: hypoxia–ischemia; edaravone; perampanel; metformin; OGD; ROS; overexcitation

1. Introduction

Oxygen and glucose are both essential for normal brain activity. Hypoxia–ischemia
results from the combination of a lack of oxygen and blood flow interruption, and, during
development, it can lead to brain injury, clinically manifested as encephalopathy and
seizures. These conditions are very prevalent in neonates, particularly preterm ones, being
the leading cause of neonatal deaths. They are also commonly associated with important
neurological disabilities in those that survive [1,2].
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Brain injury due to hypoxia–ischemia is an evolving process that can be divided into
three periods [3]. The first one starts immediately after the insult, lasts approximately 6 h,
and corresponds to the primary energy failure phase. In this phase, due to the decreased
supply of oxygen and glucose, cells switch to anaerobic metabolism, increasing lactate
production and decreasing adenosine triphosphate (ATP) production [4]. Consequently,
membrane ion pumps start to fail and lead to sodium and calcium accumulation within
the cells, thus releasing, from degrading structures, excitatory neurotransmitters, such
as glutamate [3,5]. Glutamate is a neurotransmitter that stimulates different neuro-glial
receptors, namely N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid (AMPA) receptors. When in excessive amounts, it promotes a
cascade response that eventually leads to excitotoxicity and reactive oxygen and nitrogen
species production [6]. In the secondary energy failure phase (6 to 72 h after the insult),
reperfusion is restored, which can intensify cell injury despite limiting brain damage. In
the meantime, excitotoxic neurotransmitters and free radicals continue to be released,
and reactive oxygen species (ROS), as well as other reactive species, are produced, thus
leading to aggravation of mitochondrial dysfunction, cell death, and induction of brain
self-inflammatory response [4,7]. Eventually, lesions begin to heal or settle into a chronic
inflammation phase. Different mechanisms may occur during this tertiary phase (lasting
months to years), including epigenetics and inflammatory changes that may induce cell
death, repair, or remodeling [2,8].

Overall, neonatal hypoxia–ischemia brain injury evolves over time, which creates
a window of treatment opportunity. There are different treatment approaches targeting
the critical times of the different phases. Namely, for the first phase, it makes sense to try
neuroprotective glutamate receptor blockers and free radical scavenger drugs [3]. After
the initial phase, it is sensible to focus on anti-inflammatory, neuroprotective, and nerve
regenerating drugs in order to restrain injury and promote healing. However, at present,
therapeutic interventions that are clinically approved for the treatment of neonatal hypoxia–
ischemia brain injury are still very limited [1]. Using repurposed drugs is potentially one
way to progress faster and achieve efficient treatments. Among the repurposed drugs, we
selected edaravone, perampanel, and metformin (Scheme 1).
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Scheme 1. Structure of the repurposed drugs used in this study: (a) Edaravone, (b) Perampanel, and
(c) Metformin.

Edaravone is a free radical scavenger [9], already approved for the treatment of amy-
otrophic lateral sclerosis and stroke [10]. It plays an important role not only in quenching
free radicals and inhibiting lipid peroxidation [11], but also in exerting protective effects,
such as anti-oxidative and pro-inflammatory responses [12].

Perampanel is an antagonist of the AMPA glutamate receptors and, therefore, is
involved in inhibiting neuronal overexcitation, which may lead to neuronal protection. It
has shown positive effects on seizure control in children and adults [13,14].

Metformin has been widely used to treat diabetes type 2 and is being investigated
for the treatment of metabolic syndrome [15]. Its primary pharmacological activities
(antioxidant and anti-inflammatory properties) can be mainly mediated by the activation of
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AMP-activated protein kinase (AMPK), which subsequently may modulate oxidative stress,
prevent mitochondrial damage, and enhance angiogenesis [16,17]. Overall, metformin is
potentially neuroprotective.

Due to their properties, these drugs have been intensely investigated for prevent-
ing neuronal damage and treating brain disorders. For instance, edaravone has already
been studied for its potential to decrease neuronal deficits consequent to traumatic brain
injury [18], cerebral ischemia [10,19,20], and even in a hypoxia–ischemia model [21]. Met-
formin also has been vastly investigated in stroke, ischemia, and dementia [17]. However,
until now, there are insufficient studies that have focused on the effects of these drugs and
their effects on hypoxia–ischemia brain injury.

Hence, in this work, we aimed to repurpose edaravone, perampanel, and metformin
drugs in a cell-induced hypoxia–ischemia model. Using cell viability as well as ROS
production, we first sought to focus on these drugs’ effects on two different cell lines,
hippocampal HT-22 cells and neuroblastoma cells. Secondly, we wanted to test their
potential beneficial effects on two different models of hypoxia, one using only a hypoxic
atmosphere and the other using oxygen–glucose deprivation. Drugs were tested in several
concentrations and times of exposure.

2. Materials and Methods
2.1. Materials

Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum (FBS), and
penicillin–streptomycin mixture were obtained from Millipore Sigma (Merck KGaA, Darmstadt,
Germany). Dulbecco’s Modified Eagle’s Medium with no glucose (cat. no. 11966025) was
obtained from Gibco (Thermo Fisher Scientific, Inc, Waltham, MA, USA). Thiazolyl blue
tetrazolium bromide (MTT; cat. no. M5655), neutral red solution (NR; cat. no. N2889),
sulforhodamine B (SRB; cat. no. S1402), 2, 7- dichlorofluorescein diacetate (DCFH-DA; cat.
no. D6883), edaravone (cat. no. M70800), and metformin (cat. no. 317240) were obtained
from Sigma–Aldrich (Merck, Algés, Portugal). Perampanel (cat. no. 23003) was obtained
from Cayman (Tallinn, Estonia).

2.2. Cell lines and Cell Culture

The immortalized mouse hippocampal HT-22 cell line was kindly offered by Mito-
chondria and Neurodegenerative Disorders, CNC group. Human SH-SY5Y neuroblastoma
cells were obtained from ATCC (American Type Culture Collection, Manassas, VA, USA).
Both cell lines were maintained, according to recommendations, at 37 ◦C and 5% CO2, in
DMEM medium supplemented with 10% FBS and 1% of an antibiotic mixture (penicillin
and streptomycin). The medium was changed at least twice a week and trypsinized once a
week, and it was only made when cells reached 80% or more confluence. Cells were seeded,
in 96-well plates, at a density of 1 × 104 cells/mL for HT-22 cells and at 1 × 105 cells/mL
for SH-SY5Y cells. After seeding, cells were allowed to adhere for 24 h, before exposure to
the different treatments.

2.3. Cells Treatment

Edaravone and perampanel were dissolved in DMSO (0.1% in cell culture medium)
and metformin in sterilized water (1% in cell culture medium). The three drugs were tested
in cells with concentrations ranging from 0.1 to 100 µM. All treatments were performed for
6, 24, 48, and 72 h after cell attachment. For each drug, control wells were added with 0.1%
of DMSO or 1% of sterilized water.

2.4. Oxygen Glucose Deprivation and Hypoxia Models

In oxygen–glucose deprivation (OGD) and hypoxia experiments, twin plates were
created, and the induction model was performed as previously described [22,23]. For
hypoxia, one twin plate was placed in a hypoxia incubator chamber (StemCell cat no.27310),
with a 2% O2, 10% CO2, and 88% N2 atmosphere, while the other twin plate was placed
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in normoxia (21% O2). Similarly, in OGD experiments, one twin plate was placed in the
hypoxia incubator chamber, while the other twin plate was placed in normoxia. However,
in this model, the plate submitted to hypoxia was cultured in DMEM-free glucose medium.

2.5. Cell Morphology Assessments

Cell morphology was assessed using a Leica DMI6000 B automated microscope (Wetzlar,
Germany). After all treatments, cell morphology was examined and images were captured
using Leica LAS X imaging software v3.7.4 (Leica Microsystems, Wetzlar, Germany).

2.6. Cell Viability Assays

At the end of the incubation periods, cellular viability was assessed using MTT, SRB,
and NR assays. For the MTT assay, the cell medium was removed, and 100 µL of MTT
solution (0.5 mg/mL in PBS) was added to each well, followed by 3 h of incubation
protected from light. Then, the solution was aspirated and DMSO (100 µL/well) was
added to solubilize formazan crystals. Absorbance was then measured at 570 nm, using
an automated microplate reader (Tecan Infinite M200, Tecan Group Ltd., Männedorf,
Switzerland). To perform the SRB protocol, the cell medium was removed, and cells were
firstly washed with PBS solution. After that, cells were fixed with 10% cold trichloroacetic
acid for 30 min and subsequently stained, protected from light, with 200 µL/well of
SRB for 1 h. Afterwards, the plate was washed with tap water several times to remove
excess dye. Finally, the dye bound to the proteins was dissolved with Tris-NaOH solution
(10 mM). Absorbance was measured using a microplate reader with a wavelength of
540 nm (Tecan Infinite M200, Tecan Group Ltd., Männedorf, Switzerland). For the NR
assay, 100 µL of the NR medium (1:100 in culture medium) was added to each well after
the cell medium removal. After 3 h of incubation, cells were washed with 150 µL of PBS,
and 150 µL of NR destain solution was added to each well. Afterward, absorbance at
540 nm was measured by using the microplate reader (Tecan Infinite M200, Tecan Group
Ltd., Männedorf, Switzerland).

2.7. ROS Evaluation

Intracellular ROS production was measured using the fluorescent dye, DCFH-DA.
Prior to drug exposure, cells were incubated for 30 min with 100 µL of DCFH-DA diluted
in 1000× culture media. At the incubation end, the solution was removed, and cells
were incubated with the respective drugs. Then, fluorescence was detected after the 6,
24, and 48 h treatment periods using a fluorescence plate reader (SpectraMax Gemini EM
Microplate Reader, Molecular Devices, San Jose, California), with filters at 485 nm excitation
and 530 nm emission.

2.8. Statistical and Data Analyses

GraphPad Prism 8 was used to perform statistical analysis and design graphs. The
results are presented as the mean ± SEM of three independent experiments. Statistical
analyses between control and treatment conditions were achieved with one-way ANOVA
test. Statistical significance was considered when p-value < 0.05, being indicated in graphs
as *, **, ***, and **** representing p < 0.05, p < 0.01, p < 0.001, and p < 0.0001, respectively.

3. Results
3.1. Effects of Edaravone, Perampanel, and Metformin on Cell Viability of HT-22 Cells
3.1.1. HT-22 Cell Viability, Evaluated by MTT Assay, after 6, 24, 48, and 72 h of Treatment

Firstly, we investigated the effects of increasing concentrations, ranging from 0.1 to
100 µM, of edaravone, perampanel, and metformin on HT-22 cells treated for 6, 24, 48,
or 72 h. The results are expressed as the percentage of viable cells after 6 (Figure 1A), 24
(Figure 1B), 48 (Figure 1C), or 72 (Figure 1D) hours of treatment.
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Figure 1. Effects of edaravone, perampanel, and metformin on the viability of HT-22 cells, at different
time points of exposure. (A) 6-h treatment; (B) 24-h treatment; (C) 48-h treatment; (D) 72-h treatment.
Cell viability was assessed by using the MTT assay. Results are expressed as the percentage of cell
viability relative to the respective untreated control cells. *, **, ***, and **** indicate p < 0.05, p < 0.01,
p < 0.001, and p < 0.0001, respectively, when compared to control. All data are presented as the
mean + SEM of three independent experiments.
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Our results revealed that the effects of the drugs tested varied as a function of drug
concentration and duration of treatment. There was a tendency for edaravone to increase
cell viability at all time points when compared to the control. Specifically, after 6 h of
treatment, the lower concentrations (0.1, 1, and 25 µM) significantly increased cell viability,
an effect that was not apparent when higher concentrations were used. However, after more
prolonged treatment periods, particularly after 24 and 48 h, cell viability was significantly
increased when the higher concentrations (25, 50, and 100 µM) were used. Relative to
perampanel, only the treatment of 6 h with the two lower concentrations significantly
increased cell viability. More prolonged treatments had either no effect on cell viability
when the lower concentrations were used or significantly decreased cell viability when
the higher concentrations were employed. When in lower concentrations (0.1 and 1 µM),
metformin significantly increased cell viability only after 6 h of treatment, but it had no effect
after more prolonged treatments. A higher concentration of metformin (0.25 to 100 µM)
significantly decreased cell viability after 24 h of treatment but had no effect afterward.

The period of 48 h is the most used in this type of experiment since the drug has time
to act, and yet there are no major changes in its composition [24]. As expected, 24- and 48-h
treatments were the ones that showed better drug activities. Therefore, hereafter, we used
48-h treatment for the main tests.

3.1.2. HT-22 Cell Viability, Evaluated by MTT, SRB and NR Assays, after 48 h of Treatment

We proceed to evaluate whether the assay method influenced the effects of edaravone,
perampanel, and metformin on HT-22 cell viability. Thus, we estimated HT-22 cell survival
after 48 h of treatment with increasing concentrations of the drugs, using different indirect
viability assay methods (MTT, SRB, and NR). The results show that not all assays measure
cell viability at equal sensitivity. After 48 h of treatment, edaravone increased cell viability,
particularly at high concentrations (50–100 µM), as shown by the MTT and SRB assays, but
not by the NR assay (Figure 2A). In contrast, the effect of high concentrations (25–100 µM)
of perampanel in decreasing cell viability was apparent using all assays. However, the
MTT assay seemed more sensitive in detecting changes between drug concentrations
(Figure 2B). Relative to metformin, the results were also similar for MTT, SRB, and NR
methods (Figure 2C). However, with this drug, only the NR assay was able to demonstrate
a slight, although significant, decrease in cell viability at concentrations higher than 25 µM.
Overall, the MTT assay seems to be a more sensitive method to detect small changes for
edaravone and perampanel and the NR assay for metformin.

3.1.3. Morphological Analysis of HT-22 Cells after 48 h of Treatment with Increasing
Concentrations of Edaravone, Perampanel, and Metformin

As shown in Figure 3, cells submitted to drug treatments display a normal and
healthy morphology, except for those treated with higher concentrations of perampanel.
After 48 h of treatment with high concentrations of perampanel, HT-22 cells were fewer,
compared to the control, indicating a decrease in cell viability. However, treatment with
higher concentrations of edaravone (25–100 µM) was associated with a visible increase
in cell density. Lastly, treatments with metformin did not appear to induce changes in
cell morphology or cell density. Globally, this morphological analysis corroborates the
results obtained with MTT, SRB, and NR assay methods, reinforcing that MTT is the most
representative viability assay.

3.2. Effects of Edaravone, Perampanel and Metformin on Viability of SH-SY5Y Cells

To complement our results of edaravone, perampanel, and metformin on HT-22
cells, we also tested the same drugs on another cell line, widely used in experimental
neurological studies, the SH-SY5Y neuroblastoma cell line. The cytotoxic effects detected
after 48 h of treatment using the MTT assay were globally similar to those observed in HT-
22 cells (Figure 4). There was a tendency for edaravone to increase cell viability at higher
concentrations, but the differences were significant relative to the respective controls only
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at concentrations of 100 µM. Similar to HT-22 cells, perampanel also significantly decreased
cell viability at higher concentrations (50–100 µM), compared to the respective control.
Again, and similar to HT-22 cells, treatment with different concentrations of metformin in
this cell line did not result in any significant variation in cell viability.
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Figure 2. Effects of (A) Edaravone, (B) Perampanel, and (C) Metformin treatment on HT-22 cells
viability, evaluated by three different assays. Protein content and cell viability were assessed by SRB
(middle panel) and MTT and NR (left and right panel) assays, after 48 h of exposure. Results are
expressed as the percentage of cell viability relative to the respective untreated control cells. *, **, ***,
and **** indicate p < 0.05, p < 0.01, p < 0.001, and p < 0.0001, respectively, when compared to control.
All data are presented as the mean + SEM of three independent experiments.
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Figure 3. Microscopic representative images of HT-22 control cells and cells after 48-h exposure to
concentrations ranging from 0.1 to 100 µM of edaravone, perampanel, and metformin. Images of
cell morphology were obtained on a Leica microscope equipped with Leica LAS X imaging software
v3.7.4 (Leica Microsystems, Wetzlar, Germany) from three independent experiments. Scale bar:
50 µm.
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Figure 4. Effects of (a) Edaravone, (b) Perampanel, and (c) Metformin treatment for 48 h on SH-SY5Y
cells viability. Cell viability was assessed by MTT assay. Results are expressed as the percentage
of cell viability relative to the respective untreated control cells. * and ** indicate p < 0.05 and
p < 0.01, respectively, when compared to control. All data are presented as the mean + SEM of three
independent experiments.
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Morphological Analysis of SH-SY5Y Cells after 48 h of Treatment with Increasing
Concentrations of Edaravone, Perampanel, and Metformin

The analysis of the morphology of SH-SY5Y cells (Figure 5) corroborates the cell
viability results obtained (Figure 4). Cell density appears to be higher in edaravone-treated
cells than controls, but cell morphology is apparently unchanged. Moreover, when in high
concentrations, perampanel seems to be cytotoxic because it appears to decrease cell density.
Metformin treatments did not significantly alter cell density or morphology. Overall, the
morphological analyses are in accordance with data obtained on the viability of SH-SY5Y
cells, evaluated using the MTT assay.
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3.3. Effects of Hypoxia on HT-22 and SH-SY5Y Cells

We also analyzed treatment effects with increasing concentrations of edaravone, per-
ampanel, and metformin, for 48 h, on both HT-22 and SH-SY5Y cells, maintained for 48 h,
under hypoxia conditions. The cell viability results, estimated using the MTT assay, and
cell morphology were compared with data obtained from cells of the same lines maintained
under a normoxia environment.

3.3.1. HT-22 Cells under Hypoxia Conditions

Our results showed that hypoxia, by itself, reduced HT-22 cell viability (Figures 6 and 7).
After 48 h of hypoxia (Figure 6), all controls under hypoxia showed a significant reduction
in cell viability compared to the normoxia control (Figure 6a). After 48 h of treatment, on
HT-22 cells under hypoxia with edaravone, there was an increase in cell viability that reached
significant levels in cells treated with higher concentrations (50–100 µM) (Figure 6b). There
was a similar trend for cells treated with perampanel (Figure 6c) and metformin (Figure 6d),
particularly at lower concentrations (0.1–1 µM), but the differences did not reach statistically
significant levels.

In another experiment delineated to analyze the second phase of hypoxia–ischemia
brain injury and correlate with the injury in humans (first, the injury happens, and only
after, the treatment is started), we applied the same drugs for 24 h after only 24 h of
hypoxia (Figure 7). It was observed that 24-h hypoxia tends to decrease cell viability, albeit
only significantly for hypoxia-control but not for the other vehicle controls (Figure 7a).
Interestingly, edaravone significantly increased cell viability, even when administered
at concentrations ranging from 25 to 100 µM (Figure 7b). Conversely, both perampanel
(Figure 7c) and metformin (Figure 7d) treatments had no beneficial effects on cell viability.
Metformin even significantly decreased cell viability when applied for 24 h after 24 h
of hypoxia.
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viability. Hypoxia and drugs were applied simultaneously for 48 h. (a) Controls graph, comparing 

Figure 6. Effects of hypoxia, and edaravone, perampanel, and metformin treatments on HT-22 cells
viability. Hypoxia and drugs were applied simultaneously for 48 h. (a) Controls graph, comparing
controls/vehicles under hypoxic conditions to normoxia ones. (b) Edaravone, (c) Perampanel,
and (d) Metformin treatments, while under hypoxia. Cell viability was evaluated by using the
MTT assay. Results are expressed as the percentage of cell viability relative to respective untreated
hypoxia control cells. * and ** indicate p < 0.05 and p < 0.01, respectively, when compared to the
respective control under hypoxia conditions. All data are presented as the mean + SEM of three
independent experiments.
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Figure 7. Effects of 24 h of hypoxia followed by 24-h exposure to edaravone, perampanel, and met-
formin on HT-22 cells viability. (a) Controls graph, comparing controls/vehicles in hypoxic conditions
to normoxia ones. (b) Edaravone, (c) Perampanel, and (d) Metformin treatments, after 24 h under
hypoxia. Cell viability was assessed by MTT assay. Results are expressed as the percentage of cell
viability relative to the respective untreated hypoxia control cells in (b–d). * p < 0.05 when compared
to hypoxia control. All data are presented as the mean + SEM of three independent experiments.

Moreover, after 48 h of hypoxia, it was clearly visible that there were both morpho-
logical and cell density differences between cells in normoxia and hypoxia. Specifically,
the cell density was lower in those submitted to hypoxia, and these cells displayed a more
rounded shape (Figure 8).
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Figure 8. Representative images of HT-22 cells submitted to normoxia (left) and hypoxia (right) con-
ditions for 48 h. Images of cell morphology were obtained using a Leica microscope equipped with
Leica LAS X imaging software v3.7.4 (Leica Microsystems, Wetzlar, Germany). Scale bar: 50 µm.

3.3.2. Morphological Analysis of HT-22 Cells after 48 h of Treatment with Edaravone,
Perampanel, and Metformin under Hypoxia Submission for 48 h

As shown globally in Figure 9, treated cells displayed a higher cell density and a
more normal cell morphology. Namely, when compared to the respective hypoxia controls,
edaravone and perampanel higher (50–100 µM) and lower concentrations (0.1–1 µM),
respectively, promoted cell density increase and a healthier morphology appearance. These
morphological results corroborate cell viability results described in Figure 6. On the other
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hand, the hypoxia cells treated with metformin appeared to increase cell density, which is
not as visible and accentuated in the cell viability plot in Figure 6.
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3.3.3. SH-SY5Y under Hypoxia Conditions

The response to hypoxia of SH-SY5Y cells was different from that observed for HT-
22 cells. Specifically, hypoxia did not reduce cell viability, and it even showed a trend
towards increasing it, albeit not significantly, as can be seen in the control cell viability
graph (Figure 10a) and in the respective representative images (Figure 11). Consequently,
drug treatment (Figure 10) had no major effects on cell viability, except for 50 µM of
perampanel, which significantly reduced cell viability. Regarding cell morphology, in
hypoxia conditions, they appear to be as expected, pyramidal; however, it is visible that
some are more rounded. These results suggest that SH-SY5Y can not only survive but even
thrive in a hypoxic environment.
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Figure 10. Effects of hypoxia, and edaravone, perampanel, and metformin treatments on SH-SY5Y
cells viability. Hypoxia and drugs were applied simultaneously for 48 h. (a) Controls graph, com-
paring controls/vehicles in hypoxic conditions to normoxia ones. (b) Edaravone, (c) Perampanel,
and (d) Metformin treatments, while in hypoxia. Cell viability was assessed by MTT assay, to each
treatment after exposure. Results are expressed in the percentage of cell viability relative to untreated
hypoxia-control cells and submitted to hypoxia in (b–d). * indicate p < 0.05, when compared to
hypoxia-control. All data are presented as the mean + SEM of three independent experiments.
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Figure 11. Representative images of SH-SY5Y cells submitted to normoxia (left) and hypoxia
(right) conditions for 48 h. Images of cell morphology were obtained using Leica microscope equipped
with Leica LAS X imaging software v3.7.4 (Leica Microsystems, Wetzlar, Germany). Scale bar: 50 µm.

3.4. Effects of Oxygen-Glucose Deprivation on HT-22 Cells

OGD represents a severe challenge for cells, mimicking hypoxia–ischemia insults. Our
results show that OGD significantly decreased the viability of HT-22 cells in all control
groups, both after 6 (Figure 12A) and 48 (Figure 12B) hours of deprivation. As expected,
the decrease was more severe after 48 h than after 6 h of deprivation.
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Figure 12. Effects of oxygen–glucose deprivation (OGD) and edaravone, perampanel, and metformin
treatments for 6 (A) and 48 (B) hours on HT-22 cells viability. (a) Controls graph, comparing
controls/vehicles in OGD conditions to standard medium. (b) Edaravone, (c) Perampanel, and
(d) Metformin treatments, while in OGD conditions. Cell viability was assessed by MTT assay.
Results are expressed as the percentage of cell viability relative to untreated control cells submitted to
OGD. *, **, *** and **** indicate p < 0.05, p < 0.01, and p < 0.001, respectively, when compared to the
respective control. All data are presented as the mean + SEM of three independent experiments.

During the 6-h period, edaravone and perampanel showed a trend to increase cell
viability, compared to the respective OGD-treated control. However, only in the 48-h period
did the differences achieve significant levels in some concentrations (100 µM for edaravone
and 0.1–1 µM for perampanel; Figure 12). As previously shown, perampanel at higher
concentrations reduced cell viability. Metformin did not significantly alter the viability of
HT-22 cells under OGD conditions (Figure 12).

The morphology of cells submitted to OGD was altered. Cells showed a smaller and
more rounded shape, with longer prolongations than controls. Their density was also
clearly reduced (Figure 13).
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Figure 13. Representative images of HT-22 cells morphology, both under normal or Oxygen-Glucose
Deprivation conditions during 48 h. Images of cell morphology were obtained using a Leica micro-
scope equipped with Leica LAS X imaging software v3.7.4 (Leica Microsystems, Wetzlar, Germany).
Scale bar: 50 µm.
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Morphological Analysis of HT-22 Cells after 6 and 48 h of Treatment with Edaravone,
Perampanel, and Metformin under Oxygen Glucose Deprivation Submission

Figures 14 and 15 show treated HT-22 cells morphology that were subjected to OGD for
6 and 48 h, respectively. The cells subjected to 6 h of OGD appear to undergo morphological
changes, although these are not as prominent as those observed from the extensive injury
caused by 48 h of OGD. In the 6-h treatment images, slight changes in perampanel cell
density were observed, with an explicit increase of 0.1 µM, which is in accordance with the
graphs in Figure 12A.
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Figure 14. Microscopic representative images of HT-22 oxygen–glucose deprivation (OGD) control
cells and HT-22 cells exposed for 6 h to OGD and concentrations, ranging from 0.1 to 100 µM, of
edaravone, perampanel, and metformin. Images of cell morphology were obtained using a Leica
microscope equipped with Leica LAS X imaging software v3.7.4 (Leica Microsystems, Wetzlar,
Germany) from three independent experiments. Scale bar: 50 µm.
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Figure 15. Microscopic representative images of HT-22 oxygen–glucose deprivation (OGD) control
cells and HT-22 cells exposed for 48 h to OGD and concentrations, ranging from 0.1 to 100 µM,
of edaravone, perampanel, and metformin. Images of cell morphology were obtained using a
Leica microscope equipped with Leica LAS X imaging software v3.7.4 (Leica Microsystems, Wetzlar,
Germany) from three independent experiments. Scale bar: 50 µm.

Despite the results from Figure 12B, there were no major changes, especially in mor-
phology (Figure 15), between the different drug concentrations and the respective controls.
However, the representative image of 100 µM edaravone treatment showed a greater num-
ber of rounded cells, which could be the reason for the statistical significance in Figure 12B.
Finally, regarding morphological analysis, the individual administered drugs could not
recover the cells to a healthy and normal morphology when submitted to an OGD insult.
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3.5. Reactive Oxygen Species Measured on HT-22 Cells Submitted to OGD and Treated with
Edaravone, Perampanel, and Metformin

Reactive oxygen species can be estimated and detected using DCFH-DA dye, which
becomes fluorescent with ROS generation. This experiment was performed with time
points of 6, 24, and 48 h.

As expected, ROS production was increased, at all different time points, in OGD
conditions. Notably, treatment of HT-22 cells submitted to OGD with the three drugs
decreased ROS production, when compared to the control group. However, the decrease
was greater with edaravone, where we observed significantly lower levels of ROS when
cells were treated with higher concentrations of edaravone. This result reinforces the view
that edaravone may protect cells submitted to hypoxic insults. Perampanel and metformin
decreased ROS production when compared to the control. However, as the concentration
increases for both of them, there is also an increase in ROS production, indicating that
higher concentrations may induce cytotoxic effects. (Figure 16).
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Figure 16. Protective efficacy of edaravone, perampanel, and metformin in HT-22 cells exposed to
oxygen–glucose deprivation (OGD) over 6 (A), 24 (B), and 48 (C) hours. DCFDA fluorescence (dye of
ROS generation) change percentage (%) of the different concentrations of edaravone, perampanel, and
metformin, exposed to OGD. Results are expressed as the percentage of DCFDA fluorescence relative
to control cells, in normal conditions. Results were assessed by fluorescence plate reader (SpectraMax
Gemini EM Microplate Reader, Molecular Devices, San Jose, California), 485 nm excitation and
530 nm emission. Data are presented as the mean ± SEM of three independent experiments.
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Since edaravone was the drug that stood out as the most efficient in decreasing ROS
production, we evaluated its effects in a more detailed way. As observed in Figure 17a, 6 h
of treatment was not enough to significantly decrease ROS production in cells submitted to
OGD. However, after 24 h (Figure 17b) as well as after 48 h (Figure 17c) of treatment, all
edaravone concentrations were able to significantly decrease ROS detection in HT-22 cells
submitted to OGD insult. These results reinforce the view that edaravone may protect cells
submitted to hypoxic insults, possibly by reducing toxic species production in hypoxia
injured HT-22 cells.
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4. Discussion

Neonatal brain injury due to hypoxia–ischemia is an important health problem and
is associated with severe neurologic disabilities. Despite advances in the knowledge
about the effects of hypoxia–ischemia events in the brain, clinically approved therapeutic
interventions for preterm and neonatal hypoxia–ischemia are scarce. In this way, we
aimed to test three repurposed drugs commonly used for brain disease treatments, to
see if they could revert or at least attenuate hypoxia–ischemia-induced alterations. We
used edaravone, perampanel, and metformin, which have already been approved for the
treatment of several pathologies and seem to have interesting properties in oxygen and
glucose deprivation, namely hypoxia–ischemia insults.

Firstly, we tested how the hippocampal HT-22 cells and SH-SY5Y cells react to the
treatment with edaravone, perampanel, and metformin. Among the panoply of brain cell
lines, we chose the HT-22 cell lines because it is an established cell line to study neurotoxicity
and also because we aim to study, in the future, the potential beneficial effects of these
drugs on the treatment of the well-known impairment of learning and memory processes
associated with hypoxia–ischemia events [25], particularly in prematurity [26]. Moreover,
and for comparative purposes, we decided to test the same drugs in another brain cell line,
namely the neuroblastoma SH-SY5Y cell line, to examine whether the potential effect of
these drugs is global or, otherwise, specific to some neuronal cell lines. In this way, we
tested if these drugs, in a vast range of concentrations and duration of exposure, were
cytotoxic to the HT-22 and SH-SY5Y cell lines.



Biomedicines 2022, 10, 3043 19 of 22

Not surprisingly, we found that edaravone increased cell viability in both types of
cells at all time points compared to the control. Our data corroborate several previous
reports that have consistently demonstrated that edaravone increases cell viability, has
neuroprotective properties [27–29], and is a safe drug, at least for the types of cell lines
herein studied. Interestingly, both perampanel and metformin had the capacity to increase
cell viability when applied during a short period (6 h) and at low concentrations (0.1–1 µM).
However, they had no impact on cell viability at medium concentrations and were cytotoxic
at higher concentrations (more than 50 µM) and more prolonged treatments (more than
24 h), particularly for perampanel. Although not as efficient as edaravone, metformin
and perampanel also can increase cell viability, which is in line with data from previous
studies [30,31]. Although these effects of perampanel were particularly obvious when
using the MTT assay, which we have demonstrated to be more precise and sensitive to
small changes in both cell lines, they were similar to those obtained with the other viability
assays used in the present study.

After we tested the cytotoxicity of the present drugs, we then proceeded to evaluate
their potential effects in hypoxia–ischemia conditions. In the present work, we used two
cellular models of hypoxia–ischemia, one with a hypoxic atmosphere and another that
included the association between a hypoxic atmosphere and glucose deprivation. We found
that both hypoxic atmosphere and oxygen–glucose deprivation significantly reduced HT-22
cell viability and induced noticeable alterations in their morphology, which was dependent
on the time of exposure, corroborating previous studies that have also used hypoxia [32]
and oxygen–glucose deprivation [33] cell models. Interestingly, in the neuroblastoma cell
line, the hypoxia conditions increased cell viability, despite inducing small morphological
changes. Although, we were expecting that this degree of hypoxia could induce significant
alterations, even in neuroblastoma cells. This finding was not completely surprising,
since it was previously found that hypoxia could favor neuroblastoma cell line survival
and proliferation [34–36]. Indeed, this could be explained by the activation of different
transcriptional programs driven by hypoxia-inducible factors (HIFs) [37] affecting the cell
cycle and proliferative status. The HIFs’ effects are context and cell type dependent. In
particular, in tumor cells, the genes regulated by these molecules are highly expressed,
allowing adaptation mechanisms [38]. Nevertheless, despite the absence of significant
alterations in neuroblastoma cells using the present hypoxia model, we decided to test the
efficiency of edaravone, metformin, and perampanel also in these cells to see if these drugs
were able to improve cell viability during and after the insults.

Among the drugs used in the present study, edaravone was the most efficient in
treating the hypoxia-related effects. Indeed, after using this drug, we observed a significant
attenuation of hypoxia and oxygen–glucose deprivation effects, demonstrated by a signifi-
cant increase in cell viability and by a decrease in ROS production, corroborating previous
studies showing the efficacy of this drug in hypoxia in vitro [28,39] as well as in vivo mod-
els [40–42]. We believe that these results support the effects of edaravone on hippocampal
HT-22 cells under hypoxic conditions, showing that this drug is very efficient in attenuating
the impact of hypoxia in hippocampal cells. Our data also lend support to previous studies
showing that edaravone attenuates hypoxia-induced hippocampal damage and cognitive
impairment [40]. One mechanism that could explain edaravone’s protective effects on
HT-22 cells, in hypoxic conditions, is its free radical scavenging activity [10]. This not only
suggests that edaravone activates neuroprotective mechanisms against OGD insults, but
also highlights the role of ROS in brain injuries associated with hypoxia–ischemia. Indeed,
previous studies have already demonstrated that edaravone attenuates hypoxia-induced
neuronal damage via ROS scavenging and upregulation of CREB phosphorylation [40],
as well as by reducing apoptotic events and inhibiting hypoxia-inducible factor-1α and
cleaved caspase-3 protein expression [41]. In this way, it is tempting to speculate that the al-
terations of the neurogenic process that we have found in a hypoxia–ischemia in vivo model
of previous work, of our group [43], it may be, also, ascribed to changes in these pathways.
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Relative to perampanel, an antagonist of AMPA receptors, we have found that this
drug, when in low concentrations, exerts beneficial effects against both hypoxia and OGD
insults. Whereas in higher concentrations, it decreases cell viability and increases ROS
production. Thus, it seems that when in low doses, perampanel may protect neuronal cells
from hypoxia and OGD, potentially due to its capability of reducing neuronal overexcita-
tion [13], necroptosis, and neuroinflammatory events [30]. However, it seems that to be
efficient, perampanel needs to be administered in low concentrations and simultaneously
with hypoxic events. Interestingly, in the present experiment, perampanel was the only
drug that increased the viability of neuroblastoma SH-SY5Y cells in normal as well as under
hypoxia conditions. However, when in high concentrations, perampanel was not efficient
in our hypoxia models, probably because higher concentrations alter normal cell functions
and basal excitatory transmission, as previously described [44].

Finally, data obtained in this study indicate that metformin is ineffective in attenuating
hypoxic events. This work focused on the insults and treatments in the first phase of
the hypoxia–ischemia evolving process. We did not address the reperfusion phase when
oxygen and glucose are restored, and inflammatory events are thought to be the major
cause of injury. It may be due to this reason that metformin did not show noteworthy
results since it is recognized as an anti-inflammatory drug. Indeed, this assumption is
partially supported by our finding that metformin was more effective after 48 h of oxygen
glucose deprivation than after 6 h of treatment.

By establishing a hypoxia–ischemia model in neuron-like cells, the doors are open to
study drugs or compounds that may be able to attenuate the resulting damage and give light
on future therapeutic options for hypoxia–ischemia brain injuries. In summary, this work
allowed us to demonstrate that edaravone, perampanel, and metformin repurposed drugs
are of interest in the early stages of hypoxia–ischemia brain injuries, such as encephalopathy
of prematurity. In addition, it also confirmed that ROS production and overexcitation play
an important role in the development of the injury. More studies must be performed,
mostly in vivo, to confirm our results in a more translational analysis. Furthermore, these
three drugs need to be further studied to better understand their mechanism of action and
test if their mechanisms of action do not interfere with normal cell function.
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