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Abstract: Prenatal hypoxia predisposes the offspring to the development of cardiovascular (CV) dys-
function in adult life. Using a rat model, we assessed the effect of prenatal hypoxia on vasoconstrictive
and vasodilative mechanisms in left anterior descending coronary arteries of 4- and 9.5-month-old
offspring. Endothelium-dependent relaxation to methylcholine and vasoconstriction responses to
endothelin-1 (ET-1) were assessed by wire myography. Prenatal hypoxia impaired endothelium-
dependent vasodilation in 4- and 9.5-month-old offspring. Inhibition of nitric oxide (NO) synthase
prevented coronary artery relaxation in all groups. Inhibition of prostaglandin H synthase (PGHS)
improved relaxation in prenatally hypoxic males and tended to improve vasorelaxation in females,
suggesting that impaired vasodilation was mediated via increased PGHS-dependent vasoconstric-
tion. An enhanced contribution of endothelium-dependent hyperpolarization to coronary artery
vasodilation was observed in prenatally hypoxic males and females. No changes in endothelial NO
synthase (eNOS) and PGHS-1 expressions were observed, while PGHS-2 expression was decreased
in only prenatally hypoxic males. At 4 months, ET-1 responses were similar between groups, while
ETB inhibition (with BQ788) tended to decrease ET-1-mediated responses in only prenatally hypoxic
females. At 9.5 months, ET-1-mediated responses were decreased in only prenatally hypoxic females.
Our data suggest that prenatal hypoxia has long-term similar effects on the mechanisms of impaired
endothelium-dependent vasodilation in coronary arteries from adult male and female offspring;
however, coronary artery contractile capacity is impaired only in prenatally hypoxic females. Under-
standing the mechanistic pathways involved in the programming of CV disease may allow for the
development of therapeutic interventions.

Keywords: pregnancy complications; prenatal hypoxia; cardiovascular dysfunction; developmental
origins of health and disease (DOHaD); offspring; coronary artery function; endothelin-1 (ET-1);
endothelial dysfunction; sex differences

1. Introduction

Pregnancy-related complications severely impact the health and lifespan of offspring [1].
Fetal hypoxia is a major consequence of complicated pregnancies that affects normal fetal
development and can result in the restriction of fetal growth [2]. Previous research demon-
strated that fetal hypoxia leads to changes in offspring cardiovascular (CV) function and
predisposes the offspring to the development of CV dysfunction in later life [3–9]; however,
the mechanisms remain to be fully elucidated.

Seminal research by Barker et al. demonstrated a strong association between dis-
proportional (human) growth at birth and predisposition to the development of ischemic
heart disease (IHD) [10]. In particular, a low birth weight, short birth length, small head
circumference at birth, and low ponderal index were associated with increased risk of
IHD and coronary heart disease (CHD) in adulthood [10,11], while an increase in birth
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weight correlated with a proportional reduction in the rate of IHD and CHD [12,13]. In
humans, complicated pregnancies have been associated with an enhanced coronary blood
flow in the fetus and in neonates [14–16]. Moreover, previous research in various animal
models of pregnancy complications reported left ventricular (LV) hypertrophy and an
increased coronary artery vascular reactivity (in lambs [17] and fetal sheep [18]), decreased
fetal LV capillarization (in fetal rabbit [19]) and total myocardial capillary length (in rat
neonates [20]), increased passive coronary arterial stiffness (in lambs [21]), and substan-
tial structural remodeling of coronary vascular tree (in fetal rabbit [22]). However, little
is known regarding the long-term effects of complicated pregnancies on adult offspring
coronary artery function. One study showed that prenatal cocaine exposure results in
sex-dependent dysfunction of coronary autoregulation in adult offspring. For instance,
prenatal cocaine exposure caused a decrease in coronary myogenic tone in male offspring,
but resulted in increased coronary myogenic tone in the females [23]. Moreover, another
study reported that prenatal hypoxia was associated with attenuated serotonin- and protein
kinase C (PKC) agonist-mediated contractile responses in the coronary arteries of adult
male offspring (female offspring were not assessed) [24]. Taking into account that coronary
circulation is essential in maintaining proper cardiac performance and represents ~5% of
total cardiac output [25], the dysfunction of coronary arteries has been attributed to the
development of myocardial ischemia [26] and severe clinical outcomes.

The vascular endothelium plays a major role in maintaining vascular function and
homeostasis. Primarily, the vascular endothelium is involved in the production and release
of endothelium-derived relaxing factors (such as nitric oxide (NO), prostacyclin- PGI2, and
endothelium-derived hyperpolarization (EDH)), and endothelium-derived constricting
factors (such as endothelin-1 (ET-1) and thromboxane A2)) [27]. An imbalance between
vasodilation and vasoconstriction has been implicated in the development of endothelial
dysfunction [28], resulting in CV dysfunction [29]. Previous reports suggest that offspring
exposed to prenatal hypoxia are more prone to the development of hypertension [30],
accompanied by an enhanced vasoconstrictor reactivity to big ET-1 (a precursor of ET-1)
and an impaired NO-dependent endothelial function in the systemic circulation [4,30].
However, the link between prenatal hypoxia and coronary artery function in adult male
and female offspring has not been fully explored. In the current study, we hypothesized
that prenatal hypoxia impairs coronary artery function in adult offspring by reducing
endothelium-dependent vasodilation and constrictor capacity in adult (4- and 9.5-month-
old) male and female offspring.

2. Materials and Methods
2.1. Animal Model of Prenatal Hypoxia

Three-month-old female Sprague–Dawley rats (Charles River, Kingston, NY; Raleigh,
NC; Hollister, CA, USA) were mated overnight by housing with 3-month-old Sprague–
Dawley males. Pregnancy was confirmed the following morning by the presence of sperm
in the vaginal smear (designated as gestational day [GD] 0). Throughout the pregnancy
period, dams were single housed in standard rat cages under a 10:14 h light–dark cycle
and fed standard rat chow ad libitum. Pregnant rats were randomly divided into two
groups: normoxic controls (housed at atmospheric oxygen throughout pregnancy: 21% O2;
normoxia group) or hypoxic dams (exposed to hypoxia from GD 15–21 by placing them
in a hypoxic chamber: 11% O2; p-hypoxia group). The pregnant rats were removed from
the hypoxic chamber on GD 21 (term = GD 22) and were allowed to give birth in standard
housing and oxygen conditions. At birth, litter size was decreased to 8 pups/litter (4 males
and 4 females) to standardize postnatal conditions. On postnatal day 21, offspring were
weaned, separated by sex, and double housed in standard housing conditions until either 1)
~4 months or 2) ~9.5 months of age. At 4 or 9.5 months of age, offspring were anesthetized
by inhaled isoflurane (pre-oxygenation with oxygen alone for 4–5 breaths, starting off with
0.5% isoflurane and increasing the isoflurane percentage by 0.5% increments every few
breaths to a maximum of 4%). Hearts were immediately excised and placed in ice-cold
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HEPES-buffered physiological saline solution (PSS; composition (in mmol/L): 10 HEPES,
5.5 glucose, 1.56 CaCl2, 4.7 KCl, 142 NaCl, 1.17 MgSO4, 1.18 KH2PO4, and pH 7.4) for
assessment of ex vivo vascular function in the coronary arteries (see below). Plasma was
collected using ethylenediaminetetraacetic acid (EDTA) anticoagulant, centrifuged, and
stored at −80 ◦C for assessment of ET-1 levels. The main left coronary artery was isolated
and immediately snapped frozen in optimal cutting temperature compound (Tissue-Tek®,
Sakura Finetek, Torrance, CA, USA) for further molecular analysis.

2.2. Coronary Artery Vascular Function by Wire Myography

After collection of the heart, the left descending coronary artery (LADs; 150–250 µm)
was isolated and cleaned from the myocardium in ice-cold PSS and divided into ~1–2 mm
segments. Vascular function was assessed ex vivo using wire myography. The successful
dissection and isolation of these vessels allowed us to obtain 1–3 segments of LAD per one
heart. Subsequently, we used one to two offspring per one dam, in order to perform all the
vascular function experiments (please see below). The data are presented based on the dam
as the experimental unit; thus, duplicate (control) curves from 2 offspring from the same
dam were averaged. The segments of LAD were mounted onto a wire myograph system
(620M DMT, Copenhagen, Denmark) using 25 µm tungsten wires. Isomeric tension of the
vessels was recorded using LabChart software (version 8.1.13; AD Instruments; Colorado
Springs, CO, USA). All vessels were normalized through a series of stepwise increases
in diameter to reach their optimal resting tension: 0.8 × IC100; 13.3 kPa (the internal
circumference equivalent to a transmural pressure of 100 mmHg). After normalization, the
vessels were exposed to the first wake up dose of the thromboxane A2 receptor agonist 9,11-
Dideoxy-11α,9α-epoxymethanoprostaglandin F2α (U-46619; 1 µmol/L; Sigma-Aldrich, St.
Louis, MO, United States) for 5 min. After washing with PSS thrice and 10 min rest, the
vessels were exposed to a second wake up dose of U-46619, followed by a single dose of
methylcholine (MCh; 3 µmol/L; Sigma-Aldrich), to confirm endothelial cell function. If
LAD segments developed spontaneous sustained vasoconstriction during the experiment,
the data obtained from those segments were excluded. After washing and 30 min of rest,
vascular responses to MCh were assessed using a cumulative concentration response curve
(CCRC; 0.001 µmol/L to 100 µmol/L MCh; doses were added in 2-min intervals) after
pre-constriction with a pre-calculated EC80 concentration of U-46619 (0.2µmol/L; the mean
effective concentration that produces 80% of the maximal response). After washing with
PSS thrice and 30 min of rest, vasoconstriction responses to ET-1 were assessed in LAD of 4-
month-old and 9.5-month-old offspring using CCRCs to ET-1 (CCRC; 0.0001 µmol/L to 0.3
µmol/L; Sigma-Aldrich) in the presence or absence of ETA (BQ-123; 10 µmol/L) or ETB (BQ-
788; 10 µmol/L) receptor antagonists [31]. As we observed impaired vasodilation to MCh
at 4-months, which was maintained at 9.5 months of age, specific vasodilation pathways
potentially involved in the impaired endothelium-dependent vasodilation were assessed in
the 9.5-month-old offspring. CCRCs to MCh were performed in the absence or presence
(30 min pre-incubation prior to U-46619 EC80 dose) of the following specific inhibitors:
NO synthase (NOS) was inhibited with the pan NOS inhibitor N(G)-nitro-L-arginine
methyl ester hydrochloride (L-NAME; 100 µmol/L; Sigma-Aldrich) [32], prostaglandin
H synthase (PGHS) was inhibited with meclofenamate (10 µmol/L; Sigma-Aldrich), and
EDH-mediated vasodilation was inhibited with a combination of apamin (0.5 µmol/L;
Sigma-Aldrich) [33], which blocks small-conductance Ca2+-activated potassium channels
(SK) and 1-(2-chlorophenyl)diphenylmethyl-1H-pyrazole (Tram-34; 0.4 µmol/L; Sigma-
Aldrich) [33], an intermediate-conductance Ca2+-activated potassium channel (IK) inhibitor.
Simultaneously, a CCRC to the NO donor sodium nitroprusside (SNP CCRC; 0.0001 µmol/L
to 10 µmol/L, Sigma-Aldrich; doses were added in 2-min intervals) was conducted in one of
the LAD segments to assess endothelium-independent relaxation. All data were presented
as the maximum relaxation response to MCh (Emax), the negative log of the mean effective
concentration that produces 20% and 50% of the maximal response (pEC20 and pEC50,
respectively), as a measure of vasodilator sensitivity, or as area under the curve (AUC).
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2.3. Molecular Assessment of Plasma ET-1 Levels with ELISA

Plasma levels of ET-1 were assessed using a rat endothelin-1 ELISA kit (Boster Bio,
Pleasanton, CA, USA, Cat# EK0952), according to the manufacturer’s instructions. Briefly,
on the day of experiment, plasma samples were thawed on ice and vortexed. All reagents
and working standards of the ELISA kit were prepared on the same day as the assay
procedure. After adding all standards, controls, and samples in duplicate, plates were
sealed and incubated for 90 min at 37◦C. The plates were emptied, and each well was
washed with washing solution 3 times. Next, biotinylated anti-rat Edn1 antibody was
added in each well, sealed, and incubated for 60 min at 37◦C. Afterwards, the plates were
emptied and washed 3 times with washing buffer. Avidin-biotin-peroxidase complex was
added in each well, and the plate was sealed and incubated for 30 min at 37◦C. Plates were
emptied, and each well was washed with washing solution 5 times. Color developing
reagent was added to each well, and plates were sealed and incubated in the dark for
20 min at 37◦C. Stop solution was added, and the absorbance of each well was measured
under 450 nm wavelength within 30 min with multimode reader (BioTek Synergy HTX,
Santa Clara, CA, USA). To determine the amount of ET-1 in the plasma sample, a standard
curve was generated by plotting the average absorbance (450 nm) obtained for each of the
eight standard ET-1 concentrations provided. The absorbance value was calculated for
each standard and sample well, and all absorbance values (average of duplicates) were
subtracted by the average of the zero-standard value (i.e., the blank). The levels of ET-1 in
each plasma sample were calculated using the standard curve.

2.4. Immunofluorescent Staining of the Main Left Coronary Artery for ET-1, ETA, ETB, eNOS,
PGHS-1, and PGHS-2

Cryo-sections (9 µm) of coronary arteries of the 4- and 9.5-month-old offspring were
prepared using a cryostat (SLEE medical GmbH, Nieder-Olm, Germany) for immunoflu-
orescent detection of ET-1, endothelin A (ETA), and endothelin B (ETB) receptors, and
for eNOS, PGHS-1, and PGHS-2 in coronary arteries of the 9.5-month-old offspring. Sec-
tions were fixed in ice cold methanol (−20◦C for 10 min), then acetone (-20◦C for 5 min),
air-dried, and washed in phosphate buffer saline (PBS, pH: 7.5; 3 × 5 min). Afterwards,
sections were subjected to an autofluorescence reduction treatment by incubating with
NaBH4 in PBS (1 mg/mL) for 10 min at room temperature (RT) and washed with PBS
(3 × 10 min). After incubation with blocking solution (PBS supplemented with 2% donkey
serum and 1% bovine serum albumin (BSA) with 0.1% Triton X-100 in PBS) for 1 h at room
temperature, sections were washed with PBS (3 × 10 min) and incubated overnight at
4◦C in 1% BSA/PBS with the primary antibodies. The primary antibodies used were as
follows: ET-1 (1:50; rabbit polyclonal anti-ET-1, Bioss Cat# bs-0954R, RRID:AB_10855124,
USA), ETA (1:300; rabbit polyclonal anti-ETA, Thermo Fisher Scientific, Waltham, MA;
USA; Cat# PA3–065, RRID:AB_11153077), ETB (1:50; rabbit polyclonal anti-ETB, Bioss Cat#
bs-4198R, RRID:AB_11076171), eNOS (1:50; mouse monoclonal anti-eNOS (NOS Type III),
BD Biosciences, Mississauga, ON, Canada; Cat# 610297, AB_397691), PGHS-1 (1:100; rabbit
polyclonal anti-COX-1, Abcam, Waltham, MA, USA; Cat# ab53766, RRID:AB_879753),
PGHS-2 (1:50; rabbit polyclonal anti-COX-2, Abcam Cat# ab52237, RRID:AB_869240),
or CD31 (1:200; mouse monoclonal anti-PECAM-1, BD Pharmingen, Mississauga, ON,
Canada; Cat# 550300, RRID:AB_393595). The next day, sections were washed with PBS
(3 × 5 min) and incubated with secondary antibodies (all at 1:250; Thermo Fisher Sci-
entific) with 4′,6′-diamidino-2-phenylindole (DAPI; 1:500 Thermo Fisher Scientific Cat#
D3571, RRID:AB_2307445) in 1% BSA/PBS for 1 h at RT in the dark: donkey-anti-mouse
Alexa Fluor™ (Thermo Fisher Scientific) 488 (Cat # A-21202, RRID: AB_141607) for eNOS,
donkey-anti-mouse Alexa Fluor™ 546 (Cat # A10036, RRID:AB_2534012) for CD31, and
donkey-anti-rabbit Alexa Fluor™ 488 (Cat # A-21206, RRID:AB_2535792) for ET-1, ETA,
ETB, PGHS-1, and PGHS-2. After washing in PBS (3 × 10 min), mounting medium contain-
ing DAPI was added (Vector Laboratories, Burlingame, CA, USA), and slides were stored
in the dark and left to dry overnight. Immunofluorescent images were obtained the next
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day using a confocal Zeiss LSM 700 microscope with Zen Black software (version 8.1.6.484;
Zeiss, Toronto, ON, Canada). Gains for AF546, AF488, and DAPI were set using the blank
sections (i.e., incubated with secondary antibody only).

2.5. Image Analysis of Immunofluorescence Staining

Fluorescent images of ET-1, ETA, ETB, eNOS, PGHS-1, and PGHS-2 staining in the
coronary arteries were analyzed using FIJI ImageJ software (version 1.53n; Wayne Rasband
NIH, Bethesda, MD, USA). The total vessel area was selected for ET-1, ETA, eNOS, PGHS-1,
and PGHS-2, the vessel area outside of the endothelium (the area negative for CD31) was
selected for ETB (ETB that are located on VSMCs mediate vasoconstriction [34]), and the
mean fluorescent intensity was measured.

2.6. Statistical Analysis

Data from the dose response curves were fitted to the Hill equation, and pEC50 and
pEC20 values were calculated. The pEC50 and pEC20 values are defined as the negative
logarithm of the EC50 and EC20 (the concentration of agonist that provokes a response
50% and 20% of maximum response, respectively) and represent receptor sensitivity to the
agonist. For methylcholine (in the presence or absence of L-NAME) and ET-1 (in the pres-
ence or absence of BQ123 or BQ788) dose response curves, the area under the curve (AUC)
was calculated as a cumulative measurement of an inhibitor effect. Data were analyzed by
student t-test or two-way ANOVA with Sidak’s post-hoc test (GraphPad Prism, version
9.1.2; San Diego, CA, USA; https://www.graphpad.com/scientific-software/prism/). Data
were presented as means ± standard error of the mean (SEM); p < 0.05 was considered
statistically significant.

3. Results
3.1. Coronary Artery Endothelium-Dependent and Endothelium-Independent
Vasodilation Responses
3.1.1. Endothelium-Dependent Vasodilation Was Impaired in Prenatally Hypoxic Male and
Female 4-Month-Old Offspring

MCh-induced vasodilation responses were decreased in p-hypoxia males, while the
sensitivity to MCh was comparable between normoxia and p-hypoxia groups. In females,
MCh-induced vasodilation responses and sensitivity to MCh tended to decrease in the
p-hypoxia group, compared to normoxia control (Figure 1A,B). In contrast, no changes
in the vascular responses to the NO donor (SNP) were observed in the coronary arter-
ies of 4-month-old male (Emax: normoxia: 98.95 ± 1.11 vs. p-hypoxia: 94.11 ± 1.51,
n = 6–8 dams/group) or female offspring (Emax: normoxia: 98.56 ± 0.79 vs. p-hypoxia:
96.83 ± 1.75, n = 6–8 dams/group).

3.1.2. Impaired Endothelium-Dependent Vasodilation in Prenatally Hypoxic Male and
Female 9.5-Month-Old Offspring

With an advancement in age, at 9.5 months of age, maximal vasodilation responses to
MCh and the sensitivity to MCh were decreased in the coronary arteries of p-hypoxia males
and females (Figure 2A,B). SNP-mediated vasodilation responses were similar between
normoxia and p-hypoxia males (Emax normoxia: 100.02 ± 0.0.37 vs. p-hypoxia: 98.47 ±
1.37, n = 6–8 dams/group) and females (Emax normoxia: 98.95 ± 0.66 vs. p-hypoxia: 97.73
± 2.65, n = 6–8 dams/group).

3.2. Mechanisms of Endothelium-Dependent Vasodilation in Male and Female
9.5-Moth-Old Offspring

Because an impairment in MCh-induced vasodilation was maintained at 9.5 months of
age in both male and female offspring, specific vasodilation pathways potentially involved
in the impaired endothelium-dependent vasodilation were assessed in the 9.5-month-old
offspring.

https://www.graphpad.com/scientific-software/prism/
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Figure 1. Endothelium-dependent vasodilation in 4-month-old male (A) and female (B) offspring
exposed to prenatal hypoxia. (i) Endothelium-dependent vasodilation responses to increasing doses
of methylcholine (MCh) in left descending coronary arteries of Normoxia (red) and p-Hypoxia (blue)
male (circles) and female (squares) 4-month-old offspring. (ii) Data were summarized as maximal
vasodilation to MCh (Emax) and (iii) the sensitivity to MCh (the negative logarithm of the EC50,
pEC50), n = 5–10 dams/group. Data are presented as mean ± SEM; analyzed by t-test; * p < 0.05.

3.2.1. The Nitric Oxide Synthase (NOS) Pathway Is a Major Contributor to Coronary
Artery Endothelium-Dependent Vasodilation in Male and Female Offspring

Pre-incubation with L-NAME prevented MCh-induced vasorelaxation in normoxia
and p-hypoxia male offspring (Figure 3A). Because eNOS is a predominant NOS isoform in
the vasculature and is responsible for most of the NO produced, we assessed the eNOS
protein expression in the coronary artery tissue of the offspring. The eNOS expression was
similar between normoxia and p-hypoxia male offspring (Figure 3A). Similar to the male off-
spring, in the coronary arteries of female offspring, pre-incubation with L-NAME prevented
MCh-induced vasorelaxation in the normoxia and p-hypoxia groups (p < 0.0001; Figure 3B).
eNOS levels were similar between the normoxia and p-hypoxia groups (Figure 3B).

3.2.2. Enhanced Contribution of the PGHS Pathway to Coronary Artery
Endothelium-Dependent Vasodilation in Prenatally Hypoxic Offspring

In the male offspring, pre-incubation with meclofenamate did not affect MCh-induced
vasorelaxation in the normoxia group, while meclofenamate increased the max MCh-
induced vasodilation in the p-hypoxia offspring. Since PGHS-1 and PGHS-2 are key
enzymes involved in the conversion of arachidonic acid to prostaglandins (PGs) and other
eicosanoids, coronary artery tissue expression of PGHS-1 and PGHS-2 was assessed. Coro-
nary artery PGHS-1 expression was similar between the normoxia and p-hypoxia male
offspring, while the expression of PGHS-2 was lower (p = 0.050) in the p-hypoxia group,
compared to the normoxia male offspring (Figure 4A). Similar to the male offspring, in
females, pre-incubation with meclofenamate tended to increase (p = 0.06) MCh-induced va-
sorelaxation in only the p-hypoxia offspring (Figure 4B). Coronary artery expressions of PGHS-1
and PGHS-2 were not different between the normoxia and p-hypoxia groups (Figure 4B).
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Figure 2. Endothelium-dependent vasodilation in 9.5-month-old male (A) and female (B) offspring
exposed to prenatal hypoxia. (i) Endothelium-dependent vasodilation responses to increasing doses
of methylcholine (MCh) in left descending coronary arteries of Normoxia (red) and p-Hypoxia (blue)
male (circles) and female (squares) 9.5-month-old offspring. (ii) Data were summarized as maximal
vasodilation to MCh (Emax) and (iii) the sensitivity to MCh (the negative logarithm of the EC50,
pEC50), n = 7–10 dams/group. Data are presented as mean ± SEM; analyzed by t-test; * p < 0.05,
** p < 0.01.

3.2.3. The Contribution of Endothelium-Derived Hyperpolarization (EDH) to
Endothelium-Dependent Vasodilation Is Enhanced in Coronary Arteries of Prenatally
Hypoxia Male and Female Offspring

In the males, pre-incubation with apamin and Tram-34 decreased coronary artery
sensitivity to MCh in the p-hypoxia group only (Figure 5A). In females, apamin and Tram-
34 did not alter coronary artery sensitivity to MCh in normoxia group, while it decreased
coronary artery sensitivity to MCh in the p-hypoxia offspring (Figure 5B).

3.3. Coronary Artery Responses to ET-1 and the Contribution of ETA and ETB
3.3.1. Increased Contribution of ETB Receptors to ET-1 Mediated Vasoconstriction in
4-Month-Old Female Offspring

In 4-months-old male offspring, ET-1-mediated coronary artery responses and ET-1
expression were similar between the normoxia and p-hypoxia groups (Figure 6A). Moreover,
ET-1 plasma levels were comparable between normoxia and p-hypoxia males (normoxia:
1.40 ± 0.19 pg/mL vs. p-hypoxia: 1.13 ± 0.36 pg/mL, n = 6–7 dams/group).

BQ123 (a competitive antagonist of ETA) decreased the vasoconstriction responses
to ET-1 to a similar extent in both the normoxia and p-hypoxia males (Figure 6A). Coro-
nary artery ETA expression was similar between normoxia and p-hypoxia male offspring
(Figure 6A). Pre-incubation with BQ788 (a non-competitive antagonist of ETB receptors)
did not alter ET-1-mediated vasoconstriction in the normoxia group and p-hypoxia group
(Figure 6A). ETB expression was not different between normoxia and p-hypoxia male
offspring (Figure 6A).
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Figure 3. Contribution of nitric oxide to coronary artery endothelium-dependent vasodilation in 9.5-
month-old male and female offspring. (i) Endothelium-dependent vasodilation responses to increas-
ing doses of methylcholine (MCh) in the presence or absence of L-NAME (NOS inhibitor N(G)-nitro-
L-arginine methyl ester hydrochloride) in left descending coronary arteries of Normoxia (red) and
p-Hypoxia (blue) male (A; circles) and female (B; squares) 9.5-month-old offspring. (ii) Data are sum-
marized as area under the curve (AUC) in the absence or presence of L-NAME, n = 5–10 dams/group.
(iii) Representative confocal images of immunofluorescence staining of eNOS (green) and quantita-
tive analysis of eNOS expression in coronary arteries of Normoxia (red symbol) and p-Hypoxia (blue
symbol) male (A; circles) and female (B; squares) 9.5-month-old offspring; n = 5–6 dams/group. Data
are presented as mean ± SEM; analyzed by two-way ANOVA with Sidak’s multiple comparison
post-hoc test or t-test, * p < 0.05, *** p < 0.001, **** p < 0.0001.
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Figure 4. Contribution of the prostaglandin-H synthase (PGHS) pathway to endothelium-dependent
vasodilation in 9.5-month-old male and female offspring. (a). (i) Endothelium-dependent va-
sodilation responses to increasing doses of methylcholine (MCh) in the presence or absence of
meclofenamate (a PGHS inhibitor) in left descending coronary arteries of Normoxia (red) and p-
Hypoxia (blue) male (A; circles) and female (B; squares) 9.5-month-old offspring. (ii) Data are
summarized as maximum vasodilation response (Emax) in the absence or presence of meclofenamate;
n = 4–10 dams/group. (b). (i,ii) Representative confocal images of PGHS-1 (green) and PGHS-2
(green) expression, and quantitative analysis of immunofluorescence staining for PGHS-1 and PGHS-
2 in coronary arteries of Normoxia (red) and p-Hypoxia (blue) male (circles) and female (squares)
offspring; n = 4–6 dams/group. Data are presented as mean ± SEM; analyzed by t-test or two-way
ANOVA with Sidak’s multiple comparison post-hoc test, * p < 0.05, ** p < 0.01.
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Figure 5. Contribution of endothelium-derived hyperpolarization to endothelium-dependent va-
sodilation in 9.5-month-old male and female offspring. (i) Endothelium-dependent vasodilation
responses to increasing doses of methylcholine (MCh) in the presence or absence of apamin and
Tram-34 (small- and intermediate-conductance Ca2+-activated potassium channels inhibitors) in left
descending coronary arteries of Normoxia (red) and p-Hypoxia (blue) male (A; circles) and female (B;
squares) 9.5-month-old offspring. (ii) Data are summarized as the sensitivity to MCh (the negative
logarithm of the EC20, pEC20); n = 5–9 dams/group. Discontinuous line for Figures 5Aii and 5Bii is
used to better visualize the data. Data are presented as mean ± SEM; analyzed by two-way ANOVA
with Sidak’s multiple comparison post-hoc test, * p < 0.05, ** p < 0.01.

In 4-month-old females, ET-1-mediated coronary artery constriction responses were
similar between the normoxia and p-hypoxia groups (Figure 6B). The ET-1 expression was
increased in the p-hypoxia females, compared to normoxia group (Figure 6B), while the
plasma ET-1 levels were similar between the groups (normoxia: 2.55 ± 0.35 pg/mL vs.
p-hypoxia: 1.60 ± 0.48 pg/mL, n = 7–8 dams/group). BQ123 decreased ET-1-mediated
vasoconstriction in both the normoxia and p-hypoxia offspring, while no significant differ-
ences in ETA expression were observed between the groups (Figure 6B). BQ788 did not alter
ET-1-mediated coronary artery responses in the normoxia offspring, while ET-1-mediated
vasoconstriction tended to be decreased (p = 0.058) by BQ788 in the p-hypoxia offspring
(Figure 6B). However, ETB expression was similar between the normoxia and p-hypoxia
groups (Figure 6B).

3.3.2. An Impaired ET-1 Mediated Vasoconstriction in 9.5-Month-Old Female Offspring

In 9.5-months-old male offspring, ET-1 mediated coronary artery responses and coro-
nary tissue expression of ET-1 were similar between the normoxia and p-hypoxia groups
(Figure 7A). Plasma levels of ET-1 were similar between normoxia and p-hypoxia male off-
spring (normoxia: 4.65± 0.86 pg/mL vs. p-hypoxia: 4.11± 0.67 pg/mL, n = 7 dams/group).
BQ123 (a competitive antagonist of ETA) decreased, to a similar extent, the vasoconstriction
responses to ET-1 in both the normoxia and p-hypoxia males (Figure 7A). ETA expression
was similar between normoxia and p-hypoxia males (Figure 7A). Pre-incubation with
BQ788 (a selective ETB antagonist) did not alter ET-1-mediated coronary artery responsive-
ness in the normoxia and p-hypoxia males, and coronary expression of ETB was similar
between normoxia and p-hypoxia groups (Figure 7A).
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Figure 6. ET-1-mediated vasoconstriction, contribution of ETB to ET-1-mediated response and
coronary tissue levels of ET-1 and ETB in 4-month-old male and female offspring. (i) ET-1-mediated
vasoconstriction in the presence or absence of (a) BQ123 (a competitive antagonist of ETA) or (b)
BQ788 (a selective ETB receptors antagonist) in left descending coronary arteries of Normoxia (red)
and p-Hypoxia (blue) male (A; circles) and female (B; squares) 4-month-old offspring. (ii) Data
are summarized as area under the curve (AUC); n = 4–9 dams/group. (c) Representative confocal
images of (i) ET-1 (green), (ii) ETA (green) and (iii) ETB (green) co-stained with CD31 (endothelial
cell marker; red) and quantitative analysis of immunofluorescence staining in Normoxia (red symbol)
and p-Hypoxia (blue symbol) male (circles) and female (squares) offspring; n = 4–6 dams/group.
Data are presented as mean ± SEM; analyzed by t-test or two-way ANOVA with Sidak’s multiple
comparison post-hoc test, ** p < 0.01, **** p < 0.0001.



Biomedicines 2022, 10, 3019 12 of 18

✱✱✱✱

✱✱

✱✱

✱✱✱ ✱

ii. a) i. 

A. Male

a) i. 

B. Female

ii. 

E
T

-1

Normoxia p-Hypoxia

Normoxia

E
T

-1

p-Hypoxia

A
U

C
 E

T
-1

 (
a.

 u
)

b) i. ii. 

✱

✱✱

b) i. ii. 

Normoxia p-Hypoxia

E
T

B

Normoxia p-Hypoxia
0

50

100

150

200

Normoxia p-Hypoxia

E
T

B

✱✱✱ ✱

E
T

A

Normoxia p-Hypoxia
c) i. ii. iii. 

E
T

A

Normoxia p-Hypoxia
c) i. ii. iii. 

Figure 7. ET-1-mediated vasoconstriction, contribution of ETB to ET-1-mediated response and
coronary tissue levels of ET-1 and ETB in 9.5-month-old male and female offspring. ET-1-mediated
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vasoconstriction in the presence or absence of (a) BQ123 (a competitive antagonist of ETA) or (b)
BQ788 (a selective ETB receptors antagonist) in left descending coronary arteries of Normoxia (red)
and p-Hypoxia (blue) male (A; circles) and female (B; squares) 9.5-month-old offspring. (ii) Data
are summarized as area under the curve (AUC); n = 5–8 dams/group. (c) Representative confocal
images of (i) ET-1 (green), (ii) ETA (green), and (iii) ETB (green) co-stained with CD31 (endothelial
cell marker; red) and quantitative analysis of immunofluorescence staining in Normoxia (red symbol)
and p-Hypoxia (blue symbol) male (circles) and female (squares) offspring; n = 5–6 dams/group.
Data are presented as mean ± SEM; analyzed by t-test or by two-way ANOVA with Sidak’s multiple
comparison post-hoc test, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

In female offspring, ET-1 mediated responses were reduced in the p-hypoxia group,
compared to the normoxia controls (Figure 7B). The ET-1 tissue levels were similar between
normoxia and p-hypoxia groups (Figure 7B), while the plasma levels tended to be lower
in the p-hypoxia groups, compared to normoxia (normoxia: 10.47 ± 0.82 pg/mL vs. p-
hypoxia: 7.67 ± 1.02 pg/mL; p = 0.065, n = 6–8 dams/group). Pre-incubation with BQ123 (a
competitive antagonist of ETA receptors) decreased the vasoconstriction responses to ET-1
in the normoxia and p-hypoxia females, while the coronary tissue levels of ETA were similar
between the normoxia and p-hypoxia groups (Figure 7B). Pre-incubation with BQ788 (a
selective ETB antagonist) did not alter the ET-1-mediated coronary artery responsiveness in
the normoxia and p-hypoxia females, and coronary expression of ETB was similar between
normoxia and p-hypoxia groups (Figure 7B).

4. Discussion

In the current study, we demonstrated that hypoxia, experienced during prenatal life, is
associated with changes in the vasoconstrictor and vasodilator capacity of coronary arteries
in adult male and female offspring. We showed that prenatal hypoxia impairs endothelium-
dependent vasodilation in both males and females at 4- and 9.5-month of age. Nitric oxide
was the predominant vasodilatory pathway in coronary circulation. However, in both
males and females exposed to prenatal hypoxia, the impaired endothelium-dependent
vasodilation appeared to be mediated via enhanced prostaglandin H-synthase-dependent
vasoconstriction. Moreover, a higher contribution of endothelium-dependent hyperpo-
larization to coronary artery vasodilation was observed in prenatally hypoxic males and
females. In 4-month-old offspring, prenatal hypoxia did not affect ET-1-mediated respon-
siveness, but tended to increase the contribution of ETB to ET-1 vasoconstriction in female
offspring only. With advancement in age, vasoconstriction responses of the coronary arter-
ies to ET-1 were reduced by prenatal hypoxia in only the female offspring, without effects
of prenatal hypoxia on ETB-mediated responses in either sex.

4.1. The Effect of Prenatal Hypoxia on Coronary Artery Endothelium-Dependent and
Endothelium-Independent Vasodilation in Adult Male and Female Offspring

To the best of our knowledge, we showed, for the first time, that prenatal exposure
to hypoxia impairs endothelium-dependent vasodilation in coronary arteries of male and
female offspring at 4 and 9.5 months of age. The coronary endothelium regulates vas-
cular tone by releasing vasoconstricting and vasodilating factors, and an impairment in
endothelium-dependent vasodilation has been shown to contribute to the development
of various CV pathophysiological states [35], such as hypertension [36], atherosclerotic
vascular disease [37], and congestive heart failure [38]. We, and others, have previously
reported an impaired cardiac tolerance to ischemia/reperfusion (I/R) injury in the off-
spring exposed to prenatal hypoxia [39–42]. As impaired vasodilation of the coronary
microcirculation has been associated with defects in myocardial perfusion (suggestive of
myocardial ischemia) [43], it may be speculated that the impaired functional properties of
the coronary arteries, observed in the current study, are a significant contributor factor to
the development of cardiac dysfunction of adult offspring.

Further assessment of the potential mechanisms of the impaired endothelium-dependent
vasodilation in the 9.5-month-old offspring revealed that, in the LAD, endothelium-
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dependent vasodilation is predominantly mediated via NO, which has been previously
reported in large epicardial coronary arteries [44,45]. NO is produced in the tissue by
conversion of L-arginine to L-citrulline by NOS [46]. eNOS is critical for normal vascu-
lar homeostasis and is responsible for generating endothelial-derived NO [47]. Previous
studies reported that coronary artery endothelial dysfunction may be associated with an
increase [48], as well as decrease [49,50], in eNOS expression. In the current study, however,
we did not observe any changes in eNOS expression in either males or females due to
prenatal hypoxia.

Interestingly, in 9.5-month-old adult male and female offspring, we observed that
inhibition of PGHS improved the impairment in MCh-induced vasorelaxation induced by
prenatal hypoxia. PGHS is an enzyme involved in the production of PGs, which include
vasodilator (PGI2; prostacyclin), as well as the vasoconstrictor, compounds (prostaglandin
H2, prostaglandin F2α and TXA2). PGs are critical modulators of vascular tone in both
physiological and pathophysiological conditions (reviewed by [51,52]). Because the in-
hibition of PGHS improved MCh-induced vasorelaxation in prenatally hypoxia males
and females, PGHS expression was assessed in the coronary artery tissue. Prenatal hy-
poxia did not alter PGHS-1 and PGHS-2 expression in females and PGHS-1 expression in
males, which suggests that not the levels but the activity of the PGHS pathway involved
in the production and action of constrictive PGs or TXA2 may be enhanced by prenatal
hypoxia, thereby contributing to an impaired vasodilation. In contrast to the females, the
expression of PGHS-2 was decreased in the prenatally hypoxic male offspring. Although
PGHS-2 expression and activity is enhanced in various pathophysiological conditions,
such as preeclampsia, hypertension, and ageing (reviewed in [51]), previous research
demonstrated an essential role of PGHS-2 in postnatal CV maturation (the transition of
the cardiopulmonary circulation at birth) [53] and in the maintenance of normal renal
architecture (progression of the renal dysplasia seen in COX (PGHS)-2–deficient mice) [54],
and PGHS-2 downregulation has been shown to contribute to the development of kidney
pathologies, due to intrauterine growth restriction [55]. Thus, it may be suggested that a
lower expression of PGHS-2 in the coronary arteries of the adult male offspring may be
an indication of an early-life adaptation of the coronary circulation to adverse intrauterine
environment during pregnancies complicated with prenatal hypoxia.

We observed that, in normoxic and prenatally hypoxic male and female offspring,
endothelial hyperpolarization through SKCa and IKCa channels appears to contribute to
endothelium-dependent vasodilation. Both the SKCa and IKCa channels play an important
channel-specific role in the endothelium-dependent vasodilation (reviewed by [56,57]). For
instance, SKCa are mainly expressed in caveolae and are important for the activation of NOS,
while IKCa can be mainly found within myoendothelial gap junction-associated endothelial
cell projections [58]. SKCa and IKCa channel activation generates an endothelium-dependent
hyperpolarization that is conducted along the endothelium and into the smooth muscle
cell layer, leading to smooth muscle cell hyperpolarization and subsequent inhibition of
vascular tone [59]. An impaired function of SKCa and IKCa channels has been observed in
various CV pathologies [60,61]. Moreover, it has been reported that hypoxia, per se, leads
to a reduction in the expression level of SKCa and IKCa, as well as a reduction in endothelial
K+ currents via SKCa and IKCa channels in porcine coronary arteries (in either sex) [62].
Thus, it may be suggested that the EDH pathway is maintained in prenatally hypoxic males
and females as an additional mechanism to compensate for an impaired relaxation capacity
of coronary arteries, thus maintaining coronary artery vasorelaxation in males and females.

4.2. The Effect of Prenatal Hypoxia on Coronary Artery ET-1 System in Male and
Female Offspring

At 4 months of age, ET-1 tissue levels were increased in coronary arteries from prenatal
hypoxia females only, while ET-1-mediated vasoconstriction and plasma levels of ET-1
were not affected by prenatal hypoxia in either sex. Previous research in an adult rat model
of chronic intermittent hypoxia reported an enhanced ET-1 expression in coronary vessels
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that was accompanied with an enhanced ET-1-mediated response [63]. Thus, it can be
suggested that prenatal hypoxia may have an adaptive response in that, although there was
an increase in ET-1 expression, this was not accompanied by an increased ET-1-mediated
coronary artery responsiveness.

The biological effects of ET-1 are achieved via activation of the ETA and ETB [34]. In
the vasculature, ETB are located on the endothelium and VSMCs. The upregulation of
ETB on VSMCs is often observed in atherosclerosis [64] and ischemic heart disease [65], as
their activation potentiates ET-1-mediated vasoconstriction. On the VSMCs, ETB activation
induces the activation of phospholipase C-β, which results in the increase in inositol 1,4,5-
trisphosphate and diacylglycerol (DAG). DAG activates PKC, which phosphorylates the
actin-binding protein calponin or leads to phosphorylation of caldesmon, thereby increasing
the myofilament force sensitivity to Ca2+, resulting in constriction [34]. Additionally,
previous research has demonstrated a sex-specific function of ETB [66]. Thus, in men, the
activation of ETB mediates tonic vasoconstriction in the blood vessels of the skin, while
in females, it results in tonic vasodilation in the same type of blood vessels [66]. We
demonstrated that, in 4-month-old prenatally hypoxic male offspring, the inhibition of ETB
receptors did not alter ET-1-mediated vasoconstriction, while in prenatal hypoxic female
offspring, ETB inhibition tended to decrease ET-1-mediated vasoconstriction. In a rat model
of prenatal hypoxia, Chen et al. previously showed an attenuated constriction of coronary
arteries of male (5-month-old; females were not assessed) offspring, which was associated
with a decreased PKCβSer660 phosphorylation [24]. However, as our functional results
were not associated with changes in ETB expression, and it may be speculated that it is the
downstream signaling of ETB receptors that was impacted by prenatal hypoxia in female
offspring, which resulted in sex-specific changes in an ETB-dependent functional response.

In 9.5-month-old offspring, prenatal hypoxia decreased ET-mediated coronary artery
responsiveness in female offspring and tended to decrease the plasma levels of ET-1 (likely
due to reduced ET-1 release or an enhanced ET-1 clearance from the circulation). While
the long-term effect of prenatal hypoxia on the coronary artery ET-1 system is currently
unknown, a decreased ET-1-mediated vasoconstriction in coronary arteries has been pre-
viously reported in obese rats, and this was associated with the uncoupling of [Ca2+]i
signaling, while ET-1, ETA, and ETB expressions were not changed [67]. Moreover, a
reduction in ET-1-induced coronary artery contraction has been observed in deoxycorticos-
terone acetate (DOCA)-salt hypertensive rats, which was associated with the uncoupling of
ET-1-receptors and impaired [Ca2+]i signaling [68]. Thus, it may be that the reduction in
ET-1-mediated vasoconstriction in 9.5-month-old females is attributed to impaired [Ca2+]i
signaling; however, further studies are warranted.

5. Conclusions

In the current study, we showed that prenatal hypoxia has long-term and sex-specific
effects on the mechanisms of coronary artery vasodilation and vasoconstriction. As coro-
nary artery function is essential in maintaining cardiac performance, coronary artery
dysfunction may contribute to the development of cardiac dysfunction and an impaired car-
diac tolerance to I/R insult in adult offspring that has been previously reported [39,41,42].
Understanding the mechanistic pathways involved in the programming of CV disease
allows for the development of future prenatal and postnatal therapeutic interventions.
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