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Abstract: The prodromal phase of Parkinson’s disease (PD) is characterised by many non-motor symp-
toms, and these have recently been posited to be predictive of later diagnosis. Genetic rodent models
can develop non-motor phenotypes, providing tools to identify mechanisms underlying the early
development of PD. However, it is not yet clear how reproducible non-motor phenotypes are amongst
genetic PD rodent models, whether phenotypes are age-dependent, and the translatability of these
phenotypes has yet to be explored. A systematic literature search was conducted on studies using
genetic PD rodent models to investigate non-motor phenotypes; cognition, anxiety/depressive-like
behaviour, gastrointestinal (GI) function, olfaction, circadian rhythm, cardiovascular and urinary
function. In total, 51 genetic models of PD across 150 studies were identified. We found outcomes
of most phenotypes were inconclusive due to inadequate studies, assessment at different ages, or
variation in experimental and environmental factors. GI dysfunction was the most reproducible
phenotype across all genetic rodent models. The mouse model harbouring mutant A53T, and the
wild-type hα-syn overexpression (OE) model recapitulated the majority of phenotypes, albeit did
not reliably produce concurrent motor deficits and nigral cell loss. Furthermore, animal models
displayed different phenotypic profiles, reflecting the distinct genetic risk factors and heterogeneity of
disease mechanisms. Currently, the inconsistent phenotypes within rodent models pose a challenge
in the translatability and usefulness for further biomechanistic investigations. This review highlights
opportunities to improve phenotype reproducibility with an emphasis on phenotypic assay choice
and robust experimental design.

Keywords: Parkinson’s disease; genetic rodent models; prodromal PD; non-motor PD phenotypes;
systematic review

1. Introduction

The Parkinson’s disease (PD) is the fastest-growing neurological disorder and affects
over 6 million people globally as reported by the Global Burden of Disease in 2016 [1,2].
The incidence of PD is projected to double to 12.9 million by 2040 as the population ages [3].
The multitude of motor and non-motor symptoms associated with PD substantially affect
quality of life and are poorly managed by current therapeutic approaches [4]. Unfortunately,
there is no approved disease-modifying treatment for PD. One major hindrance in the
development of novel treatments is the late clinical diagnosis rendering neuroprotective
therapies ineffective. Current diagnosis relies on the development of hallmark motor
symptoms of bradykinesia, rigidity, and tremors [5,6]. By the time of diagnosis, there
is a 50–70% reduction in the dopaminergic cells in the substantia nigra pars compacta
(SNpc) [7,8]. Additionally, within 5 years post-diagnosis, 50–90% of these cells have
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perished based on post-mortem studies [9]. This rate of cell loss remains relatively stable
27 years post-diagnosis, indicating that the most extensive neurodegenerative processes
occur in the prodromal and early stages of clinical disease [9]. Adding complexity is that PD
overlaps with parkinsonism, a syndrome of neurological disorders, reducing the diagnostic
accuracy of PD to 74–83% [10]. Given the high failure rate of disease-modifying therapies
when applied from diagnosis, the field has now refocused its attention to improving early
detection and developing biomarkers for tracking progression of PD.

Subtle development of the disease, identified as prodromal PD, has been reported
up to 20 years prior to a formal diagnosis of overt motor parkinsonism [11–13]. Pro-
dromal symptoms of PD occur in both the central and peripheral nervous system and
represent an opportunity for earlier and more accurate diagnosis with the ultimate goal
of developing therapeutic interventions [14]. The Movement Disorders Society (MDS)
Research Criteria for Prodromal PD define the non-motor symptoms of PD as; REM sleep
behaviour disorder (RBD), abnormal results of dopaminergic positron emission tomog-
raphy (PET), abnormal quantitative motor testing, olfactory loss, constipation, excessive
daytime somnolence, symptomatic hypotension, erectile dysfunction, urinary dysfunction,
and depression with/out anxiety [14]. A 10-year population-based study was conducted
on the performance of the MDS Research Criteria and found that they yielded moderate to
high predictive power for incidental PD [15]. A number of individual prodromal symptoms,
as well as an additional symptom, mild cognitive impairment (MCI), were also shown
to be highly predictive of developing PD [16]. The promising predictive capabilities of
these prodromal symptoms have led to the development of many biomarkers and algo-
rithms aiming to identify the early stages of the disease (see reviews [17–19]). However,
current phenotypic biomarkers are unrefined and have varying levels of sensitivity and
accuracy [19]. Another major caveat is that the non-motor symptoms are not specific to a
PD diagnosis and currently cannot be used as standalone diagnostic markers. There is an
opportunity to explore which high-risk candidate genes lead to prodromal symptoms or
non-motor symptoms using animal models. These in-depth genotype-phenotype analyses
will be key for establishing which phenotypic markers have utility across species, could
identify specific disease-causing biological pathways, and thus contribute to elucidating
PD aetiology and the discovery of new therapeutics.

To date, animal models have been integral for understanding the pathological mech-
anisms of underlying cell loss in the SNpc and subsequent motor impairment in PD.
Following significant technological advances, a multitude of genetic and environmental
risk factors are now linked to PD and have been introduced into animal models [20,21].
Specifically, high-risk and familial genetic mutations driving disease-causing biological
pathways have been explored in animal model systems and these have added insight into
how accumulation of misfolded protein aggregates (termed Lewy bodies and neurites),
failure of protein clearance, mitochondrial damage, oxidative stress, excitotoxicity, and neu-
roinflammation all contribute to the disease. These animal models do not aim to replicate
every aspect of disease pathology but rather, are designed to elucidate how components
of PD pathobiology contribute to the development of motor phenotypes and cell loss.
Reflecting a greater emphasis on prodromal PD in the clinic, the assessment of non-motor
phenotypes in these animal models has been gaining traction. The degree to which these
mouse models present with similar non-motor dysfunction to the clinical condition, termed
face validity, requires scrutiny [22]. For these animal models to be useful in mapping
risk-factors to biological pathways and disease mechanisms, they must accurately reflect
clinical observations and present reliable and reproducible phenotypes.

This systematic review aimed to scrutinise this emerging field by characterising non-
motor phenotypes in genetic animal models of PD, including high-risk genes and familial
mutations of PD. Animal models utilising toxin-ablation to model cell loss in the SNpc
and consequential motor dysfunction were excluded as the focus of this review was to
understand the temporal development of a broader range of phenotypes in a whole system
akin to clinical PD. Non-motor phenotypes were selected to be equivalent to the MDS
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criteria, including olfactory loss, constipation, disrupted circadian rhythm (a surrogate
for excessive daytime somnolence and sleep disturbances), cardiovascular (hypotension),
urinary dysfunction, depression and anxiety, and an additional predictive marker, cognitive
impairment. Motor phenotypes and the presence of nigral cell loss were also noted as
these represent the accepted standard of PD-like diagnosis in animal models. The specific
aims of this review were (1) to identify which phenotypes present most consistently across
the animal models, (2) report which phenotypes presented in an age-dependent manner,
(3) investigate if animal models recapitulate most non-motor phenotypes and (4) to high-
light gaps and provide future recommendations for researchers.

2. Methods

This systematic review was conducted in accordance with the Preferred Report-
ing Items for Systematic Review and Meta-Analyses (PRISMA) [23] and registered with
INPLASY (registration code: INPLASY2022110050).

2.1. Definitions and Eligibility Criteria

A genetic model of PD was defined as a model that contained a known human genetic
mutation or a known genetic risk factor of PD. The non-motor phenotypes were defined as
functional assessments of cognition, olfaction, gastrointestinal function, circadian rhythm,
cardiovascular function, urinary function, depression, and anxiety, which aligned with
the MDS criteria. Studies were included if they (1) used a genetic model of PD, (2) used
mice or rats, (3) measured at least one functional outcome from the phenotypes specified,
(4) included appropriate controls, (5) contained original work, and (6) were in English.
Studies were screened first at the level of title and abstract and exclusions were applied
(Figure 1). Following this, full-text articles were examined and deemed eligible or excluded
based on the above criteria.
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2.2. Search Terms and Strategy

Screening and data extraction were performed using the online platform, Covidence
(https://www.covidence.org/ (accessed on 14 December 2020)). Pubmed was the pri-
mary database utilised and searches were conducted in December 2020 and January 2022.

https://www.covidence.org/
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Search terms were: (parkinsonism OR parkinson’s) AND (mouse OR rat OR rodent) AND
(olfact * OR hyposmia) OR (circadian rhythm OR RBD OR REM OR sleep) OR (constipation
OR gut OR gastrointestinal) OR (anxiety OR depression) OR (cardiovascular) OR (mem-
ory) OR (urinary). Once the primary search was complete, and the animal models were
identified, a secondary search was performed. This secondary search covered each combi-
nation of animal model and phenotype (e.g., A53T AND mouse model AND (olfact * OR
hyposmia)). Erectile dysfunction was initially included in the search criteria but resulted
in no publications and motor function was not included at this level as the phenotype
was extracted once all studies were screened. The total number of references imported for
screening (5602) includes references from both primary and secondary searches.

2.3. Data Extraction

A template was used for consistent data extraction and are as follows: (1) First author
surname, year of publication, title (2) rodent species and sex, (3) Genetic model, background
strain, age during experiments (4) main outcome measures methods and results: cell
loss, motor, and non-motor behaviour. All studies that met inclusion criteria were also
screened for motor assessment and SNpc cell loss to determine if non-motor phenotypes
occurred prior to these two late-stage motor and cell loss indicators in a given animal model.
Data were sorted into 4-time points over the life of the model (1–5 months, 6–11 months,
7–11 months, and 12+ months) to establish the relative appearance of each phenotype.

2.4. Risk of Bias Assessment

Two independent investigators assessed the risk of bias in each study using a modified
protocol adapted from the risk of bias tool for animal intervention studies by the Systematic
Review Centre for Laboratory animal Experimentation (SYRCLE) [24]. Disagreements were
resolved through discussion. Screening bias was not included as this criterion relates to
interventions, which are not relevant to this review. Thus, the protocol included: random
housing (performance bias), random outcome assessment (detection bias), blinding (de-
tection bias), incomplete outcome data (attrition bias) and selective outcome reporting
(reporting bias). The items were categorized into low risk, high risk, unclear risk of bias or
NA. NA was given when the bias was not applicable to the study.

3. Results
3.1. Study Characteristics

In summary, the Movement Disorder Society (MDS) criteria was investigated in
51 different genetic rodent models across 150 studies that satisfied the inclusion criteria
(Figure 2A; Table 1; full breakdown in Supplementary Table S1). Lesser-known rodent
models (n = 36) used in 2 studies or fewer were noted, however, not included in the main
results due to limited data (results in Appendix A Figure A1; all data in Supplementary
Table S2). Background strain, specific promotors, sex, and age for each study were not
assessed similarly due to limited data (Supplementary Table S1). MDS criteria phenotypes
were extracted across all studies and the inclusion of motor function and SNpc cell count as-
sessment in each study were noted as these measures have been considered the benchmark
progression of neurodegeneration in animal models (Figure 2B). The most investigated
MDS criteria phenotype was cognition (79 studies, 52.7% of all included studies), followed
by anxiety or depressive-like behaviour (53; 35.3%), olfaction (44; 29.3%), and gastrointesti-
nal (GI) function (23; 15.3%). The least investigated phenotypes were circadian rhythm
(15; 10%), cardiovascular (8; 5.3%), and urinary assessments (2; 1.3%). Motor function was
concurrently investigated with non-motor phenotypes in 76% of studies (114) however only
18.7% of studies (28) investigated cell loss along with non-motor phenotypes. Just under
half of the 150 studies used male rodents (70 studies: 46.7%), 4 studies (2.7%) exclusively
used females and 47 used both sexes (31.3%). No sex was specified in 29 (19.3%) studies.
Mice were used in the majority of studies (145; 96.7%) and rats were used in 5 (3.3%)
(Supplementary Tables S1 and S2). The proportion of studies investigating Movement
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Disorder Society (MDS) criteria phenotypes for each animal model compared to all studies
using the model was calculated to give an indication of how well preclinical research has
responded to the shift in defining prodromal PD in the clinic (Figure 2C).
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Table 1. All genetic models and references included in the review. Results from lesser-known models
used in 2 or fewer studies were not included in the main results and can be found in Supplementary
Table S2.

Models in Main Results Ref. No. Lesser-Known
Models Ref. No. Lesser-Known

Models Cont. Ref. No.

Homozygous A53T [25–64] A30P/A53T [65,66] Adh4 KO [67]

Homozygous human
alpha-synuclein

(hα-syn OE)
[45,49,68–87] PINK KO/A53T [28] LRRK2 OE [88,89]

A30P [26,29,46,90–97] GBA+/−/A53T
and GBA+/− [39] GPR37 KO [98,99]

Mitopark [100–106] Tau KO/A53T [43,46] DAT:TH KO and
DAT-DTR [107]
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Table 1. Cont.

Models in Main Results Ref. No. Lesser-Known
Models Ref. No. Lesser-Known

Models Cont. Ref. No.

VMAT2 KO [108–110] α-syn/GBA+/− [111] GDNF-deficient [112]

hα-syn OE Hemi [113–115] αβγ-syn KO [116] MDK KO [117]

LRRK2 G2019S [89,118–121] α-syn n103 [122] VMAT2 Het [123]

PINK1 KO [28,124–130] hα-syn TP and
hα-syn 119 [131] En1+/− [132]

Tau KO [43,46,133–137] SNCAS129A and
SNCAS129D [138] B4gInt1 KO [139,140]

DJ-1 KO [141–145] Park KO/TauVLW
and TauVLW [146] c-rel KO [147]

A53T Het [148–152]
LRRK2

R1441G/TauP301S
and TauP301S

[153] Cul9/Parkin KO and
Cul9 KO [154]

LRRK2 R1441G/C [153,155–157] TauP301L [158] SEPT4+/− [159]

CD157 KO [160–163] Tau+/− [137] Id2 KO [164]

LRRK2 KD/O [88,89,155,165,166] TauV337M hemi [167,168]

Parkin KO [146,154,169–173] Adh1 KO and
Adh1/4 KO [174]

3.2. Quality Assessment of Studies

The quality of studies was poor overall (Figure 3). The most unclear risk of bias was
in the reporting of random housing (145/150), random outcome assessment (133) and in
blinding (90). Only a third of the studies had low risk of attrition bias whilst all but one
study had low reporting bias. The highest risk of bias was in reporting of incomplete
outcome data (50/150).
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3.3. How Well Do Genetic Rodent Models of PD Recaptiulate MDS Criteria Phenotypes?

This section aimed to identify if phenotypes presented consistently within animal mod-
els, identifying any gaps in specific MDS phenotypes and whether phenotypes presented
in an age-dependent manner (For lesser-known models see Supplementary Table S2).

3.3.1. Homozygous A53T

The homozygous A53T mouse model was most commonly used to characterise MDS
criteria phenotypes, with 40 studies included in this review, representing 15% of all liter-
ature using this model (Figure 2C). GI function was assessed in 10/40 studies and dys-
function was highly consistent (10/10) and present at all time points (Figure 4). Cognition
was investigated in 16/40 studies, 14 showed differences between mutants and wildtypes
and similarly, high prevalence of impairments was seen at all time points (Figure 5). Ol-
faction was investigated in 10/40 studies, 7 of which reported an impairment and no
increase in prevalence was seen with age. Anxiety/depressive-like behaviour was assessed
in 12/40 studies, and deficits were seen in only 5 of them and while no age-dependent
increase in the prevalence of impairment was observed, several incidents of reduced
anxiety/depressive-like behaviour were reported across all age ranges (4/12). Cardio-
vascular function and circadian rhythm were explored in 2 and 4 studies, respectively
and impairments in both were present at 1–5 months. At later ages, circadian rhythm
dysfunction was seen in one study (18+ months), however normal cardiovascular function
was observed in another at 12–17 months. Overall, 15 of 31 studies assessing motor func-
tion in A53T mice observed impairments with increased prevalence across ages. Counter
to this, improvements in motor performance were also identified in A53T mice between
1–17 months, although less frequent (6/31). Increasing prevalence of SNpc cell loss was
seen from 6 to 18+ months in 4 studies.
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Figure 5. Age-dependent impairments in PD rodent models. Stacked bar chart of phenotypic observations showing deficits (aligning with human PD), no change,
and improvement (opposite effect to expected). Number of observations are binned across age brackets (1–5; 6–11; 12–17 and 18+ months of age or 0–6; 7–13; 14–20;
21+ weeks) and observations can represent many from a single study.
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3.3.2. Heterozygous A53T

The A53T mutation is a point mutation in α-syn associated with the PD pheno-
type [175]. Heterozygous/hemizygous A53T were analysed separately from the homozy-
gous model to understand how gene-dosage effects may affect how phenotypes present.
Of the 45 A53T studies included in this review, 5 of them used either the heterozygous or
hemizygous A53T model, and this accounted for 1.9% of the overall literature using either
homozygous or het/hemizygous models (Figure 2). Four studies investigated cognitive
function and deficits were only reported by 1 at 6–11 months (1/4) (Figure 4). These results
could not be explained by age as a greater number of reports found normal or improved
cognitive function at the same time point (Figure 5). No impairments in anxiety/depressive-
like behaviour at 6–11 months (0/1), olfaction at 1–5 months (0/1), and circadian rhythm
at 12–17 months (0/1) were reported. In contrast, one study explored urinary function
between 1 to 17 months and reported reliable impairments across all time points inves-
tigated. All 5 studies investigated motor performance, however, just 1 found significant
deficits between 6 to 17 months. In contrast, 2 studies found improved motor performance
at 6–11 months. One study found significant decreases in SNpc cell counts at 6–11 months.

3.3.3. Homozygous Hα-syn OE

The homozygous Hα-syn OE mouse model which overexpresses wildtype α-syn
was assessed for non-motor phenotypes in 22 studies, accounting for 20.2% of the overall
Hα-syn OE literature (Figure 2) [176]. Cognition was investigated in 8/22 studies across all
time points and impairments were identified in 6 studies, however, were not dependent
on age (Figure 4). Anxiety/depressive-like behaviour was explored in 8/22 studies, but
only 2 observed impairments at 1–5 months in one and 6–11 months of age in the other
(Figure 5). Consistent deficits were found in olfaction (7/7) across all time points, GI
function (3/3) and cardiovascular function (1/1) as early as 1mo up to 17 months and
circadian rhythm at 6–11 months (1/1). Of the 22 studies investigating the Hα-syn OE
model, 15 included motor assessment and 10 of them identified impairments across all
time points. The prevalence of deficit was high across all time points except at 6–11 months.
Two studies also reported an increased motor phenotype from 1 to 17 months. SNpc cell
count was assessed in 4 studies at all time points except 6–11 months and a significant
decrease in Hα-syn OE mice was identified only at 12–17 months.

3.3.4. Hemizygous Hα-syn OE (Thy1-αsyn Hemi)

Hemizygous Hα-syn OE were analysed separately from the homozygous line to
understand how gene dosage may influence the presentation of phenotypes. Of the
25 Hα-syn OE studies included in this review, 3 of them used the hemizygous model,
representing 2.8% of overall Hα-syn OE literature using either hemizygous or homozygous
models (Figure 2). Cognition was assessed in 2 studies which showed an age-dependent
appearance of deficits from 1 to 17 months (Figure 4). One study identified impairments in
both anxiety/depressive-like behaviour and olfaction at 6–11 months (Figure 5). All three
studies concurrently assessed motor function and impairments were seen at 1–5 months
and 12–17 months, with a further study documenting an improved performance in motor
ability at 6–11 months.

3.3.5. A30P

Similar to the A53T model, the A30P is another mutant form of human α-syn used
to investigate PD phenotypes [177]. A total of 11 studies examined the MDS criteria
phenotypes in A30P mice, which represents 14.7% of all literature examining this mouse
(Figure 2). Cognitive function was assessed in over half of these studies across all time
points (6/11); however, impairments were only reported at two of these, between 6 to
17 months (2/6) (Figure 4). Consistent impairments were seen in GI function (3/3) and
multiple observations were made within these studies demonstrating impairments oc-
curred early and remained throughout aging (Figure 5). Understudied phenotypes include
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anxiety/depressive-like behaviour (1/1) and circadian rhythm (1/1), and impairments
were identified in A30P mice at 1–5 months. Olfactory impairment (1/1) was observed at
6–11 months. Motor function was concurrently assessed in 7/11 studies however 3 of these
identified impairments in A30P mice, presenting in an age-dependent manner. Decreased
SNpc cell count was identified in one study at 12–17 months.

3.3.6. Mitopark

Mitopark mice is a conditional knockout with disruption of the mitochondrial tran-
scription factor A gene (Tfam) in dopaminergic neurons [178]. MDS criteria phenotypes
were investigated in 7 studies using the Mitopark mouse model, representing 18.4%
of the wider Mitopark literature (Figure 2). Studies of cognition (3/3), olfaction (2/3),
anxiety/depressive-like behaviour (2/2), GI function (1/1) and circadian rhythm (1/2)
collectively showed impairments of these phenotypes increasing in prevalence over age
(Figure 4). Cognitive deficits appeared earliest at 7–13 weeks, followed by deficits in
anxiety/depressive-like behaviour, olfaction and GI function at 14–20 weeks, and circadian
rhythm at 21–30 weeks (Figure 5). Of the 7 studies utilising Mitopark mice, 4 of them
assessed motor function and found impaired ability (4/4), increasing in prevalence over
age and first appearing at 7–13 weeks. SNpc cell count was characterised from 14 to
30 weeks by 2 studies that found significant loss compared to wildtypes.

3.3.7. VMAT2 KO

VMAT2 KO mice express very low levels of the vesicular monoamine transporter
2 protein, a regulator of pre-synaptic dopamine homeostasis [179,180]. Three studies
utilising VMAT2 KO mice, representing 25% of all literature, investigated MDS criteria
phenotypes (Figure 2). Cognition was assessed by 1 study at multiple time points and
impairments were detected from 12–17 months and persisted to 18+ months (Figure 4).
Two studies assessed anxiety/depressive-like behaviour and impairments were noted at
1–5 months and 11–17 months but not at 18+ months (Figure 5). Olfaction was investigated
by one study across the first 3 time points and found impairments appeared in an age-
dependent manner starting at 6–11 months. GI function was assessed in another study at
two different time points and found deficits at 1–5 months and 18+ months. No impairment
in circadian rhythm was noted at the same time points in this same study, however, another
reported improved function in VMAT2 KO mice relative to wildtypes at 1–5 months. Motor
performance was assessed in 2 of the 3 studies using VMAT2 KO mice, and 1 identified
motor impairment at 12–17 months and 18+ months, whilst the other showed normal
performance at 1–5 months and 18+ months.

3.3.8. LRRK2 G2019S

The G2019S mutation is the most common mutation within the LRRK2 gene that is
associated with PD [181]. Five studies used the LRRK2 G2019S mouse model to charac-
terise MDS phenotypes, and these accounted for 7.9% of the overall literature (Figure 2).
Cognition was assessed in 2 studies and deficits appeared to increase in prevalence from 1
to 17 months (Figure 4). Age-dependent impairments in anxiety/depressive-like behaviour
starting from 6–11 months were identified in LRRK2 G2019S mice from 2 studies and
circadian rhythm dysfunction was noted at 6–11 months in another study (Figure 5). Whilst
deficits in motor performance were reported in only 1 of the 4 studies, the impairments
described in this study appeared in an age-dependent manner.

3.3.9. PINK1 KO

Mutations resulting in loss-of-function of the PTEN-induced kinase 1 (PINK1) gene
are associated with early onset PD [182]. Eight studies used PINK1 KO rodents, which
constituted 42.1% of the literature (Figure 2). Across 3 studies, cognitive function was
normal at 1–5 months and impaired at 6–11 months (1/3) (Figure 4). Consistent deficits in
anxiety/depressive-like behaviour from 1 to 17 months were reported by 2 studies, whilst
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2 other studies reported no differences at 1–5 months and 6–11 months (Figure 5). One
study identified olfactory impairments in PINK KO rodents at 18+ months and another
showed cardiovascular dysfunction from 1 to 11 months. Motor assessments were made
in 6 of the 8 studies and counterintuitively, deficits were present from 1–11 months (2/6)
but did not persist at 18+ months. The remaining studies showed no differences in motor
performance across the same time points and at 18+ months (4/6). SNpc cell loss was
investigated in 1 study at 6–11 months and 18+ months and no significant differences
between transgenic and wildtype animals were observed at either time point.

3.3.10. Tau KO

Altered Tau function has been identified as a genetic risk factor of sporadic PD [183].
Most of the literature utilising the Tau KO model included MDS criteria phenotypes
in their assessments (66.7%) and minimal impairments were identified (Figure 2). A
total of 6/8 studies included cognitive assessments, however, only 1 reported a deficit
at 12–17 months (Figure 4). Olfactory dysfunction was identified at 6–11 months and
12–17 months; however, the aged WT group were similarly impaired to the transgenic ani-
mals (Figure 5). No differences in circadian rhythm were identified from 1 to 11 months in
1 study. Seven studies also investigated motor ability in Tau KO mice from 6 to 18+ months,
and 5 of them described impairments, with the majority of these occurring at 12–17 months.
Three studies performed SNpc cell counts, and all found significant loss in Tau KO mice at
the same 12–17 months’ time point.

3.3.11. DJ-1 KO

Mutations resulting in loss-of-function of the DJ-1 gene cause early onset PD [184].
DJ-1 KO mice were assessed for MDS criteria phenotypes in 5 studies, representing 9.1%
of the overall literature (Figure 2). Cognitive function was assessed in 2 studies from
1 month, and deficits were first reported at the 12–17 months’ time point (1/2) (Figure 4).
Impairments in anxiety/depressive-like behaviour were noted from 1 to 11 months of age
and no differences were observed from 17 months (2/2) (Figure 5). No impairments in
olfaction (0/1) nor cardiovascular function (0/2) were seen at the time points assessed. Of
the 5 studies using the DJ-1 KO model, 2 studies investigated motor performance, and both
reported deficits between 1 to 11 months (2/2).

3.3.12. LRRK2 R1441G/C

Another mutation of the LRRK2 gene associated with PD is the R1441G/C mutation [185].
Phenotypes in the LRRK2 R1441G or C mutation model were characterised by 4 individual
studies, constituting 20% of the literature (Figure 2). No cognitive impairment was reported
in the 3 studies which assessed this phenotype from 1–11 months and 18+ months (Figure 4).
Anxiety/depressive-like behaviour was assessed in 2/4 studies and impairment was seen
in only 1 study at 6–11 months (Figure 5). In contrast, normal behaviour was noted from 6
to 18+ months. Olfaction was also assessed from 6 to 18+ months in 3 studies and deficits
were apparent from 12 months (2/3), indicating a contribution of age to the appearance of
impairment. Similarly, GI function was assessed from 6 to 18+ months in 1 study and a
deficit was found across all investigated time points. Motor function was explored across
all time points in 4 studies and significant impairment compared to wildtypes was reported
by 3, showing an increased prevalence of impairment over age. One study performed
SNpc cell counts but no significant differences were seen between the two genotypes at
1–5 months nor 18+ months.
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3.3.13. CD157 KO

CD157/BST1 is a risk locus for PD and the CDK157 KO is model of the psychiatric
phenotypes of PD [160]. There were 4 studies that examined MDS criteria phenotypes in
the CD157 KO mice, and this represented 100% of the CD157KO/BST1 rodent literature
(Figure 2). This model predominantly presents with anxiety-like impairments, and thus,
this was the main phenotype investigated. All 4 studies determined anxiety/depressive-like
behavioural deficits in this model at 1–5 months (Figure 4). Improved cognitive function, as
well as dysfunctional circadian rhythm, was seen at 1–5 months (Figure 5). Motor function
was also assessed at 1–5 months in 2 studies and deficits were reported in only one.

3.3.14. LRRK2 KO

The LRRK2 KO mouse model also recapitulates the loss of function due to mutations
within the LRRK2 gene [186]. Non-motor phenotypes in the LRRK2 KO model were
examined in 5 studies, accounting for 45.5% of the broader LRRK2 KO literature (Figure 2).
Normal cognitive function was seen from 1 to 17 months across all 3 studies assessing the
phenotype (Figure 4). In contrast, deficits were found in anxiety/depressive-like behaviour
from 6 to 17 months by 1 study (Figure 5). Olfaction was investigated at 1–5 months and
18+ months in 2 studies, and results showed impairments were only present at 1–5 months
(1/2). One study investigated GI function at 1–5 months and did not find deficits. Out
of the 5 studies investigating LRRK2 KO mice, 3 concurrently assessed motor function
across all time points, and none reported any significant differences between LRRK2 KO
and wildtype animals.

3.3.15. Parkin KO

Mutant Parkin genes cause autosomal recessive PD [187]. Seven studies investigated
MDS criteria phenotypes in the Parkin KO model, constituting 50% of the overall literature
(Figure 2). Cognition was explored by 6/7 studies across all time points, and 4 studies
determined deficits were present from 1 to 17 months (Figure 4). Anxiety/depressive-like
behaviour was evaluated in 3 studies across all time points and impairments were identified
in 2 studies from 6 to 18+ months (Figure 5). Deficits were neither found in olfaction from
1 to 11 months (0/1) nor in cardiovascular function at 1–5 months (0/1). Motor function
was explored in 5 out of the 7 studies and impairments were identified in 2 studies across
all time points. Lastly, 1 study showed no difference in SNpc cell counts between the
genotypes at 12–17 mo months.

3.4. Which Phenotype Is Most Consistent across All Animal Models?

The consistency of phenotypic outcomes across multiple animal models was assessed
independent of age (Figure 6). GI deficits were highly consistent across animal models
(95% of studies found deficits), followed by olfaction (70.5%) and circadian rhythm (61.5%).
Further, 57.8% of studies found deficits in cognition and 55.6% of studies reported deficits
in anxiety/depressive-like behaviour. Less than half of the studies observed cardiovascular
dysfunction in their rodent model (42.8%). Only one study investigated and found deficits
in micturition reflexes (urinary function). Deficits in motor function and reductions in SNpc
cell numbers were also reported in 51–55% of studies.
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Figure 6. Wind rose charts of the incidence of MDS criteria, motor, and cell count phenotypes across
PD rodent models. Radial axis is the number of studies. Numbers in red is a significant impairment
of the phenotype, grey is no change or an improvement of the phenotype. The overall wedge height
of the bar (red + grey) is the total number of studies for the animal model. Note max radial axis of
‘Motor’ is 31, ‘Cognition’ is 16, and the remaining are set at 12.

4. Discussion

The current review addressed a critical gap in the literature by assessing the prevalence
and consistency of non-motor phenotypes (cognition, olfaction, GI function, anxiety/depressive-
like behaviour, circadian rhythm, cardiovascular and urinary function) in genetic PD
rodent models. Phenotypes were scrutinised for consistency across all rodent models,
and GI function (95% of studies showed deficit) and olfaction (70.5%) were the most
well recapitulated. This finding is relatively consistent with the clinical literature, as the
prevalence of olfaction is up to 90% and GI function approximately 65% of people with
PD [188,189]. The degree to which the animal models closely replicated all phenotypes
relevant to PD was inconclusive due to poor reproducibility. Understudied phenotypes,
animal models, and ages represented the greatest gaps in the literature.

4.1. The Contribution of Variability to the Reproducibility of Phenotypes

Reproducibility in results is the ability to repeat a study independently and draw
similar conclusions and is influenced by a number of environmental and experimental
variabilities across labs, animal cohorts, and in methodological assessments [190,191]. Many
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phenotypes across genetic PD models had low reproducibility, with the exception of GI
dysfunction and olfactory deficits. Cognitive impairments and anxiety/depressive-like
behaviour were the least reproducible and this might represent greater susceptibility to
environmental and experimental variability [192,193].

4.1.1. GI Function

GI dysfunction is apparent in approximately 65% of people with PD, with α-syn
pathology manifesting across the enteric nervous system which governs GI function within
the prodromal phase [194]. In this review, GI dysfunction was identified as the most
consistent phenotype, appearing in almost all PD rodent models where it was assessed. It
was common for studies to use more than one measure of GI function, which increased
within-laboratory reliability and degree of certainty regarding the outcome. These outcome
measures included the number of faecal pellets, stool weight and in vivo and in vitro
measures of gut motility/transit time. An example of this can be seen in one study using
A53T mice where opposite directions of effect were found in their two measures of GI
function across two separate cohorts. In one cohort, the authors show a reduced number
of contractions in in vitro colonic motility recordings however in the other, they reported
increased in vivo faecal pellet output [50]. The authors physically restrained mice for
oral gavage prior to the in vivo test, a known stressor that has been shown to increase
colonic motility [195,196]. Another study assessing A53T mice on a longitudinal single
housing stress paradigm showed a similar disconnect using two in vivo measures, reporting
increased bead expulsion time but no change in faecal pellet output compared to A53T
in group-housed conditions [35]. While this review did not scrutinise the consistency of
multiple outcome measures used in the same study, these examples of the nuanced effects
of stress highlight the importance of experimental design to mitigate variance. Overall,
the consistency of impaired gut function across all genetic PD mouse models, regardless
of assessment method may reflect a common disrupted pathway and thus represents an
opportunity for PD-specific treatments for GI dysfunction.

4.1.2. Olfaction

The clinical prevalence of hyposmia is as high as 90% and can manifest 20 years prior to
diagnosis [197]. In the current review, olfactory dysfunction mimicking clinical observations
was identified in just under half of PD mouse models, with 4 of them showing inconsistent
findings. The A53T and Hα-syn models both showed consistent olfactory deficits prior
to motor impairments and could represent useful tools for the further investigation of
PD-specific mechanisms driving olfactory dysfunction. An important consideration in
evaluating the reproducibility of hyposmia in mouse models is the use of specific olfactory
cue types in assessment methods that activate the two distinct rodent olfactory systems.
Non-social cues, for example, food or essential oil fragrances, activate the main olfactory
bulb system, the analogous structure to the human olfactory system. Social cues including
pheromones of opposite-sex urine, predator scents, or used bedding target the vomeronasal
system which is responsible for the detection of pheromones, governing sexual and mating
behaviour [198]. In humans, α-syn aggregates and atrophy have been observed in the
olfactory system [199–201] and thus, impairments in rodent olfactory tests utilising non-
social cues are considered more analogous to olfactory deficits in PD. Of the studies
investigating olfaction in this systematic review, 75% of those using non-social cues reported
deficits. Interestingly, 58% of studies using social cues and thus assessing vomeronasal
function, also found deficits. As the human vomeronasal system is largely reduced and
has not been investigated in a PD setting, the translational relevance of impairments in
this mouse-specific system can be questioned [202]. Given these unknowns, using social
cues exclusively may introduce ambiguity and the use of non-social and social cues for
comprehensive phenotyping, or exclusively non-social cues is recommended, as this targets
the known analogous olfactory structures in PD.



Biomedicines 2022, 10, 3026 15 of 32

4.1.3. Cognition

PD with mild cognitive impairment (PD-MCI) and PD with dementia (PDD) are de-
fined by deficits in attention, executive function, visuo-spatial function, (long-term/recall)
memory, and language [203]. In the current systematic review, cognition was the most
assessed MDS criteria phenotype (79 studies), however, not all cognitive domains were
assessed with visuospatial memory tasks overrepresented. Significant gaps in understand-
ing attention and executive function exist, with only one study using a reversal learning
operant chamber paradigm to assess executive function in the Hα-syn OE (Thy1-αsyn)
mice [83]. Differences in mouse vocalisations have been used by the field as a proxy for
language dysfunction in humans, and these were shown to be impaired in one study also
using Hα-syn OE (Thy1-αsyn) mice [87]. However, as vocalisations are yet to be validated
as a sophisticated cognitive function, the utility of these vocalisations remains an area for
further expansion [204]. Comprehensive cognitive phenotyping to address the significant
gap in the characterisation of PD cognitive impairments in animal models is required.
Current clinical descriptions of PD point to specific patterns of cognitive impairments and
replicating clinical ‘subcortical’, defined by greater deficits in executive, visuo-constructive,
and attention, or ‘cortical’ cognitive types with more severe memory impairments in animal
models may shed light on potentially distinct pathological pathways [205].

While cognitive dysfunction in PD rodent models receives significant attention in the
field, consistent impairments are not reported. This is in part due to the limited sensitivity
of the cognitive tasks used and experimental and environmental variabilities [206]. Method-
ological and apparatus design differences within the same test can alter effect sizes and
behavioural results, and in some cases may even assess different cognitive domains [207].
For example, the novel object recognition task is the most commonly used cognitive task in
PD animal models, and variable inter-trial intervals (ITI) ranging from 5 min to 24 h, target
working memory, and long-term reference memory, respectively. These impairments are
frequently reported using the umbrella term of “cognitive dysfunction” leading to difficulty
in resolving the PD-specific cognitive ability assessed (e.g., working memory or spatial
memory). More explicit reporting of specific cognitive capability being assessed and careful
consideration of whether the intended protocol is measuring the correct cognitive domain
is imperative to improving the discrepancies within animal models and thus the translation
to clinical outcomes. As is the nature of cognitive behavioural tasks, certain cognitive tests
are inherently more sensitive to external factors, leading to differential outcomes despite
the same parameters. A meta-analysis on the Morris water maze (MWM) test revealed
differences in genetic background strains and environmental factors were enough to create
variation in behavioural outputs that could mask a true effect of a mutation [192]. Further,
a multi-laboratory study comparing two mouse background strains, C57BL/6NCrl and
DBA/2NCrl, identified the overwhelming contributor to cognitive differences in these
strains were environmental effects and laboratory factors [208,209]. Optimising the protocol
for the specific background strain and laboratory environment may represent a way to
standardise across different animal models and to improve reproducibility of results [210].
Another consideration when designing cognitive tests for PD animal models is that tasks re-
liant on motor function for completion coupled with time-based outcome measures, such as
the MWM, are not appropriate for PD models. This introduces another source of variability
as results are confounded by the differing onset of motor impairments. While concurrent
motor tests can aid in clear interpretation of cognitive deficits in absence of motor con-
founds, these tests do not have the sensitivity to identify subtle motor changes. Instead,
tests measuring performance indicators such as the percentage of trials correct, such as
operant and touchscreen testing may be more suitable, especially for PD animal models
showing significant motor impairment. Specifically, touchscreen testing has emerged as a
sensitive and translatable tool enabling the measurement of multiple cognitive domains of
relevance to human cognition within the same testing apparatus [211].
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4.1.4. Anxiety/Depressive-Like Behaviour

Anxiety and depression present up to 20 years prior to diagnosable motor symptoms
and people with PD have a significantly greater frequency of developing psychiatric
conditions than the general population [212]. Many tests exist to assay these conditions
in PD animal models, including Elevated Plus Maze (EPM), Light-Dark Box (LDB) and
Open Field for anxiety-like behaviour, and Forced Swim Test (FST), Tail Suspension Test
(TST) and Sucrose Preference Test (SPT) for depressive-like behaviour. In the present
review, it was not possible to conclusively determine if the majority of PD animal models
recapitulated PD anxiety or depressive-like phenotypes as over half of the animal models
assessed with these testing paradigms showed highly inconsistent phenotypic outcomes
or no-change relative to controls. Assessment of anxiety and depressive-like behaviour
in rodents represents a significant challenge as a multitude of factors have been shown
to modulate their expression. These include sex of the experimenter, amount and type of
handling methods, lighting, long-distance transportation and inadequate habituation and
room smells [191,213–217]. A concrete example of this is that increased stress can induce
hyperlocomotion, resulting in increased swimming time in the FST, and the interpretation
of ‘decreased depressive-like behaviour’ [218,219]. The validity of these assays in accurately
measuring anxiety/depressive-like behaviour has been questioned, with suggestions that
performance could reflect fear-induced avoidance (EPM) or behavioural adaptations to
survival (FST) instead of the phenotypes intended [220–222]. Standardising methodological
assessment and minimising stressor confounds has shown to reduce inter-subject variability
and boost the sensitivity of these assays [193,223–225]. However, it is possible that anxiety
or depressive-like behaviour cannot be modelled in rodents as many of these one-off tests
are simply not robust enough to accurately replicate a clinical PD symptom which is also
strongly modulated by the environment. It would be powerful to combine these modes of
assessment with in vivo physiological measurements of corticosterone, challenges to the
hypothalamic-pituitary axis, or assay response to clinically effective treatments like SSRIs.

4.1.5. Understudied Phenotypes

The present review revealed significant gaps in research focus on excessive daytime
somnolence (EDS) (circadian rhythm), symptomatic hypotension (cardiovascular function)
and urinary function in PD animal models. These symptoms have been documented widely
in the PD population and their presence alongside other prodromal symptoms increases
the probability of prodromal PD [14]. Thermoregulatory and urinary dysfunction were
correlated with CSF biomarkers and patients without evident dopaminergic dysfunction
presented with more severe autonomic dysfunction than people clinically diagnosed with
PD, indicating dysfunction occurring prior to overt motor impairments [226]. Given their
utility as PD-specific biomarkers, these autonomic phenotypes should not be overlooked in
preclinical research. Circadian rhythm dysfunction was inconsistently reported across 9 PD
models, cardiovascular function was impaired early in 3 PD mice but not another 2, and
urinary dysfunction was reported in 2 PD models. Further investigations in mouse models
to identify these autonomic phenotypes are needed to ascertain how genetic risk factors
may result in EDS, cardiovascular and urinary dysfunction.

4.2. Tracking Age-Dependent Phenotypes to Understand Different Pathological Trajectories

In human PD, non-motor symptoms can precede the hallmark motor impairments
at diagnosis by 20 years and provide an opportunity to implement predictive biomarkers
and early therapeutics. However, a current challenge in the development of phenotypic
biomarkers is the non-specificity of these symptoms to PD. For animal models to reca-
pitulate these non-motor symptoms, establishing the temporal occurrence of prodromal
symptoms prior to motor dysfunction is essential. Animal models that achieve this will be
useful to uncover biological biomarkers, shed light on early disease mechanisms and raise
the profile of these non-motor symptoms as predictive clinically observable markers of PD.
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In this review, two animal models, A53T and Mitopark mice showed potential and sur-
prisingly distinct patterns of age-dependent phenotypes. Deficits in cognition, GI function,
circadian and cardiovascular function were apparent in A53T mice before 6 months of age,
whilst nigral cell loss was significant after 6 months. However, motor dysfunction was in-
consistently reported until 18 months of age and thus did not appear to be a good indicator
of apparent nigral degeneration. The appearance of early stage non-motor phenotypes is in
concordance with various early stage pathology found within the hippocampus, colon and
ENS, and retinal ganglion cells in these mice [44,47,55,227]. Conversely, in Mitopark mice,
cognitive and motor deficits appeared first and impairments in anxiety/depressive-like be-
haviour, olfaction, and GI dysfunction presented afterward. Circadian rhythm dysfunction
only appeared in the advanced stage of pathology; an interesting finding given circadian
rhythm dysfunction is a widely documented early predictive biomarker of PD [16]. Further,
Mitopark mice had consistent appearance of motor impairments in an age-dependent
manner compared to A53T. Cautious interpretation of these results is warranted given the
limited data across the ages. Nevertheless, this preliminary finding poses an interesting
avenue to explore differences in phenotypic expression between the two genetic risk factors
as this may be reflective of prodromal subtypes seen in people with PD [228]. Moving
forward, the reliability of phenotype comparisons across age in animal models may be
improved by conducting all behavioural assays within the same cohort, although care
should be taken to select assays that avoid test re-test effects and confounds of stress due
to improper testing order [229]. Longitudinal assessment of non-motor phenotypes for
many animal models is a significant literature gap and is recommended as a focus for
future studies.

4.3. Do PD Rodent Models Have Good Face Validity?

While historically a good animal model of PD should demonstrate motor impairment
and nigrostriatal degeneration, with the recent inclusion of prodromal symptoms in the
research diagnostic criteria of PD, non-motor phenotypes should also be included [14].
While it is unreasonable for the face validity of a model to recapitulate PD in its entirety,
to date, assessments of non-motor symptoms have been overlooked. The inclusion of
non-motor phenotypes provides opportunities for researchers to target therapeutics for
specific non-motor phenotypes as these significantly decrease quality of life for people
with Parkinson’s [230]. The most studied mouse models, A53T and Hα-syn OE mice were
consistent in reproducing most of the assessed non-motor phenotypes which present an
opportunity to understand how these genetic risk factors lead to widespread PD-like symp-
tomology. However, significant inconsistencies in reproducing motor impairments and
nigral cell loss were identified between laboratories and cohorts in A53T and Hα-syn OE
mice, although these assessments were not conducted alongside other behavioural testing
in all studies. The low reproducibility of the hallmark motor and cell loss phenotypes of
PD across laboratories reinforces the requirement for sensitive, reliable, and reproducible
assays that are robust against environmental variation. Given the environmental variation
between laboratories and cohorts is inevitable, concurrent assessment of nigral cells, and
motor and non-motor phenotypes may further improve the benchmarking of neurodegen-
eration in these models and aid in comparisons between studies. The overall face validity
of the other animal models could not be determined due to insufficient data across the
non-motor phenotypes. However, preliminary evidence suggests that the models presented
with varying numbers of different phenotypic dysfunction. No one model can replicate
the entirety of PD, thus, models with consistent deficits in a small number of non-motor
phenotypes as well as motor and nigral cell loss constitute useful tools to investigate specific
pathway mechanisms.

The variable phenotypic profiles of PD animal models could reflect the heterogeneity
of PD and represent good face validity. Clinical observations and cluster analyses have
defined 4 PD subtypes based on patterns of motor and non-motor symptom clusters and
genetic mutation subtypes are symptomatically differentiated from one another [231–233].
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Could early onset, rapid disease progression, tremor dominant, and non-tremor dominant
subtypes of PD be linked to specific risk variants in PD animal models [234–236]? People
with A53T mutations develop an early onset aggressive form associated with cognitive
impairment whilst those with LRRK2 mutations had less severe deficits in cognition and
olfaction compared to idiopathic PD [237,238]. Interestingly, these symptoms appear to
align with rodent models containing these mutations. Nevertheless, the symptom and
pathological variance support the need for a diversity of animal models to uncover how
different aetiologies develop into PD. Further, given the dominant environment and gene
interaction hypothesis of PD, introducing an environmental exposure to a genetic risk factor
may align rodent models closer to a PD subtype [239]. The heterogeneity in PD may not be
a limitation in translating from animals to humans, but rather, represent tools to stratify
subtypes of PD using specific risk variants and sophisticated phenotyping approaches.
Determining good face validity in animal models with a subset of non-motor phenotypes
would initiate opportunities for individualistic treatment of PD [240]. Current failures
in treatment could stem from the classification of PD as a single entity and precision
medicine targeting individual subtypes is a promising solution. Investigating underlying
mechanisms using genetic risk models is an important first step to optimising precision
medicine and may expand personalised treatments to broader idiopathic forms of the
disease [233].

4.4. Limitations

In the current review, different background strains, promotors, sex, and testing
paradigms were collapsed due to limited data, prohibiting interpretation of how these
influence expression of phenotypes in animal models [190,192]. This review was restricted
to motor and cell counts from the studies also assaying non-motor phenotypes and is
therefore limited in commenting on the reliability and consistency of these phenotypes
across the entirety of this literature. Given the emerging nature of this field, a meta-analysis
was not achievable due to low numbers of reports for some phenotypes (e.g., RBD/REM
sleep behaviour disorder, cardiovascular hypotension, or urinary and erectile dysfunction)
and for animal models across ages.

4.5. Recommendations and Opportunities

We systematically investigated all rodent models harbouring PD-associated genetic
risk factors and evaluated the degree to which they recapitulated MDS-criteria phenotypes.
Highly consistent MDS-criteria non-motor phenotypes including GI dysfunction were iden-
tified across all models, representing an opportunity to understand common pathological
pathways. Gaps in our understanding in a number of areas were uncovered and similarly
represent an opportunity for further research. This review also uncovered a limited ability
to reproduce phenotypes within animal models and we comment on approaches to improve
rigor in behavioural neuroscience methodology and experimental design (Table 2).

Table 2. Summary highlight of recommendations and opportunities.

Opportunity to fill knowledge gaps in the areas of circadian, cardiovascular, and urinary phenotypes
These were highlighted as the least assessed MDS criteria phenotypes across all models.

Characterising the age-dependent appearance of phenotypes within animal models enables understanding of how and when
genetic risk factors affect the whole system

The A53T and Mitopark models suggest differential trajectories of pathology. Further research into other models over age may
unveil different subtypes that may align with clinical subtypes.
Investigating common mechanisms underlying gastrointestinal dysfunction

Highly consistent GI dysfunction across multiple models represents an exciting target to investigate and is also highly prevalent
in clinical PD.



Biomedicines 2022, 10, 3026 19 of 32

Table 2. Cont.

Consider the construct validity of phenotypic tasks
For example, using either non-social cues or both social and non-social cues in olfactory tests is better suited to targeting the

main olfactory system which is clinically relevant to human PD.
Consider the methodological translatability of assessments to clinical PD

Clinical literature suggests heterogenous cognitive profiles in people with PD which represents an opportunity to extend
cognitive assessments in PD mouse models to executive function, attention and language, and link underlying neuropathology to
the specific cognitive domains.
Improving rigor in experimental design to reduce the effect of environmental variabilities

Variability across laboratories is significant and reduces the reproducibility of phenotypes, especially in behavioural tests
susceptible to the environment. Within study and between study variations have been shown to have little effect on the phenotypic
reproducibility, therefore, reducing stressor confounds, optimising protocols within individual cohorts, and performing thorough
characterisation of multiple phenotypes may represent some solutions to improving inconsistent results.

5. Conclusions

Animal model systems are used to advance mechanistic understanding of PD and trial
experimental therapies, however, the current status quo in measuring motor and cell loss
outcomes will not target these investigations to earlier stages of the disease. We must see a
reliable recapitulation of MDS criteria phenotypes in these animal systems to reflect current
clinical observations. This review identified highly consistent MDS-criteria non-motor
phenotypes to target for early stage research, specifically GI dysfunction. Significant gaps
for further exploratory study include the understudied phenotypes, circadian rhythm, car-
diovascular and urinary dysfunction, and an understudied number of animal models and
age ranges. The unique phenotypic profiles of rodent models may reflect the heterogeneity
in PD and thus might model different PD subtypes. These studies, reflecting diverse genetic
risk factors could be useful in uncovering distinct therapeutic targets, potentially leading
to personalised treatments for people with PD. Increased rigor in behavioural neuroscience
methodology and experimental design are required to improve reproducibility of pheno-
types between different laboratories. The adoption of new methods of assessment with
clinical relevance is emerging as an approach to capture previously difficult to-measure
phenotypes like executive dysfunction. A shift in the focus of PD preclinical animal models
to include a wider range of phenotypic measures that more accurately reflect the clinical
description of PD will ultimately improve the back-translation of findings and produce
reliable tools for not only identifying new targets for treatments but screening the efficacy
of these.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomedicines10123026/s1, Table S1: Study characteristics, phenotypic
outcomes and tests performed in genetic PD models used in 3 studies or greater; Table S2: Study
characteristics, phenotypic outcomes, and tests performed in genetic PD models used in 2 studies
or fewer.
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Appendix A

This systematic review also aimed to highlight lesser-known models of PD found
(<2 studies per animal model) and to determine how well they recapitulated MDS criteria
phenotypes. From the literature search, 36 individual models from a total of 34 studies
were found. A breakdown of the study characteristics and references are detailed in
Supplementary Table S2. To determine whether there were similarities across models,
models were grouped into 5 main categories (Figure A1).
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Figure A1. Heatmap summary of the presentation of all phenotypes across all lesser-known animal
models. Colours represent the percentage of studies that showed an expected impairment of the
phenotype where dark purple is 100% and pale yellow is 0% of studies. Animal models are loosely
grouped into 5 categories; double mutant models with the A53T mutation, models containing a
mutation in alpha-synuclein, models containing a mutation in Tau, mutations that impact the DA
system and miscellaneous models that target other pathways.

The first general category of lesser-known models concerned double mutant models
that contained the A53T mutation. These were the A30P/A53T, GBA+/−/A53T, Tau
KO/A53T and the PINK KO/A53T, model. No cognitive deficits were seen across 3 models
(A30P/A53T, GBA+/−/A53T, and Tau KO/A53T models). Olfactory function was also
examined in the A30P/A53T, GBA+/−/A53T and PINK KO/A53T models, and deficits
were reported in both the A30P/A53T and GBA+/−/A53T model. An impairment in
anxiety/depressive-like behaviour was reported in the A30P/A53T, and a circadian rhythm
deficit was reported in the Tau KO/A53T model. Motor function was assessed in all models.
Conflicting results were reported from two independent studies using the A30P/A53T
model, one showed significant impairments whilst the other did not. The PINK KO/A53T
and Tau KO/A53T did not show any impairments in motor function, whereas a deficit in
the GBA+/−/A53T model was seen. SNpc cell count was performed in the A30P/A53T
model, however, no significant losses were determined.

The next category contained genetic models that were variants of α-synuclein. These
7 models were the hαsyn119, hαsynTP, αsyn N103, αβγ-syn triple KO, αsyn/GBA+/−,
hαsynTP, hαsyn119, SNCAS129A and SNCAS129D models. Anxiety/depressive-like im-
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pairments were noted in the αsyn N03 model. Impairments in anxiety/depressive-like
behaviour or cognition was not apparent in the αsyn-GBA+/− model. Olfactory impair-
ments were reported in the hαsyn119 and hαsynTP models and deficits in cardiovascular
function was found in the αβγ-syn triple KO model. Conflicting results were reported in
GI function, deficits in the αsyn N03 model were apparent, however, normal functioning
was reported in the SNCAS129A and SNCAS129D models. Motor function was evaluated
in the αsyn N03, hαsyn119 and hαsynTP models and all models showed impairments.
SNpc cell count was examined in the αsyn N03 and αsyn/GBA+/− model and significant
differences were noted in both.

Whilst commonly associated with Alzheimer’s disease, mutations in the Tau pro-
tein have been linked to PD. Seven models contained a variant mutation of Tau, and
these were the Park KO/TauVLW, TauVLW, TauP301L, TauV337M+/−, Tau+/−, LRRK2
R1441G/TauP301S and the TauP301S model. Cognition was investigated in all the tau
models, with a roughly equivalent split in outcomes. Deficits were recorded in the Park
KO/TauVLW, TauVLW, and TauP301L model whilst no significant differences were ap-
parent in the LRRK2 R1441G/TauP301S, TauP301S, Tau+/− and Tau V337M+/− mod-
els. Circadian rhythm dysfunction (surrogate for daytime sleepiness) was present in the
TauP301L model. Motor function was investigated in 3 models, TauP301L, TauV337M+/−
and Tau+/−, however impairments were only found in the Tau+/− model.

A further 9 genetic models involved impairing the dopaminergic system. These models
were the GPR37 KO, DAT:TH KO, DAT-DTR, GDNF-deficient, MDK KO, VMAT2+/−,
Adh4 KO, Adh1 KO, Adh1/4 KO model. Cognitive function was investigated in 6 of the
models, and impairments were present in the DAT:TH KO, DAT-DTR, GDNF-deficient
and MDK KO model, whilst no deficits were found in the GPR37 KO and VMAT2+/−
mice. Olfactory function was also evaluated in 6 models, and deficits were seen in the
GPR37KO, MDK KO and VMAT2+/− mice, whilst normal olfaction was reported in the
Adh4 KO, Adh1 KO and Adh1/4 KO- mice. The GPR37 KO and VMAT2+/− were also
assessed for anxiety/depressive-like behaviour, however deficits were reported only in the
former. GPR37 KO also were impaired in GI function and the VMAT2+/− mice were not
impaired in circadian rhythm. Deficits in motor performance were reported in the Adh4
KO, DAT:TH KO, DAT-DTR and VMAT2+/− model, whereas normal motor ability was
recorded in the Adh1 KO, Adh1/4 KO and MDK KO model. Significantly decreased SNpc
cell count was also found in the MDK KO model.

The final category contained models that impacted different pathways that could not
be grouped. These 9 models were the B4gInt1, EN1+/−, C-rel KO, LRRK2 Overexpression
(OE), GBA+/−, SEPT4+/−, Idk KO, Cul9/Parkin KO and Cul9 KO models. The B4gaInt1
mouse model showed significant decreased performance in cognitive function, gastroin-
testinal and urinary function. Conflicting reports of motor dysfunction and 1 report of SNpc
cell loss were also recorded in the B4gInt1 model. Impairments in depressive-like behaviour
were present in the En+/− model. In addition, nigral cell loss and motor impairment was
significant in this model. The c-rel KO model was assessed for anxiety-like behaviour,
olfactory and GI function in which all phenotypes were significantly impaired. The LRRK2
OE model was found to be impaired in cognition, however no significant SNpc cell loss in
this model was evident. The GBA+/− model showed significant deficits in olfaction but
not cognition nor motor function. The SEPT4+/− model showed significant impairments
in anxiety-like but not depressive-like behaviour. Additionally, no impairments were seen
in cognition nor motor performance. Anxiety-like behaviour and motor performance were
not impaired in the Idk KO model, despite a significant loss of SNpc cell numbers. Finally,
the Cul9/Parkin KO model and the single Cul9 KO model were assessed for cognition and
olfaction. Neither model showed any significant impairments in the tested domains of
cognition, olfaction, motor or nigral cell counts.
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