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Abstract: Pancreatic volume and fat fraction are critical prognoses for metabolic diseases like type 2
diabetes (T2D). Magnetic Resonance Imaging (MRI) is a required non-invasive quantification method
for the pancreatic fat fraction. The dramatic development of deep learning has enabled the automatic
measurement of MR images. Therefore, based on MRI, we intend to develop a deep convolutional
neural network (DCNN) that can accurately segment and measure pancreatic volume and fat fraction.
This retrospective study involved abdominal MR images from 148 diabetic patients and 246 healthy
normoglycemic participants. We randomly separated them into training and testing sets according to
the proportion of 80:20. There were 2364 recognizable pancreas images labeled and pre-treated by
an upgraded superpixel algorithm for a discernible pancreatic boundary. We then applied them to
the novel DCNN model, mimicking the most accurate and latest manual pancreatic segmentation
process. Fat phantom and erosion algorithms were employed to increase the accuracy. The results
were evaluated by dice similarity coefficient (DSC). External validation datasets included 240 MR
images from 10 additional patients. We assessed the pancreas and pancreatic fat volume using
the DCNN and compared them with those of specialists. This DCNN employed the cutting-edge
idea of manual pancreas segmentation and achieved the highest DSC (91.2%) compared with any
reported models. It is the first framework to measure intra-pancreatic fat volume and fat deposition.
Performance validation reflected by regression R2 value between manual operation and trained
DCNN segmentation on the pancreas and pancreatic fat volume were 0.9764 and 0.9675, respectively.
The performance of the novel DCNN enables accurate pancreas segmentation, pancreatic fat volume,
fraction measurement, and calculation. It achieves the same segmentation level of experts. With
further training, it may well surpass any expert and provide accurate measurements, which may
have significant clinical relevance.
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1. Introduction

Diabetes is a glucose metabolism disorder, an increasingly prevalent chronic dis-
ease [1], with high morbidity and mortality that can be reduced by early diagnosis and
treatment [2]. The pancreas plays a critical physiological role in maintaining glucose home-
ostasis. Recently, mendelian randomization studies have documented a causal role for
pancreatic fat (and volume) in type 2 diabetes [3], after several reports describing an associ-
ation between reduced pancreas volume and type 2 diabetes [4–7], or an increase in ectopic
fat deposition in the pancreas in individuals with T2DM [8–14]. Thus, precise characteri-
zation of the pancreas can potentially improve diabetes risk stratification and treatment
selection. Pancreatic fat can be evaluated by ultrasonography (US), computed tomography
(CT), magnetic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS). US
and CT are now the first-tier measuring method. However, the US cannot quantify the
entire length of the pancreas due to its relatively poor sonographic window; especially for
those used in obese patients, CT has lower response sensitivity to the fat tissue gradient in
the pancreas [15,16]. In contrast, MRI offers higher-sensitivity mechanisms for identifying
fat from lean tissues based on T1 relaxation chemical-shift properties.

Over the past 20 years, the development of reconstruction algorithms, such as proton
density fat fraction mapping (PDFF), has dramatically improved MRI techniques and
enabled advanced fat fraction quantification functionality [17]. PDFF provides a reliable
fat fraction result by exploiting the difference in resonance frequencies of protons in water
and fat [18], which is currently regarded as the most valuable and meaningful MR-based
biomarker of tissue fat fraction [19]. However, quantifying fat deposition inside relatively
small organs such as the pancreas by MRI-PDFF is still challenging as it is based on
delineating tissues entirely within the pancreas. The relative softness of the pancreas makes
it easy to be squeezed by its surrounding organs, which reduces the demarcation of the
boundaries of the pancreas, which then collapse with other non-pancreatic soft tissues,
such as the small intestine, blood vessels, and visceral adipose tissues of the abdomen.
Consequently, measurements of pancreatic volume and fat deposition by MRI in humans
are highly variable [20–23]. Manual fat segmentation on MRI images by experienced
evaluators is regarded as a gold standard [24]. To reduce inter-observer and intra-observer
variability, one manual pancreatic fat measuring method quantifies the regions of interest
(ROI) within the entire pancreas and excludes pixels with fat percentage values of <1% and
>20%, which represent histological verified blood vessels, ducts, or visceral fat (termed
MR-opsy) [24]. However, manual segmentation is still time-consuming.

The rapid development of Deep Convolutional Neural Networks (DCNNs), such as
the full convolutional network (FCN) and conditional random fields (CRF) [25–29], has
advanced much of the medical image analysis by enabling computers to learn organ seg-
mentation tasks from large MRI datasets including heart, liver, kidney, and spleen [30,31].
However, automatic pancreas segmentation has rarely been reported to date due to the
high inter-observer variation of this retroperitoneal organ. Furthermore, additional infor-
mation shown from 3D MRI scans, compared to 2D images, makes it more complicated to
establish 3D models by using the classical Atlas model [32] for context learning, due to the
limitation of current GPU memory. While there are flaws in each method, updated 2D and
3D networks have been developed, and strategies such as coarse-to-fine framework and re-
current and ensemble learning have been applied to improve the accuracy of segmentation
results [33–36].

This paper aims to: (1) evaluate the impact of the pancreatic fat fraction to type 2
diabetes in various ethnicities in New Zealand; and (2) describe developing and validating
a modified coarse-to-fine 2D framework for auto pancreatic volume and inner pancreatic fat
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fraction measurement. We then validated the newly built network on 10 extra participants
by employing clinical manual calculation and our DCNN. An overview of the segmentation
framework is illustrated in Figure 1.
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Figure 1. The overall workflow of the pancreatic segmentation. (A) MR images superpixel prepro-
cessing; (B) 2D superpixel DCNN build-up via MR water images; (C) validation of the newly built
DCNN with MRI obtained from 10 extra participants from the PAT study.

2. Methods
2.1. Study Participants and Datasets

This retrospective study involved abdominal MRI from 148 patients with diabetes
and 246 healthy normoglycemia controls with multi-ethnic backgrounds (aged ≥18 years,
167 New Zealand European, 106 Māori/ and Pacific Islanders, 67 Asian, and 54 other
ethnicities) from Auckland Central Hospital, New Zealand, between August 2015 and
October 2019. The 10 extra validation participants were from our PAT study, which details
the molecular biomarkers to change before and after bariatric surgery. All participants’
details are summarized in Table 1. All participants underwent abdominal MRI at the
Center for Advanced MRI (University of Auckland) on a MAGNETOM Skyra scanner
(Siemens, Erlangen, Germany) with a field strength of 3·0 Tesla. Participants were excluded
if they had general contraindications for MRI (such as metallic foreign body or electronic
device implantation). Exclusions also included pregnancy, malignancy, coeliac disease,
cystic fibrosis, chronic pancreatitis, and any history of acute infectious or inflammatory
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conditions requiring medical evaluation or treatment three months before the study date.
All participants included in the study provided written informed consent. Our previous
published datasets containing anthropometric measurement and pancreatic fat fractions
from MRI readings and specialists were used as a reference for the newly trained DCNN [37].
The independent validation set was derived from additional data from 10 participants
who were each scanned twice at the same center. The Health and Disability Committee
approved these study protocols.

Table 1. Detail of the participants.

Characteristics
DCNN Training and Testing Independent Validation

Total NZ.
European Māori/Pl Asian/Others Total NZ.

European Māori/Pl Asian/Others

No. of participants 394 167 106 121 10 4 4 2
Age (years) 47.8 ± 1.2 52 ± 2.4 55.3 ± 1.9 35.7 ± 2.3 38.8 ± 0.8 37.7 ± 1.1 32.9 ± 0.6 39 ± 1.2
Sex
Male 249 98 71 81 4 2 1 1
Female 145 69 35 40 6 2 3 1
BMI. 28.8 ± 0.7 28.1 ± 0.5 33.7 ± 1.3 25.4 ± 1.0 35.6 ± 1.6 35.5 ± 1.2 38.8 ± 1.8 29.3 ± 0.6
Pancreatic fat
fraction% (MRS) 31.2 ± 2.0 29.7 ± 1.5 38.4 ± 2.8 26.8 ± 2.2 46.2 ± 1.9 39.3 ± 1.4 46.8 ± 1.7 52.5 ± 2.6

Pancreatic fat
fraction% (Manual) 8.4 ± 0.6 7.6 ± 0.4 9.9 ± 0.8 8.4 ± 0.6 8.5 ± 0.5 8.8 ± 0.3 8.6 ± 0.6 7.6 ± 0.5

2.2. Image Preprocessing

Participants’ water and fat abdominal MR images were included and converted to
nifti. format using MRICroGL and pruned to 512×512 pixels, with an average thickness
of 3 mm. We selected 2364 MRI water images (1020 of patients and 1344 of control) with
recognizable pancreas imaging and manually labeled them using LabelMe [38] for building
up DCNN [39]. We used 315 participants’ images for training and 79 data sets for testing
(approximately 80:20 ratio).

MRI modality presents more details in soft tissues due to the slow imaging speed,
and the relatively low resolution of MR images often introduces more boundary artifacts
for the pancreas. Therefore, preprocessing the images to strengthen the contrast between
organ tissue boundaries is essential. Superpixel segmentation is the method that gathers
the reduced dimensionality pixels with similar color, brightness, and texture, to generate
a visual summary image. It enhances the contrast between the boundaries of different
tissues and dramatically increases the accuracy of pancreas recognition. In this study, image
preprocessing includes two stages: superpixel segmentation and image dimensionality
reduction.

2.2.1. Superpixel Segmentation

We employed the latest optimized superpixel segmentation method, linear spectral
clustering (LSC) for pancreatic image preprocessing. It is regarded as the best-performing
superpixel segmentation acting on three-channel natural images [40]. We adjusted the algo-
rithm of the LSC to fit the single-channel MR image task and compared it with simple linear
iterative clustering 0 (SLIC0), which was announced as the latest method for superpixel
segmentation of medical images [41]. The LSC acting on three-channel natural images was
with the following pixel distance calculating formula:

D(p, q) = c2
s

(
cos

π

2
(
xp − xq

)
+ cos

π

2
(
yp − yq

))
+ c2

c

(
cos

π

2
(

gp − gq
))

(1)

In the formula D represents the distance between pixels, p and q are two different
pixels, cs is the spatial proximity, cc is the color similarity, x and y are the spatial positions
of pixels, and g is the grey scale value of pixels.

Compare this with the pixel distance measurement formula in the original LSC:

ds = cos
π

2
(
xp − xq

)
+ cos

π

2
(
yp − yq

)
(2)
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We keep the same pixel spatial distance value, ds, and change the pixel color distance
value from

dC1 = cos
π

2
(
lp − lq

)
+ 2.552

(
cos

π

2
(
ap − aq

)
+ cos

π

2
(
bp − bq

))
(3)

to
dC2 = cos

π

2
(

gp − gq
)

(4)

To get better pancreas segmentation performance on restricted GPU, the variables l,
a, and b in these formulae represent the color scale values of pixels, which were replaced
by grayscale values. By adjusting the ratio, r, of cs and cc, the improved LSC method can
generate superpixels with higher compactness (CP) and boundary recall (BR).

r = cs/cc (5)

The larger the r-value, the closer the spatial pixels cluster together, which generates
superpixels with high CP but low BR. Conversely, low r values render pixels with low CP
but high BR. To get the superpixels with both high CP and BR, we propose a new index as
follows:

I = 1− BR/CP (6)

The CP and BR would be balanced when I reach a minimum positive value. We used
this study’s simulated annealing (SA) method to determine the r-value.

We used the evaluation index of superpixel segmentation to compare the performance
of our improved LSC with SLIC0. Index elements used are under segmentation error (UE),
boundary recall (BR), and achievable segmentation accuracy (ASA) [42]. These individual
elements can be derived from the following formulas.

The formula for UE:
UE =

Us
Rs + Os

(7)

In this formula OS represents the observed number of segmented pixels that should not
have been presented; RS is the theoretical number of pixels; US is the number of pixels that
did not appear in the actual segmented image that, in theory, should have been presented.

The formula for BR:

BR(S, G) =
TP(S, G)

TP(S, G) + FN(S, G)
(8)

G and S represent the reference and actual boundaries of superpixel segmented images
when given a ground truth, respectively. According to Equations (2) and (4), the value of
maximum pixel distance is 1. TP is the true value of the pixel number of S that overlaps G
within the range of d. FN is the opposite value of TP.

The formula for ASA:

ASA =

(
1− | Rs− Ts |

Rs

)
× 100% (9)

Rs represents the manually segmented reference area the expert marks; Ts is the area
from the trained DCNN.

2.2.2. Dimensionality Reduction of Images

We adjusted the images by reducing the dimensionality and generated their cor-
responding visual summary maps that only showed the features between superpixels.
Combined with the idea of average pooling in deep learning, we input the DCNN, a
calculation of averaging gray values of all pixels in each superpixel, and then reassigned
values to each gray value to generate a schematic diagram. The preprocessed abdominal
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schematic diagram enhanced the display of the separability between organs and tissues,
which is conducive to the segmentation of the pancreas.

2.3. DCNN Establishment and Performance Evaluation

We fine-tuned an existing U-net model and trained it to a new single-branch DCNN
architecture from scratch to converge based on a large amount of artificially labeled train-
ing data of MRI water images. To increase the DCNN accuracy, we transferred learned
kernels in the bottom layers of the VGG-16 network to our domain, which has been highly
discriminative with a stable training convergence [43]. U-net models have produced ex-
traordinary results in medical image segmentation combining the information from low
and high medical image layers, which help improve accuracy and extract complex features,
respectively. In the last layer of DCNN, it performs 1×1 convolutional classification, which
slows its inference procedure significantly. To address this problem, we proposed an accel-
eration method shown in Figure 2. The DCNN only performs convolutional classification
on the labeled superpixel at the center position, representing the same pixel cluster with
identical characteristics. This method ensured both the network speed and its classification
performance.
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Figure 2. The framework of the DCNN. The assigned center of superpixels accelerated the speed of
DCNN.

The training was conducted on a workstation with Inter i9-11900k CPU 2080 NVIDIA
Ti GPU using Python 3.6.0 and deep learning packages TensorFlow and Keras. The DCNN
training process included continuous iterations of forward followed by backward propaga-
tion. The forward propagation involves feeding input images and returning corresponding
output sets of per-pixel predictions within the pancreas. The segmentation accuracy of
each sample was evaluated by the Dice Similarity Coefficient (DSC), which measures the
overlap between the user-annotated pancreas and the DCNN-predicted masks (shown as
X and Y, respectively):

DSC =
2× | X ∩Y |
| X | + | Y | (10)

To further validate the novel DCNN, we applied it to 10 additional newly-recruited
participants with prediabetes from our latest clinical research (Table 1). Two independent,
experienced researchers segmented pancreatic volume and fat fraction, and their result was
then compared with the machine-derived results. The time consumption and how closely
the segmentation results are related were observed.
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2.4. Principles of Measuring Pancreas Volume and Pancreatic Fat Deposition
2.4.1. Phantom Study

We conducted a phantom emulsion series of readings to convert the MRI pixel infor-
mation into actual dimensions and calibrate the proportion of fat tissue for the machine.
We used vegetable (soy) oil and distilled and undoped water to make a homogeneous
emulsions series to evaluate the accuracy of each quantification result. This method was
fully described by Bernard [44,45]. We added 0–100% fat volume fractions and lecithin (1%
by weight from Sigma) in 100 mL bottles. To stabilize the emulsions, we applied agar gel
(3% by weight) and dioctyl sulfosuccinate sodium salt to the system. The emulsions were
prepared slowly over a heat-stir plate and subsequently cooled down to room temperature
allowing the suspension to stay evenly distributed. The bottles were then placed in a
container with solid agar and processed in the MRI machine under the same condition
that operated on participants. Single voxel MRS was performed on ten emulsions with a
fat fraction of 10–100% fat with the same scan parameters as repetition time = 4 s, echo
time = 23 ms, and bandwidth = 2.5 kHz. The phantom results are presented in Figure 3A.
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Figure 3. Processing of pancreatic tissue scan and its inner fat volume acquisition. (A) Phantom
results under the same MRI conditions: (a) water phase MRI scan; (b) fat phase MRI scan; (c) heatmap
of fat gradient generated by app in MRS; (d) digital converted fat fraction gradient generated by
python pillow algorithm for machine learning; (B) method of acquisition of pancreas volume and its
3D rebuilt result; (C) optimization of erosion kernel value; and (D) process of acquisition of pancreatic
fat volume from MRI fat image to profiling pixels.
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2.4.2. Acquisition of Pancreas Volume

We input the water phase MR images into the well-trained DCNN and enabled our
newly-trained framework to calculate the segmented area for further accumulating the
total volume. The segmental volume was calculated as the product of the area of each
pancreatic slice (generally, there were 6–9 pancreatic MRI images for each participant) and
the thickness (3 mm), as indicated by the Cavalieri principle: [45] The pancreatic 2D images
were stacked and restructured into a 3D model (Figure 3B).

Volume in vivo = ∑ Volumes o f all pancreatic slices (11)

2.4.3. Acquisition of Pancreatic Fat Volume

Manual operation quantifies the area of pancreatic fat pixels within the entire pancreas
on fat images. The values were noted by Image J (National Institutes of Health, Bethesda,
MD, USA) with automatically evaluated pixel percentages. To reduce inter-observer and
intra-observer variability, we manually removed the pixels with fat percentage values of
<1% and >20%, representing histologically verified blood vessels, ducts, or visceral fat [24].

We enabled our DCNN to have the identical function as manual measurement. Our
newly-built DCNN can pick up MRI fat images with a redundant boundary. To avoid
contamination of the redundant border and improve the calculation performance, we
employed the erosion algorithm (X Θ B = X − b = {z: (B + z) ⊆ X}) in OpenCV to remove
the extra boundary pixels from the segmented images. The erosion algorithm computes
a local minimum over a given kernel value, which we adjusted in our DCNN until we
achieved a satisfactory segmenting outcome. The stability of the highest performance
was established when the kernel value was adjusted to 5 (Figure 3C). The phantom study
aligned the brightness of each pixel on MRI to its corresponding actual fat percentage.
The performance of the erosion algorithm and machine pixel labeling on MR fat images is
shown in Figure 3D.

2.5. Statistics

The SciPy algorithm in Python was employed to do all statistical analyses. An inde-
pendent Student t-test was used to reflect the difference in detecting pancreatic fat fraction
in diabetic patients and healthy normoglycemia controls and the DSC scores under various
training conditions. 95% Cl of the critical p-value was considered significant when it was
less than 0.05. Linear regression was performed to validate the segmentation performance
of specialists and newly-built DCNN.

3. Results
3.1. Evaluation of the Correlation between the Pancreatic Fat Fraction and Type 2 Diabetes in
Various Ethnic Groups

The manually measured pancreatic fat fraction data was organized into multiple
groups based on ethnicity and T2D condition. Student t-test was employed to analyze
the difference between groups. The results are shown in Figure 4. The pancreatic fat
fraction is significantly different between total normoglycemia controls and diabetes with a
t value of −13.0799, p < 0.01. The t values of the difference between normoglycemia and
diabetes in various ethnic groups are −8.2767 for NZ Europeans, −9.9537 for Māori and
Pacific Islanders, and −4.9576 for Asian and others. All groups are with a value of p < 0.01.
Notably, the pancreatic fat fraction within normoglycemia controls was similar. However,
the pancreatic fat fraction among patients with diabetes was significantly different.
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Figure 4. The comparison of pancreatic fat fraction between normoglycemia control and T2D in
multiple ethnic groups. Each group is significantly different with p < 0.01 ***.

3.2. The Performance of Superpixel Segmentation
3.2.1. Results of the Comparison of Improved LSC and SLIC0

We adjusted the LSC with the new method of distance measurement. The performance
comparison of improved LSC and SLIC0 is shown in Figure 5A, through which we can
see the enhanced LSC performed better than SLIC0 in UE, BR, and ASA indexes. The
results showed that the LSC method better satisfied the actual requirements of superpixel
segmentation of medical images.

3.2.2. Request r-Value by Improved LSC Method

The segmented result of superpixel on medical images should be expected to have
both high BR and CP values. We adjusted the ratio of cs and cc values to achieve this target
by the improved LSC method. According to the result of simulated annealing, we selected
the r-value range at [0.05, 1] and calculated the I value accordingly. The correlations of
different r values of superpixel segmentation and I values are shown in Figure 5B, from
which we can see the optimum and minimum I value was derived when r = 0.25, which
achieved the balance between CP and BR values.

3.2.3. The Optimum Number of Superpixels

We preprocessed the medical images and got their corresponding superpixel schematic
shots to get the best pancreas segmentation result. The processed images were then input
into the DCNN for training and testing until the model optimized the DSC value. The
number of obtained superpixels was a crucial factor that defined the quality of segmentation.
Training DCNN (for 20 epochs) resulted in adjustment to the number of superpixels on
preprocessing images at values of 500, 1000, 1500, 2000, 2500, 3000, and 3500, respectively.
The results suggest that DSC tends to be optimized when the superpixel number is 2500, as
illustrated in Figure 5C.
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Figure 5. Variation of different numbers used in improved LSC and the segmentation results of
MRI imaging. (A) Comparison between the improved LSC and SLIC0 with superpixel segmentation
indexes; a, b, and c are the comparison of UE, BR and ASA, respectively. (B) The minimum I value
was set at r = 0.25. (C) Evaluation of the best superpixel number for segmentation. The highest DSC
was acquired when the superpixel number reached 2500.

3.3. Evaluation of the Preprocessing at Different Epochs

We compared the average Dice Score values of our DCNN with and without pre-
processing images at various epochs; the results showed that higher average Dice Score
values came out from the DCNN with the input of the preprocessed images (Figure 6A).
The accuracy curve based on Dice Score showed that the weighted network fit in prepro-
cessed images became stable after 20 epochs (Figure 6B). Framework performance also
stabilized after 20 epochs by feeding no preprocessing images. Considering saving time,
we set the optimum conditions for our DCNN as training for 20 epochs with the number of
superpixels at 2500.
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Figure 6. DSC comparison of the modified DCNN at different epochs with and without prepro-
cessing of the superpixel. (A) The DSC comparison at different epochs, p values showed that they
were significantly different at different epochs: a1, a2, and a3 are the results at 1, 10, and 20 epochs
with p values of 0.05, 0.01, and 0.01, respectively. (B) The Dice Score for accuracy at different epochs,
after 20 epochs, the framework became stable.



Biomedicines 2022, 10, 2991 11 of 16

3.4. Segmentation Integrity of Novel DCNN

The performance comparisons between superpixel centered and not centered are
shown in Figure 7A,B. The results showed that centered superpixel on images could
significantly increase the DSC of the DCNN. The corresponding DSC for 20 epochs reached
up to 91·2%. Overall, the DSC value from the novel DCNN met the actual requirements,
and the integrity of the pancreatic organ from testing images is shown in Figure 7C. The
DSC values of recent frameworks are summarized in Table 2 for a general comparison.
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Table 2. Mean DSC values of recent frameworks for pancreatic segmentation.

Method Mean Dice Score/%

Attention U-net [46] 81.5
3D FCN [28] 76.8
RSTN [35] 84.5

Graph-based decision fusion [31] 76.1
Lightweight DCNN modules [47] 85.6

Spatial aggregation [29] 81.3
Fixed-Point [40] 83.2

Bayesian Model [48] 85.3
Our DCNN 91.2

3.5. Independent Validation of the Novel DCNN

The newly-built DCNN performance was validated with specialist manual segmenta-
tion on newly recruited patients. The regression graph reflected the correlation between the
two segmenting methods regarding pancreas volume and pancreatic fat fraction (Figure 8).
The R2 values of pancreas volume and fat fraction were 0.9764 and 0.9675, respectively. We
can roughly conclude that the segmentation results derived by the newly-generated DCNN
were reliable compared with the manual operation. Further, the DCNN shortened the time
consumption dramatically. The average time for measuring each patient was from 1.5 h via
manual process to 5 s using the DCNN.
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4. Discussion

Our study provides positive evidence for the clinical concept that inner-pancreatic
fat correlates with T2D. The result solidified the idea of developing a DCNN model for
an auto-measuring pancreatic fat fraction for type 2 diabetes diagnosis. We compared
consuming time on manual and auto segmentation methods. It achieved an accuracy
approach comparable to manual grading, obtained at a much greater speed (5 s for DCNN
analysis vs. 1.5 h for manual grading). This study also provides proof of the DCNN-based
analysis of pancreatic fat and pancreatic volume among participants of different ages,
BMIs, and ethnicities. Because the training, validating, and testing sets shared no common
participants, the excellent performance of the DCNN could not be attributed to overfitting.
Ethnicity and BMI are key factors that influence the imaging characteristics of the pancreas,
including pancreatic fat [49–51]. To ascertain the potential generalizability of the DCNN in
recognizing pancreatic fat and volume in people of different ethnicities and body sizes, we
tested the DCNN trained on a multi-ethnic group of participants with an external dataset
of participants. These participants differed substantially from the initial training set in
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having a higher BMI. MR images were taken before and three days after bariatric surgery
when type 2 diabetes status was present and absent, respectively, correlating to a significant
reduction in pancreatic fat and volume over this short peri-operative time interval. The
excellent performance of the DCNN on the external dataset suggests a good representation
of BMI and ethnicity in the training set images.

Recent studies showed that pancreatic fat deposition and volume are causally linked
to developing type 2 diabetes and other metabolic diseases [2,13]. Thus, accurate quan-
tification of pancreatic parameters is vital for clinical use. The pancreas volume and fat
fraction measuring protocols are software-based manual segmentation developed from 3D
IDEAL MRI scans [24]. However, due to the anatomical features of the pancreas, which is
comparatively small, it is challenging to localize the measuring center on MR images [52,53].
The post-MRI manual expert-based methods currently define pancreatic quantification.
This method provides a more accurate output than the direct reading from MRS. [24].
However, it requires an experienced specialist to carry out extensive freehand drawing
around ROI pixels, which is incredibly time-consuming; hence we developed this DCNN
to automate pixel definitions for broader use. Some framework performances are listed
in Table 2 for a rough comparison. However, it is of minimal use to make the comparison
between frameworks based on different algorithmic strategies. Due to a mere handful
of DCNNs for pancreas segmentation being on the market, we have presented them for
reference purposes only.

Prior studies have rarely characterized the pancreas for either fat deposition or volume
due to high variability in size and location among patients [54,55]. We introduced the
superpixel segmentation method to our DCNN and preprocessed the medical images. We
innovated the calculation index of pixels to improve the LSC algorithm, which turned
superpixel segmentation acting on three-channel natural images to only one-gray-channel
MRI images and adapted it to the evaluation of medical images. Results showed that the
superpixel clarified the boundary of the pancreas, making recognition easier for the DCNN.
The comparison results of user-based and automatic segmentation showed that our DCNN
was particularly well-suited to this task since it computes pancreas presence and location
on a superpixel basis with a multi-resolution approach possessing a U-net-base architecture.
Compared with the user-performed segmentation, this method produced results with
lower error ranges and saved considerable time on calculations. With this method, it would
be more feasible to measure pancreatic fat deposition and size for extensive data sets and
accelerate metabolic disease research. With limited further training, it theoretically can also
be compatible with other types of medical images like CT and ultrasound.

There are still some limitations to the current work: (1) this study included images
obtained from a standardized MRI protocol and scanner, but whether the performance
of the DCNN generalizes to data obtained using various scanners and protocols should
be further investigated; (2) the algorithm may only be valid on fat infiltration pancreas.
However, the DCNN is loyal to the clinical segmentation method, and fat infiltration on
the pancreas is also an essential index of various metabolic diseases diagnosis; (3) in the
validation process, we only recruited 10 new participants due to the impact of COVID-19. It
may raise the risk of overfitting based on such a small dataset. Further validation needs to
be conducted by including more participants; (4) though the novel DCNN was built upon
the two-dimensional (2D) dataset, it could be possible to be extended to 3D prediction,
which helps further with pancreatic volume evaluation. However, it is challenging to
expose the fat pixels inside the pancreas. An appropriate algorithm to overcome the
boundary clearance and inner pancreatic fat pixel accumulation needs to be deliberated;
and (5) a more extensive training and validating set could provide the DCNN with further
stability and efficiency in the proposed approach.

5. Conclusions

We successfully developed one artificial intelligence model to measure pancreas
volume and fat deposition from MR images. We first copied the manual measurement
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method of the pancreas into the DCNN. We also initially involved a preprocessing method
of a superpixel algorithm on MR images to assist with pancreatic boundary recognition.
The overall mean DSC is 91.2%, the highest known DCNN of the same type. Our future
work will focus on the 3D model establishment and obtaining more training datasets
to improve accuracy. It will assist with large-scale automated pancreas volume and fat
deposition processes in research and clinical applications. It also has the potential to be set
up in a cloud to provide free service to encourage more pancreas imaging research.
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