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Abstract: Chronic diarrhea is associated with enteric dysbiosis and provokes the overuse of antibi-
otics. Fecal microbiota transplantation (FMT) is a promising therapy, but it shows discrepant clinical
efficacy. Bacterial colonization in recipients has been studied, although little is known about the role
of gut fungi and Archaea after FMT. In this study, we evaluated the efficacy of human-derived FMT
on spontaneous chronic diarrhea cynomolgus monkeys and revealed the effector mechanisms. We
demonstrated that FMT can mitigate the appearance of diarrheal symptoms and inhibit the increase
in interleukin-6, interleukin-8, interleukin-1β, and interferon-γ and the decrease in interleukin-10
in serum. We confirmed that FMT restored the disturbance of gut bacteria by reducing the rela-
tive abundances of potential pathogens, including Cloacibacillus porcorum, Desulfovibrio desulfuricans,
Erysipelotrichaceae bacterium 5_2_54FAA, and Erysipelotrichaceae bacterium 21_3, and increasing the lev-
els of Lactobacillus fermentum and Lactobacillus ruminis CAG_367 in diarrheal monkeys. The metabolic
pathways of healthy and FMT monkeys’ gut bacteria were enriched in amino acid metabolism,
carbohydrate metabolism, and lipid metabolism, while the metabolic pathways of pre-FMT monkeys’
gut bacteria were enriched in antibiotic production. Moreover, a higher Ascomycota/Basidiomycota
ratio, higher Aspergillus levels, and lower Trichosporon asahii abundance were present in intestinal
fungi after FMT. Although the abundance of the Archaea Methanosphaera stastmanae did not change
significantly, it was inversely correlated with the anti-inflammatory factor IL-4 after FMT. These
results support the further development and application of FMT for chronic diarrhea.

Keywords: chronic diarrhea; cynomolgus monkey (Macaca fascicularis); fecal microbiota transplantation
(FMT); gut bacteria; fungi; Archaea

1. Introduction

Chronic diarrhea is a common and complex functional bowel disorder that includes
two mutually exclusive subgroups: irritable bowel syndrome diarrhea (IBS-D) and func-
tional diarrhea (FD) [1]. With an estimated prevalence of 3–20% worldwide [2,3], it has a
significant negative impact on health-related quality of life, but the underlying pathophys-
iology remains unclear. Antibiotics can effectively relieve acute and chronic diarrhea by
acting on gut microbiota [4]. However, antibiotic abuse destroys microbe diversity and
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homeostasis in the gastrointestinal tract and induces the rapid spread of multi-resistant bac-
teria, and approximately 5–35% of patients develop antibiotic-associated diarrhea (AAD) [5]
further complicates the treatment of chronic diarrhea and has long-term negative conse-
quences on human healthcare [6]. Therefore, understanding the pathogenesis and exploring
alternative treatments for chronic diarrhea are urgently needed [7].

Fecal microbiota transplantation (FMT), which is the instillation of fecal contents from
healthy donors into recipient patients for normalizing or restoring gut microbiota, is consid-
ered a promising therapeutic pathway for intestinal microbiota related diseases [8,9]. FMT
has been successfully used as a highly effective therapy for recurrent Clostridioides difficile
infections (CDI) [10,11], which account for approximately one-third of AAD cases [5]. This
success has sparked interest in extending its application to other diseases, such as inflam-
matory bowel disease (IBD), IBS, autoimmune disorders and metabolic syndrome [12,13].
In contrast to the 85–90% treatment success for CDI, randomized clinical trials in Norway
(with 90 patients) [14,15] and in the United States (with 48 patients) [16] showed FMT
application in IBS could be both effective and ineffective in relieving clinical symptoms be-
cause of the complex disease etiology and unclear microbial target [17]. This heterogeneity
highlights the fact that more extensive mechanistic studies are required to elucidate the
roles of the gut microbiota and to design specialized therapy for patients [18].

Preclinical animal models are commonly used tools for studying disease pathogenesis
or new therapies, and chemically induced small-animal models, especially rodent models,
are the most popular. The translatability of these models to human diseases is poor
but may be improved by using animals that are closely genetically and pathologically
related to humans [19]. Owing to the genetic and physiological similarities between
non-human primates (NHPs) and humans, NHPs are suitable as model organisms for
fundamental research. Importantly, captive cynomolgus monkeys (Macaca fascicularis) have
been reported to undergo indigenous microbe loss, and the primary bacterial genera in
their gut are Prevotella and Bacteroides, which have genes more similar to the gut bacterial
genes in humans (39.49%) compared with those in pigs (25.45%) and mice (0.6%) [19].
Furthermore, spontaneous diarrheal models display many of the clinical and pathological
features of human diseases. In summary, captive spontaneous diarrheal monkeys may
serve as appropriate models for understanding human chronic-diarrhea-susceptibility
factors and validating microbiota interventions [7,20,21].

Previously, 16S rRNA sequencing was used to assess the restoration of bacterial
microbiota compositions as a descriptive method for FMT treatment outcomes [22]. How-
ever, this assessment is imperfect, providing little information on bacterial function, and
parsing the “transmit” system incompletely [11]. Fungi (the “mycobiome”) and Archaea
are both stable components of the microbiota and contribute to normal human physiol-
ogy [23,24]. IBD and colorectal cancer (CRC) patients have both been shown to have a
decreased Ascomycota/Basidiomycota ratio and higher levels of methanogenic Archaea
than healthy controls [25–27]. In addition, the gut-resident mycobiome and Archaea have
mutualistic and antagonistic relationships with the gut bacteria, working together to shape
host immunity [17]. In CRC progression, trans-kingdom interactions were reported to
occur between enriched fungi (Aspergillus rambellii) and bacteria (Fusobacterium nucleatum).
CRC-associated Archaea (halophiles) were positively associated with oncogenic Bacteroides
fragilis and inversely associated with probiotic Clostridium [28]. Moreover, recent studies
have reported that FMT involves the transfer of fungi, which can affect treatment outcomes
in C. difficile infections, ulcerative colitis (UC), and Crohn’s disease (CD) [17]. Whether or
not donor-derived mycobiota and Archaea can colonize recipient hosts, and the identity
of the causal relationships between gut fungal, Archaeal and FMT treatment outcomes in
chronic diarrhea are unknown.

Consequently, in this study, we evaluated the therapeutic effect of human-derived
FMT on chronic diarrhea by using spontaneous monkey models. The immune responses
in the hosts were assessed by measuring changes in serum cytokines. Subsequently, fe-
cal metagenomes were used to compare the gut microbial compositions and functional
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pathways. Simultaneously, gastrointestinal fungi and Archaea were profiled by amplicon
sequencing. These basic data support the use of FMT as an alternative therapy that can
be used to alleviate chronic diarrhea and serve as a valuable reference and resource for
mechanism research using the monkey as a model.

2. Materials and Methods
2.1. Study Subjects and Treatment Outcomes

The captive monkeys in this study were provided by Guangzhou Xiangguan Biotech-
nology Co., Ltd., and were housed in standard conditions (temperature 16–26 ◦C, humidity
40–70%) in Guangzhou (Guangdong, China). The monkeys had recurrent diarrhea, and
after repeated antibiotic treatment they then developed chronic diarrhea. Three monkeys
with chronic diarrhea and four healthy monkey controls were included. All seven mon-
keys were maintained in similar environments and were given free access to food and
water. Neither the healthy monkeys nor the chronic diarrhea monkeys received antibiotic
treatment for 1 month prior to FMT intervention.

The fecal bacteria suspension from a healthy donor was from the Chinese fmt-Bank
(Nanjing, Jiangsu, China). The healthy donor was a 26-year-old female, and the concen-
tration of the fecal bacterial suspension was 107 CFU/5 mL. Chronic diarrhea monkeys
received fecal suspension four times via nasogastric gavage (every other day). Three fresh
feces samples from chronic diarrhea monkeys before FMT (Day-0), nine fresh feces samples
from chronic diarrhea monkeys after FMT (three from Day-2, Day-4, and Day-8), and
four fresh feces samples from healthy monkeys were collected for analyses of bacteria,
fungi, and Archaea in the microbiome. Blood samples (3–5 mL) were collected from all
seven monkeys concurrent with the feces collection for serum inflammatory cytokines
analyses (Supplementary Table S1 and Figure S1A). No monkeys were injured during the
intervention or the collection of feces and blood, and our study did not affect the health and
welfare of the monkeys. This study was approved by the Ethics Committee of the Institute
of Zoology, Guangdong Academy of Sciences (No. GIZ20220105).

2.2. ELISA

The levels of interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-
10 (IL-10), interleukin-1β (IL-1β), and interferon-γ (IFN-γ) in serum were measured using
ELISA kits (Meimian Industry Co., Ltd., Yancheng, Jiangsu, China) following the manufac-
turer’s instructions. In detail, standard and sample diluent were added; the mixture was
incubated for 30 min at 37 ◦C, and then washed five times. HRP-conjugate reagent was
added, and the mixture incubated for 30 min at 37 ◦C, then washed five times. We added
chromogen solutions A and B, incubated the mixture for 10 min at 37 ◦C, and added stop
solution. The absorbance was read at 450 nm within 15 min and the concentrations were
calculated.

2.3. Metagenomics and Functional Prediction Analyses

DNA in the monkey fecal samples was extracted using a DNA extraction kit (Tian-
gen Biotech Co., Ltd., Beijing, China) according to the protocol. The extracted DNA was
quantified in a NanoDrop spectrophotometer. After fragmentation and index-containing
adaptor ligation, samples were paired-end sequenced on an Illumina NovaSeq 6000 plat-
form (2 × 150 bp, Novogene Co., Ltd., Beijing, China). Clean data were obtained by
filtering adapters and low-quality reads from the raw data using Trimmomatic [29], and
potential cynomolgus monkey sequences were removed by Bowtie2 (V2.4.2) [30] based
on the Macaca fascicularis reference genome (assembly Macaca_fascicularis_5.0 (RefSeq
GCF_000364345.1)).

Metagenome assembly was performed using SOAPdenovo (V2.04) [31] with the
option “-d 1-M 3”. Then, ambiguous bases were removed from the assembled scaffolds
(this divided one scaffold into multiple ones), and scaffolds with lengths less than 500 bp
were discarded. Finally, a series of k-mer values (from 31 to 59) were tested, and the
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values with the longest N50 value were chosen for the remaining scaffolds [32]. We used
MetaGeneMark (http://exon.gatech.edu/GeneMark/metagenome/Prediction, V2.10, 4
March 2015) to predict ORFs in scaffolds without ambiguous bases [33]. Dereplication of
the microbial gene catalog was performed with CD-HIT (V4.8.1), using a global identity
threshold of 95% and coverage of 90% (-c 0.95 -aS 0.9) [34]. SOAPalign (V2.21) [35] was
used to align paired-end clean reads against the nonredundant microbial gene catalog
with parameters “-M 4 -r 2 -m 100 -× 1000”. We calculated the relative abundance of
phyla, genera, species, and KOs from the relative abundance of their respective genes using
previously published methods [32].

Functional annotation according to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) using BLAST (V2.2.28+, http://blast.ncbi.nlm.nih.gov/Blast.cgi, 13 April 2014)
based on the “GENES” database was used to visualize metabolism-associated functions. A
similar pipeline was used for the Comprehensive Antibiotic Resistance Database (CARD)
(V3.1.3) [36].

2.4. High-Throughput Amplicon Sequencing

For fungi, specific barcoded primers F (5′-GGAAGTAAAAGTCGTAACAAGG-3′)
and R (5′-GCTGCGTTCTTCATCGATGC-3′) were used to amplify the ITS1-2 region of
16S rRNA genes in each sample, according to methods described by Luan et al. [37].
For Archaea, the primer pair 1106F (5′-TTWAGTCAGGCAACGAGC-3′) and 1378R (5′-
TGTGCAAGGAGCAGGGAC-3′) were used with a pair of 8-bp forward and reverse bar-
code sequences to amplify the Archaea region of the 16S rRNA genes [38]. The 1106F/1378R
primer set mainly targets methanogenic Archaeal 16S rRNA genes but can still detect non-
methanogenic clades due to non-specificity [39].

2.5. Quantification and Statistical Analysis

For the comparison of two groups, the Student t-test was selected after testing for
normality of data and homogeneity of variance. For the comparison of three or more
groups of non-normal measurements, the Kruskal-Wallis test with Benjanini-Hochberg (BH)
correction was employed for statistical analysis. Differences were considered significant at
p < 0.05. Spearman correlation analysis was used for correlations between microbial taxa
abundances, metagenomic function abundances, and phenotype data. The significance
cutoff for correlation was set at a BH-adjusted q < 0.05. All plotting was performed using R
packages “ggpubr” (V0.4.0), “Com-plexHeatmap” (V2.13.1), and “mixOmics” (V6.1.1).

3. Results
3.1. FMT Ameliorates Diarrhea in Captive Monkeys

To investigate the effect of FMT from a healthy human donor on diarrheal monkeys,
we administered three diarrheic monkeys via nasogastric gavage, regardless of the presence
of diarrhea, with 107 CFU/5 mL fecal bacteria suspension four times (every other day,
Figure 1A). We then closely observed these monkeys for 2 weeks and found no signs of
abnormal behavior or acute illness. Examination of the collected samples showed that
FMT reduced the incidence of diarrhea in the recipient monkeys (Figure S1A). Analysis of
the visual indicators (Bristol stool scale, BSS, Supplementary Table S2) showed that there
was significantly lower fecal liquidity on Day-8 after FMT intervention (7 vs. 4, p < 0.05),
indicating symptoms of chronic diarrhea had been partially relieved (Figure 1B). Next, we
performed an inflammation assessment of serum and microbial analysis of feces collected
from healthy monkeys (HC) and diarrheal monkeys just before (Day-0) and on Day-2,
Day-4, and Day-8 after FMT intervention.

http://exon.gatech.edu/GeneMark/metagenome/Prediction
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 1. Efficacy of human-derived FMT ameliorates diarrhea in captive monkeys. (A) Design
of FMT trial in monkeys with diarrhea. Detailed description is provided in the Materials and
Methods section. (B) The diarrheal score was represented by the Bristol stool scale (BSS) for the fecal
samples collected from chronic diarrhea monkeys before (Day-0) and after (Day-2, Day-4, Day-8)
FMT intervention (n = 3 for all timepoints). P-values were determined using Dunnet’s multiple
comparisons test. * p < 0.01.

3.2. FMT Mitigates Serum Inflammation Response in Chronic Diarrhea Monkeys

To further explore the effect of FMT intervention on the immune system, serum
IL-4, IL-10, IL-6, IL-8, IL-1β, and IFN-γ levels were measured. Compared with healthy
monkeys, chronic diarrhea monkeys had lower concentrations of IL-4 and IL-10 and
significantly higher concentrations of IL-6, IL-8, IL-1β, and IFN-γ (Figure 2A–F). However,
FMT intervention effectively enhanced the levels of the anti-inflammatory cytokine IL-10
(D8 vs. D0, 184.85 vs. 150.73, p < 0.05), and inhibited the levels of the pro-inflammatory
cytokines IL-6 (D8 vs. D0, 314.425 vs. 359.28, p < 0.05), IL-8 (D8 vs. D0, 203.57 vs.
291.63, p < 0.01), IL-1β (D8 vs. D0, 140.2 vs. 187.22, p < 0.001), and IFN-γ (D8 vs. D0,
632.29 vs. 985.97, p < 0.001, Figure 2C–F).
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Figure 2. Serum inflammatory cytokine levels of diarrheic monkeys following FMT treatment.
(A–F) Concentrations of interleukin-4 (IL-4) (A), interleukin-10 (IL-10) (B), interleukin-6 (IL-6) (C),
interleukin-8 (IL-8) (D), interleukin-1β (IL-1β) (E), and interferon-γ (IFN-γ) (F). HC, healthy monkeys
(n = 4); Day-0 (D0), chronic diarrhea monkeys before FMT intervention (n = 3); Day-2 (D2), Day-4
(D4), Day-8 (D8), chronic diarrhea monkeys after FMT intervention (n = 3 for all timepoints). p-values
were according to one-way ANOVA followed by Dunnet’s multiple comparisons test. + p < 0.05,
* p < 0.01, # p < 0.001.
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3.3. FMT Alters the Intestinal Bacteria Composition of Chronic Diarrhea Monkeys

To determine temporal changes in the monkey gut bacteria in response to FMT treat-
ment, metagenomic analysis was performed at three time-points after FMT. Firmicutes
presented at the highest proportion in monkey guts, and the population expanded in
chronic diarrhea monkeys returned to levels comparable to healthy monkeys after FMT
intervention (D0 vs. D8 vs. HC, 65.26% vs. 69.41% vs. 70.39%, Figure S1B). The guts of
healthy monkeys were dominated by Lactobacillus, and FMT monkeys showed an increased
abundance of Lactobacillus compared with pre-FMT monkeys (HC vs. D0 vs. D8, 31.91% vs.
6.90% vs. 13.08%, Figure S1C).

Partial least squares discriminant analysis (PLS-DA) revealed distinct clusters of in-
testinal species in healthy monkeys, pre-FMT monkeys, and FMT monkeys. Additionally,
similar species compositions were seen at different timepoints during the FMT intervention,
suggesting that a new microbiota homeostasis structure was formed after FMT (Figure 3A).
When analyzed, grouping, BSS and IL-6 levels were linked to the top three variations in the
microbial species compositions (PERMANOVA, R2 = 0.3355, 0.1324 and 0.1265 respectively,
Figure 3B), whereas serum inflammatory factors (i.e., IL-4, IL-10, IL-8, IL-1β and IFN-γ)
did not impact microbial species composition significantly (all R2 < 0.1, Supplementary
Table S3). Several Lactobacillus and Lactococcus species (log2 ratio-transformed relative abun-
dance) such as Lactobacillus fermentum, Lactobacillus ruminis CAG_367 and Lactococcus raffi-
nolactis, were enriched in healthy monkeys (HC, p = 0.004, 0.0392 and 0.0008 respectively)
and showed a tendency to increase after FMT intervention (Figure 3C). Several potential
pathogens (log2 ratio-transformed relative abundance), including Cloacibacillus porcorum
and Desulfovibrio desulfuricans, were enriched in diarrheal monkeys (D0, p = 0.0012 and
0.044, respectively) and showed a tendency to decrease after FMT intervention (Figure 3C).

3.4. FMT Changes in Gut Bacteria Compositions Associated with Functional Changes

We next identified the functional modules associated with the clinical phenotypes
and assessed the associations with species among these modules. The results indicated
that seven KEGG pathways related to amino acid metabolism, carbohydrate metabolism
and lipid metabolism enriched in healthy monkeys and FMT monkeys were negatively
correlated with BSS (p < 0.05). In addition, four KEGG pathways enriched in pre-FMT
monkeys were positively correlated with IL-6, IL-8, IL-1β and IFN-γ (p < 0.05). We further
assessed the associations between these microbial KEGG pathways and species alterations
after FMT intervention. The seven KEGG pathways enriched in healthy monkeys and
FMT monkeys were found to be positively correlated to different degrees with Lactobacillus
species (p< 0.05), including L. fermentum (6) and L. ruminis CAG_367 (4). Additionally, differ-
ent degrees of negative correlation were also found between potential pathogens, including
C. porcorum (4), Erysipelotrichaceae bacterium 5_2_54FAA (4), Erysipelotrichaceae bacterium
21_3 (7), and the seven KEGG pathways enriched in healthy monkeys and FMT monkeys.
Moreover, L. ruminis CAG_367 had a negative correlation with the enriched biosynthesis of
ansamycins in pre-FMT monkeys. D. desulfuricans, C. por-corum, and Erysipelotrichaceae bac-
terium 5_2_54FAA had positive correlations with the enriched biosynthesis of ansamycins
in pre-FMT monkeys (p < 0.05, Figure 4A).

We also identified the microbial genes encoding antibiotic resistance factors by se-
quence classification with reference to the CARD database. Notably, all five CARD classes
(antibiotic efflux, antibiotic inactivation, antibiotic target alteration, antibiotic target replace-
ment and antibiotic target protection) were enriched in pre-FMT monkeys. Moreover, the
five CARD classes were positively associated with diarrhea-related bacteria (D. desulfuri-
cans, C. porcorum, Erysipelotrichaceae bacterium 5_2_54FAA, Erysipelotrichaceae bacterium 21_3).
Additionally, diarrhea-improvement bacteria (L. fermentum, L. ruminis CAG_367) were neg-
atively associated with the five CARD classes (p < 0.05, Figure 4B). The complete correlation
networks between the microbiota, functional pathways, and phenotypes mentioned above
(Figure 4A,B) are presented in Figure 4C (q < 0.05).
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(n = 4); Day-0 (D0), chronic diarrhea monkeys before FMT intervention (n = 3); Day-2 (D2), Day-4 (D4),
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Day-0 or in HC compared with other groups.
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3.5. FMT Alters Gut Fungi of Chronic Diarrhea Monkeys in Relation to Treatment Responses

To investigate whether FMT leads to colonization by donor-derived fungi and the
association between this decolonization and treatment efficacy, we executed ITS amplicon
sequencing of fecal samples at three timepoints after FMT. A PCoA plot based on the
ASV-level relative abundance profile showed that axis 1 (PCoA1) explained 28.3% of the
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variability and axis 2 (PCoA2) explained 17.6% of the variability. The fungal compositions
of healthy monkeys varied from those of pre-FMT monkeys and FMT monkeys (R2 = 0.4166,
q = 0.0099, Figure 5A). At the phyla level, Ascomycota, Basidiomycota, and an unknown
phylum together accounted for up to 99.5% of bacterial abundances in healthy monkeys,
pre-FMT monkeys, and FMT monkeys (Figure 5B). Previous work revealed that IBD patients
had dysbiotic mycobiota and a lower Ascomycota/Basidiomycota ratio, which prompted
us to study the Ascomycota/Basidiomycota ratio in our cohort. We observed a trend
toward a higher Ascomycota/Basidiomycota ratio in feces from FMT monkeys compared
to those of pre-FMT monkeys (D2 vs. D4 vs. D0, 5.90 vs. 3.54 vs. 3.46, Figure 5C).However,
these differences did not reach statistical significance, possibly due to the limited sample
sizes. At the genera level, pre-FMT monkeys showed an increased relative abundance of
Trichosporon compared with healthy monkeys, and FMT intervention partly reversed this
trend (HC vs. D0 vs. D8, 5.32% vs. 38.64% vs. 9.82%). The relative abundance of Aspergillus
in FMT monkeys was greater than that in pre-FMT monkeys (D4 vs. D0, 9.56% vs. 1.30%,
Figure 5D). Trichosporon asahii had a lower abundance in chronic diarrhea monkeys after
FMT intervention, and the levels were more similar to those in healthy monkeys (D0 vs.
D8 vs. HC, 38.64% vs. 9.82% vs. 5.32%, Figure 5E).
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Figure 5. Fecal fungi changes in diarrheic monkeys following FMT treatment. (A) PCoA plot based
on Bray-Curtis distance of ASV abundance. (B) Phyla-level taxonomic profiles of gut fungi from
five groups. (C) Relative abundances of Ascomycota and Basidiomycota and ratio of Ascomycota to
Basidiomycota in five groups. (D) Genus-level taxonomic profiles of the gut fungi from five groups.
(E) Species-level taxonomic profiles of gut fungi from five groups. HC, healthy monkeys (n = 4);
Day-0 (D0), chronic diarrhea monkeys before FMT intervention (n = 3); Day-2 (D2), Day-4 (D4), Day-8
(D8), chronic diarrhea monkeys after FMT intervention (n = 3 for each timepoint).

3.6. FMT Alters the Gut Archaea of Chronic Diarrhea Monkeys in Relation to Treatment Responses

To explore the dynamics of the intestinal Archaea in monkeys undergoing FMT, we
analyzed the fecal Archaea at three timepoints after FMT by amplicon sequencing. Eu-
ryarchaeota constituted the most dominant phyla in monkey guts, with more than 97%
relative abundance (Figure 6A). A deeper analysis of the Archaea taxonomic composition
revealed Methanobrevibacter and Methanosphaera were the most abundant genera (Figure 6B).
Within Methanobrevibacter and Methanosphaera, Methanobrevibacter smithii and Methanosphaera
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stadtmanae were the most abundant and prevalent species (Figure 6C). Nevertheless, quite
distinct enterotypes were observed. Healthy monkeys were characterized by the predomi-
nance of Methanobrevibacter (93.95%), while chronic diarrhea monkeys both before and after
FMT had uniform distributions of Methanobrevibacter (D0 vs. D8, 49.99% vs. 50.18%) and
Methanosphaera (D0 vs. D8, 49.59% vs. 49.49%). We next analyzed the correlations between
Archaeal compositions (at the ASV level) and phenotypic factors. Although FMT did not
significantly alter M. stadtmanae abundance, negative association was observed between M.
stadtmanae and IL-4 in FMT monkeys (p < 0.05, Figure 6D).
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taxonomic profiles of gut Archaea from five groups. (B) Genus-level taxonomic profiles of gut
Archaea from five groups. (C) Species-level taxonomic profiles of gut Archaea from five groups.
(D) Correlation (Spearman) between the ASVs and phenotypes. Color indicates significant positive
association (red), significant negative association (blue), or insignificant association (white). HC,
healthy monkeys (n = 4); Day-0 (D0), chronic diarrhea monkeys before FMT intervention (n = 3);
Day-2 (D2), Day-4 (D4), Day-8 (D8), chronic diarrhea monkeys after FMT intervention (n = 3 for each
timepoint) + p < 0.05.

4. Discussion

Chronic diarrhea is a common functional bowel disease and includes the two subtypes
IBS-D and FD, and gut microbiota disturbance has been considered a possible cause [3].
The outcomes of several pilot and larger-scale clinical trials confirmed the validity of
applying FMT in the treatment of diseases with complex etiology such as IBD and IBS,
but significant challenges have also presented themselves because of the complex disease
etiology and the lack of a clear microbial target [40]. We used chronic diarrhea monkey
models to evaluate the effectiveness of human-derived FMT with a particular focus on the
mechanisms. Our results demonstrated that human-derived FMT had significant relieving
effects on chronic diarrhea in monkeys via the regulation of immune responses and the
modulation of intestinal microbiota disturbances.
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BSS, which combines reference pictures with standardized descriptions of stool form,
is a widely used, reliable, and validated assessment method for chronic diarrhea and is
one of the outcome measures recommended by the Federal Drug Administration (FDA)
for use in IBS-D clinical trials [41]. We found significantly lower BSS on Day-8 after FMT
intervention (Figure 1B). Studies have pointed out that the increase in pro-inflammatory
cytokines (IL-6, IL-8, TNF-α, and IFN-γ) and decrease in the anti-inflammatory cytokine
IL-10 in serum play leading roles in the formation and development of IBS [42,43]. In
addition, abdominal pain and discomfort have been suggested to correlate positively with
serum IL-6 and negatively with serum IL-10 [44]. Our data also suggested that FMT
intervention obviously increased the level of IL-10 and decreased the levels of IL-6, IL-8,
IL-1β, and IFN-γ in chronic diarrhea monkey serum during the intervention, especially
on Day-8 (Figure 2B–F). Therefore, FMT can relieve chronic diarrhea and help regulate the
immune response.

The intestinal microbiota is linked to changes in gastrointestinal function [43]. Firmi-
cutes with anti-inflammatory functional properties were found to be depleted in IBD [45].
Lactobacillus inhibits the overgrowth of opportunistic pathogens in the gut and has been con-
sidered an effective probiotic for preventing and treating intestinal diseases in the clinical
setting [46–49]. In this work, we found the reduction in Firmicutes and Lactobacillus could be
restored by FMT intervention in chronic diarrhea monkeys (Figure S1B,C). The abundance
of the Lactobacillus species L. fermentum and L. ruminis CAG_367 also increased during the
FMT intervention, especially on Day-8 (Figure 3C). L. fermentatum is one of the primary
SCFA-producing bacterial strains [50] and can also induce the growth of other Lactobacillus
species [51]. Children with severe acute malnutrition given probiotic supplementation
treatment showed enhanced compositions of Lactobacillaceae (L. ruminis), reaching simi-
lar β-and α-diversities as healthy individuals during follow-up [52]. Erysipelotrichaceae
has been implicated in inflammation-related disorders of the gastrointestinal tract [53].
Erysipelotrichaceae bacterium 21_3, a sulfur-metabolizing bacteria, is an important microbe in
the CRC microbiome [54]. Our results indicated that the abundance of Erysipelotrichaceae
bacterium 5_2_54FAA and Erysipelotrichaceae bacterium 21_3 decreased on Day-8 after FMT
intervention. Furthermore, we observed C. porcorum (mucin-degrading bacteria [55]) and
D. desulfuricans to be significantly reduced on Day-8 after FMT intervention (Figure 3C).
Mucin degradation may expose intestinal epithelial cells to pathogens, leading to diar-
rhea [20,56]. D. desulfuricans was more abundant in colitis-FMT-recipient mice, which
elicited more inflammatory cytokine responses [57].

Shotgun metagenome sequencing is able to capture strain-level differences and func-
tional characterizations. A combination of both can describe the microbiota status better,
which is essential for designing effective microbiome-based treatments [58,59]. Using
Spearman correlation analysis, we found that seven KEGG pathways were inversely corre-
lated with BSS, indicating that these beneficial metabolic pathways promoted symptom
relief. FMT monkeys had increased alanine, aspartate, and glutamate metabolism on
Day-8 (Figure 4A). Glutamine is a beneficial amino acid that can be used by the intestinal
endothelium, playing a vital role in gut integrity [60,61]. The gut microbiota metabolism
of glutamate was shown to be related to human health because there is a decrease in this
process in obesity, insulin resistance, and neurological disorders [62]. Additionally, L. fermen-
tum contributes to increases in beneficial metabolic pathways. Furthermore, biosynthesis of
ansamycins, which was enriched in pre-FMT monkeys, was directly correlated with IL-1β
(Figure 4A). Ansamycins are related to antibiotic production, suggesting that colonizers
at this time may produce antibiotics to target those who compete with them. Specifically,
our analysis revealed the presence of several potential pathogen colonizers, including D.
desulfuricans, C. porcorum, and Erysipelotrichaceae bacterium 5_2_54FAA (Figure 4A).

All the ARG subtypes were classified into five primary mechanism categories accord-
ing to the CARD database [63]. The antibiotic inactivation mechanism category mainly
comprised aminoglycoside- and β-lactam-resistance genes. In addition, the efflux pump
mechanism category mainly contained multidrug resistance genes. From the results in
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our study, five CARD classes were directly associated with bacteria related to chronic
diarrhea and inversely associated with diarrhea-relieving bacteria (Figure 4B). These results
suggested that the alleviation of chronic diarrhea by FMT may be related to its regulation
of gut bacteria composition and function.

We found Ascomycota and Basidiomycota to be two dominant phyla in monkey
guts, which is consistent with human microbiomes [64]. Furthermore, the Ascomy-
cota/Basidiomycota ratio was higher in chronic diarrhea monkeys after FMT intervention
(Figure 5C), suggesting this imbalance between Ascomycota and Basidiomycota may be
correlated with chronic diarrhea in monkeys. Moreover, unlike in humans, where Saccha-
romyces and Candida are the top two dominant genera, Trichosporon and Cephaliophora were
the two predominant taxa in monkeys, after an unknown genera of high abundance [64].
Trichosporon spp. are commonly found commensals of the human skin and gastrointestinal
tract [65]. Of Trichosporon genus species, the most commonly identified pathogen is T.
asahii, which reportedly causes more than 70% mortality in invasive trichosporonosis [66].
In this study, the fungal genus Trichosporon and fungal species T. asahii were found to be
decreased in chronic diarrhea monkeys after FMT intervention (Figure 5D,E), suggesting
the potential adverse role of Trichosporon (T. asahii). Additionally, the increase in Aspergillus
in FMT monkeys suggests a beneficial role for these fungi in relieving diarrhea (Figure 5D).
Another study also discovered that Aspergillus were reduced in CDI patients compared
with healthy controls [64].

Methanogen predominance Archaeal enterotype, which is characterized by a high
abundance of Methanobacteriales order, Methanobrevibacter genus and M. smithii species, has
been reported in healthy individuals [28]. Our data indicated there was a Methanobrevibacter-
predominant enterotype in healthy monkeys (Figure 6B). Lecours et al. reported a higher
abundance of M. stastmanae in IBD patients (47%) than healthy fecal samples (20%) [67]. Al-
though there was no significant change in the abundance of M. stastmanae, it was inversely
correlated with anti-inflammatory IL-4 after FMT (Figure 6D). In general, chronic diar-
rhea monkeys exhibited enteric fungal and Archaeal dysbiosis, and fungal and Archaeal
metastasis were correlated with FMT outcomes.

5. Conclusions

Human-derived FMT played a certain role in improving the symptoms of chronic
diarrhea in monkeys, and the absence of adverse events during the trial period mean that
FMT could be an alternative therapy for chronic diarrhea. This notion is supported by
our mechanism research that showed FMT helps to regulate the immune response. In
addition, there were clear compositional and functional changes in the gut bacteria that
were accompanied by alterations in fecal fungi and Archaea after FMT Figure S2. The
current results may help to further the development and application of FMT for chronic
diarrhea. However, this study had some limitations. Because of the small scale of the
research project and the specificity of the monkey models, we only conducted non-invasive
mechanistic studies and there was a lack of conclusions on causality. We propose that
further research is needed with a greater sample size to verify causality and identify the
precise mechanisms involved.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10123016/s1, Figure S1: Effects of the FMT treatment
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Summary information of cynomolgus monkeys; Table S2: Bristol stool scale, Table S3: PERMANOVA
in microbial species composition.
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