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Abstract: Atrial fibrillation (AF) is the most common arrhythmia in the world. Because the key to
developing innovative therapies that limit the onset and the progression of AF is to fully understand
the underlying molecular mechanisms of AF, the aim of the present narrative review is to report the
most recent advances in the potential role of the adenosinergic system in the pathophysiology of AF.
After a comprehensive approach describing adenosinergic system signaling and the mechanisms
of the initiation and maintenance of AF, we address the interactions of the adenosinergic system’s
signaling with AF. Indeed, adenosine release can activate four G-coupled membrane receptors,
named A1, A2A, A2B and A3. Activation of the A2A receptors can promote the occurrence of delayed
depolarization, while activation of the A1 receptors can shorten the action potential’s duration and
induce the resting membrane’s potential hyperpolarization, which promote pulmonary vein firing,
stabilize the AF rotors and allow for functional reentry. Moreover, the A2B receptors have been
associated with atrial fibrosis homeostasis. Finally, the adenosinergic system can modulate the
autonomous nervous system and is associated with AF risk factors. A question remains regarding
adenosine release and the adenosine receptors’ activation and whether this would be a cause or
consequence of AF.

Keywords: adenosine; adenosine receptors; atrial fibrillation; arrhythmia

1. Introduction

Atrial fibrillation (AF) is a multifactorial sustained cardiac arrhythmia, and it is now
considered a real worldwide public health issue, affecting more than 50 million individ-
uals [1,2]. Because this common arrhythmia, in clinical practice, is associated with major
poor clinical outcomes, such as left ventricular dysfunction, heart failure or stroke, intensive
research has been developed to understand the physiopathology of AF better. Despite
the substantial progress that has been made in the detection and management of AF, the
underlying molecular mechanisms associated with the onset of atrial fibrillation and its
progression remain still unclear.

Among these molecular mechanisms, the implication of the adenosinergic system in
AF has increased, since the accumulation of experimental data suggests that the increase
in the adenosine blood level and the remodeling expression of the adenosine receptors
might be part of the AF pathophysiology. Unfortunately, the adenosinergic system still
has a Janus face in cardiac arrythmias, since adenosine can have both antiarrhythmic or
proarrhythmic actions, along with adenosine receptors, which can lead to either profibrotic
or antifibrotic effects [3,4]. Furthermore, whether adenosinergic system disturbances are
the cause or the consequence of AF is not yet elucidated.
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As the key to developing innovative therapies that limit the onset and progression
of AF is to fully understand the underlying molecular mechanisms of AF, the aim of the
present narrative review was to report the most recent advances on the potential role of the
adenosinergic system in the pathophysiology of AF. After describing the adenosinergic sys-
tem’s signaling and the pathophysiology of AF, this review focuses on the arrhythmogenic
effects of adenosine and concludes with the association between the AF risk factors and
adenosinergic system disturbance.

2. Adenosinergic System Signaling
2.1. Metabolism of Adenosine

Since Drury and Szent-Györgyi first observed the cardiac effect of adenine compounds
in 1929 [5] and Burnstock proposed the concept of extracellular purinergic signaling in
1972 [6], adenosine has emerged as an important signaling molecule with pleiotropic
actions, including effects on the cardiovascular system [3,4,7]. This ubiquitous purine
nucleoside comes mainly from ATP dephosphorylation when tissue energy requirements
increase, such as during hypoxia, ischemia or inflammation [7]. The methionine cycle
can contribute to intracellular adenosine formation in the heart by the hydrolysis of S-
adenosylhomocysteine [8]. However, ATP hydrolysis is considered the main source of
adenosine secondary due to the extracellular dephosphorylation cascade of ATP by the suc-
cessive action of a membrane-anchored ectonucleoside triphosphate diphosphohydrolase-1
(CD39) and the ecto-5’-nucleotidase (CD73) [9–11] (Figure 1). Consequently, all situations
associated with a massive release of adenine nucleotides (e.g., cell damage, platelet ag-
gregation, and vascular shear stress) can rapidly increase the level of adenosine from
0.4–0.8 µmol/L under resting physiological conditions to more than 1.0 µmol/L in patho-
logic conditions, such as neurally mediated syncope or cardiogenic shock [12,13].

Blood concentrations of adenosine are limited in time and space by its catabolism
and reabsorption by balancing nucleoside transporters (ENTs), particularly in red blood
cells [14–16]. Adenosine deaminase (ADA), which is present in most cells and on the surface
of mononuclear cells (MC-ADA), converts adenosine to inosine, which is metabolized to
uric acid, its final catabolite. Moreover, adenosine kinase can phosphorylate intracellular
adenosine and convert it into adenosine monophosphate (AMP) [17]. Consequently, the
half-life of adenosine is short (10–30 s) due, notably, to the fact of its rapid uptake by
erythrocytes and its deamination by adenosine deaminase [18,19], and its rate of turnover
rate is 1.5 nmol/mL/min [17].

During hypoxia, ischemia or inflammation, ATP metabolism is modified leading to
increased production of adenosine, which is associated with a decrease in its rephospho-
rylation. Inflammation or hypoxia can modulate the adenosinergic system thanks to the
transcription factor NF-κB, which increases the transcription of adenosine receptors and
hypoxia-inducible factor-1α (HIF-1α) genes [20–23]. In hypoxic conditions, the proteasomal
degradation of prolyl-hydroxylase allows for the nuclear translocation of the transcription
factor HIF-1α to induce the transcription of numerous genes, including those for adenosine
receptors and CD73 and NF-κB, and to repress the transcription of ENT and adenosine
kinase genes [24,25]. Thus, increased adenosine plasma concentrations have been well
reported in ischemic or inflammatory diseases, such as coronary artery or ischemic heart
diseases [26,27] and pulmonary inflammation [28,29].

2.2. Adenosine Receptors and Their Cardiac Effects

Adenosine receptors are subdivided in four G protein-coupled receptors, named A1
(A1R), A2A (A2AR), A2B (A2BR) and A3 (A3R) receptors, which are classified according
to their primary sequence, their associated G-protein and their pharmacological profile
(binding affinity of agonists and antagonists) [30,31]. A1R and A3R are coupled to the Gi/o
proteins leading to the inhibition of adenylyl cyclase (AC), whereas A2AR and A2BR are
associated to Gs proteins, which stimulate the adenylyl cyclase and increase the intracellular
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production of cyclic-AMP (cAMP). A1R and A2AR have a high affinity for adenosine with a
higher binding affinity of A1R. A2BR and A3R have a lower affinity for adenosine [31,32].

Figure 1. Adenosine metabolism. The sources of intracellular adenosine (ADO) come partly from
the methionine cycle by the hydrolysis of S-adenosylhomocysteine (SAH) and mainly from the
ATP dephosphorylation cascade when cellular energy requirement increases. Massive extracellu-
lar release of ATP produces adenosine by the consecutive actions of ectonucleoside triphosphate
diphosphohydrolase-1 (CD39) and ecto-5’-nucleotidase (CD73). Adenosine can bind to adenosine
receptors (ARs), but it is also reuptake by equilibrative nucleoside transporters (ENT1–2) and rephos-
phorylated by adenosine kinase (ADK). Adenosine is catabolized by adenosine deaminase (ADA)
into inosine (Ino) and, finally, joins uric acid metabolism. Hypoxia and inflammation increase the
expression of adenosine receptors and the production of extracellular adenosine: HIF promotes
the transcription of adenosine receptors and CD73 and NF-kB genes and represses ENT and ADK
genes; NF-κB promotes the transcription of adenosine receptors and HIF genes. ATP: adenosine
triphosphate; ADP: adenosine diphosphate; AMP: adenosine monophosphate; HCY: homocysteine;
HIFs: hypoxia-inducible transcription factors; MC-ADA: mononuclear cell ADA; NF-kB: nuclear
factor-kappa B.

Adenosine receptors are widely distributed in various cells and tissues, including the
cardiovascular system [33,34]. All four adenosine receptors have been described in the
heart, with distributions varying regionally. Their activations by adenosine have major
effects on cardiac function by modulating the sympathetic tone and the conductance of
potassium and the calcium current [34,35]. Cardiac A1R is highly expressed in the atrial my-
ocardium, the sinoatrial node (SAN), the atrioventricular node (AVN) and the His–Purkinje
system and presynaptically on adrenergic nerve varicosities but have a lower expression
in ventricular myocytes [36]. The activation of A1R by adenosine induces direct negative
chronotropic and dromotropic effects [37] and an indirect anti-β-adrenergic action which
can antagonize the positive inotropic effect of catecholamines [38–40] (Figure 2). This is
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especially useful as a cardioprotection in ischemia-reperfusion injury [41,42]. A2ARs are
particularly expressed in vessels and coronary arteries with a vasodilator effect [43,44],
whereas their density is moderate in ventricular and atrial tissues, leading to the contraction
of cardiomyocytes [45–47]. Opposite to A1R, A2AR directly enhanced the inotropic effect of
cardiomyocyte by increasing the cytosolic Ca2+ level and the Ca2+ sensitivity of the myofil-
aments [48]. In the same manner, neither deletion of the A2A or A2B receptors nor the brief
activation of these receptors impacts ischemia-reperfusion injury [49]. However, in A2AR or
A2BR knockout mice, the beneficial effects of A1R stimulation on post-ischemic function and
infarct size were reduced [49]. A2BRs are expressed in coronary arteries and mediates coro-
nary vasodilation, with a minor and supportive role compared to A2AR [50]. The expression
of A2BRs has also been reported in atrial and ventricular cardiomyocytes [35,47]. A2BRs’
activation on cardiac fibroblasts reduces collagen and total protein synthesis suggesting
that adenosine may protect against cardiac fibrosis [51]. Expressed in the coronary arteries,
A3Rs’ activation mediated coronary vasodilation [52] and can also induce cardioprotection,
since their activation by a high-selective agonist, IB-MECA, reduced myocardial infarct
size [53].

Figure 2. Cardioprotective effects of adenosine A1 receptors’ activation. Stimulation of the A1

receptors induces bradycardia (negative chronotropy) on a sinoatrial node (SA node), atrioventricular
conduction slowing (negative dromotropy) on an atrioventricular node (AV node) and reduced atrial
cardiomyocyte contractility (negative inotropy).

Previous studies have shown that A1R and A2AR were involved in physiological
heart rate regulation at a 10−5 to 10−3 M concentration [54]. A1R induced bradycardia by
depressing the sinoatrial node and slowing the atrioventricular conduction [55,56]. Since
mice KO for A2AR exhibit an increase in heart frequency, this suggests that A2AR activation
also leads to bradycardia [57]. This regulation of the heart rate appears to be partly due to
the modulation of the sympathetic tone [58] and suggests a collaborative effect between
the different receptor subtypes for cardioprotection [42,59].

2.3. Molecular and Ionic Bases of Adenosine Effects in Cardiac Electrophysiology

The electrophysiological action of adenosine in the heart is regionally variable and
dependent on the underlying ionic current population, which differ between species [41].
Irrespective of the species, adenosine exerts its cardiac electrophysiological actions mainly
through the modulation of potassium, sodium and calcium currents by cardiac A1 and A2A
receptors’ activation [60,61].
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2.3.1. Effects of Adenosine on Ionic Currents

Adenosine is believed to induce a cAMP-dependent (indirect effects) anti-β-adrenergic
action by a dual mechanism: the activation of the presynaptic A1R limits the release of nore-
pinephrine [62] and the activation of postsynaptic A1R blocks the effects of catecholamines
by inhibiting adenylyl cyclase activity and then reducing intracellular cAMP levels. This
indirect effect subsequently decreased the catecholamine-induced calcium inward current
through L-type calcium channels (ICa,L) [55] and the sodium inward current (“funny”
current (If) or pacemaker current) through hyperpolarization-activated cyclic nucleotide-
gated (HCN) channels [63]. Nevertheless, it is still considered that the main cardiac effect
of A1R is direct and cAMP-independent by modulating an inwardly rectifier potassium
current, which is activated by both adenosine and acetylcholine (IKAch,Ado), herein further
referred to as IK,Ado [55,64].

The activation of A1Rs enhances the IK,Ado thanks to G-protein-coupled, inwardly
rectifying K+ (GIRK) channels [65]. After the Gi-protein activation, the Giα subunits
enhance the gating of the GIRK channels, in the same manner as acetylcholine on the
muscarinic-2 receptor, which causes a vagally mediated negative chronotropy upon on
atrial pacemaker activity [65,66]. The GIRK channels aim to maintain the potassium
equilibrium potential (EK+ = −90 mV) and modulate its conductance according to the
membrane potential. As other inward rectifiers, they conduct larger inward currents when
the membrane potential is negative to the EK+ than outward currents when the membrane
potential is positive to EK+ [67–69]. The GIRK subunits (GIRK1–4 or Kir 3.1–3.4) are
associated with A1R in the heart and, more particularly, in the SAN and atria [70–72].
Thus, adenosine causes a GIRK-induced potassium outward current leading to resting
membrane potential (RMP) stabilization or hyperpolarization, a reduced rate of diastolic
depolarization and a shortened action potential duration (APD) and an effective refractory
period (ERP) [55]. Complementary to the GIRK-induced IK,Ado, A1Rs regulated the
cAMP level by the inhibition of the adenylate cyclase activity through the Giα-subunit.
Therefore, the cAMP-dependent protein kinase A (PKA) activity and the PKA-dependent
phosphorylation of Ca2+-handling proteins are reduced, which modulates Ca2+ homeostasis
and reduces isoproterenol-stimulated ICa,L [55].

On the contrary, like other GS-protein coupled receptors, A2AR stimulation can activate
a cAMP-dependent pathway modulating Ca2+ handling. However, the precise mechanism
of the A2AR-induced transduction signal remains controversial. Indeed, some authors
report that the stimulation of A2ARs by a specific agonist (i.e., CGS 21680) did not alter the
cAMP level in rat ventricular cardiomyocytes [73], whereas, more recently, others showed
that CGS 21680 increased the cAMP content in ventricular cardiomyocytes of transgenic
mice overexpressing human A2AR [74].

Moreover, in rat ventricular cardiomyocytes, the A2AR-induced inotropic effect was
associated with a Ca2+-dependent pathway, but it was also considered as predominantly
mediated by a Ca2+-independent inotropic pathway, which may rely on an increased
myofibrillar Ca2+ sensitivity [75]. In human right atrial preparations, A2ARs’ stimulation
by CGS 21680 induces a PKA-mediated increase in the frequency of spontaneous calcium
release from the sarcoplasmic reticulum (SR) without a significant increase in the ICa,L
amplitude [46].

In the canonical Ca2+-dependent pathway, the PKA-dependent phosphorylation might
increase the activation of L-type Ca2+ channels (LTCC) initiated by membrane depolar-
ization. Following LTCC opening, the inward Ca2+ current (ICa,L), in turn, triggers a
Ca2+-induced Ca2+ release (CIRC) from the sarcoplasmic reticulum via the phosphorylated
cardiac ryanodine receptors (RyR2) and which is responsible for numerous spontaneous
Ca2+ release events (Ca2+ spark and Ca2+ waves) during systole [46,76]. This can lead to
the positive inotropic effect of A2AR stimulation in atria and ventricles through the Ca2+-
induced myofibrilla contraction responsible for the cardiac electromechanical coupling [48].
The structural organization of cardiomyocytes into specific microdomains (i.e., cardiac
dyads) favors this cardiac excitation–contraction coupling [77,78]. This is supported by the
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regional variation of the phosphorylation state of the LTCC [79] and the expression and the
activity of the Ca2+ handling proteins [78–80].

Because an appropriate cardiac function requires a tight regulation of the Ca2+ content
at the end of the systole to hasten the relaxation (positive lusitropic effect), it is interesting
to note that in mice overexpressing human A2AR, the stimulation of A2AR increased the
phosphorylation states of phospholamban (PLN) and the inhibitory subunit of troponin
(cTnI) [74,81]. The PKA-dependent phosphorylation of cTnI hastens the dissociation of
Ca2+ from troponin C, allowing for a faster relaxation rate [82] The phosphorylation of PLN
de-inhibits the activity of the sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump which,
in turn, reuptakes cytosolic Ca2+ and leads to a lower Ca2+ content during the diastolic
phase [83]. During diastole, the Ca2+ extrusion is also mediated by the Na+-Ca2+ exchanger
(NCX: stoichiometry of 1Ca2+:3Na+) allowing for cell relaxation. Indeed, the beat-to-beat
electromechanical coupling stability is determined by the ability of the myocyte to maintain
equilibrium between the SR calcium’s uptake and release [84].

Therefore, the effects of adenosine in the nodal cells (i.e., SAN and AVN), the con-
ductive tissues and in the working myocardium are largely based on the modulation of
adenylate cyclase activity, which induces cAMP-dependent PKA signaling, leading to Ca2+

handling protein phosphorylation, and to a GIRK-induced potassium outward current
(IK,Ado) (Figure 3).

Figure 3. Adenosine receptors signaling (right: A1R; left: A2AR). Prejunctional A1R activation limits
the norepinephrine release. Complementarily, A1Rs reduce the increased adrenergic-induced cAMP
elevation and the cAMP-dependent currents (I funny, ICa,L). The main effect of A1R activation is
mediated through GIRK-induced outward K+ current (IK,Ado). A2AR activation increases cAMP
and, consequently, activates the PKA. PKA phosphorylates L-type Ca2+ channels (LTCC) inducing an
inward Ca2+ current (ICa,L). Ryanodine receptors’ (RyR2) phosphorylation by the PKA allows for
the Ca2+-induced Ca2+ release from the sarcoplasmic reticulum. Cardiac troponin I phosphorylation
and cytosolic Ca2+ sparks trigger the myofibrils’ contraction during systole. During diastole, the
phosphorylation of phospholamban (PLN) permits the SERCA to pump Ca2+ into the sarcoplasmic
reticulum. The Na+: Ca2+ exchanger extrudes Ca2+ allowing for diastolic relaxation. AC: adenylyl
cyclase; cTnI: cardiac troponin I; PKA: protein kinase A.
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2.3.2. Adenosine Effects on the Action Potential in Nodal Cells and Working Cardiomyocytes

The action potential of the sinoatrial node cells is characterized by a more depolarized
(−60 mV) and more labile resting membrane potential than contractile cardiomyocytes
due to the almost lack of Kir2-encoded inwardly rectifier potassium currents (IK1) [85,86].
After a previous action potential, when the membrane potential reaches the maximum
diastolic membrane potential, the HCN channels’ opening allows for the inward Na+
“funny” current (If), which contributes to the automaticity. This spontaneous diastolic
HCN-mediated depolarization drives the membrane potential to the action potential
threshold (~−40 mV) [87]. This threshold triggers the opening of voltage-dependent
L-type Ca2+ channels, which induce a low slope of depolarization (phase 0). Lastly, while
the Ca2+ channels close, the rapid and slow delayed rectifier current (IKr, IKs) induces
outward K+ currents, which are responsible for the repolarization (Figure 4A). Even if
the IK1 current is very weak in sinoatrial cells, others inward rectifiers, including the
acetylcholine/adenosine-sensitive and ATP-sensitive inward rectifiers, may also modulate
cardiac excitability. The stimulation of A1R by adenosine on a sinoatrial node induced a
time- and voltage-dependent negative chronotropy under basal (activation of IK,Ado) and
β-adrenergic stimulated conditions (inhibition of If and ICa,L) [55]. The direct activation
of IK,Ado induces a hyperpolarization of sinoatrial nodal cells and decreases the slope of
the diastolic depolarization and the repolarization duration. Because the sinoatrial node
is under the influence of the sympathetic nervous system, the anti-β-adrenergic effect
secondary to A1R activation limits the cAMP-dependent currents (If and ICa,L), which
further decreases the slope of the diastolic depolarization [41,60,63] (Figure 4A).

Figure 4. Illustrations of the effects of adenosine on action potential in a sinoatrial cell (A) and atrial
cardiomyocyte (B). In a sinoatrial node, adenosine increases the outward IK,Ado current, which
induces hyperpolarization and reduces the slope of the diastolic depolarization. Complementarily,
adenosine reduces indirectly the inward Na+ pacemaker current (If) and the inward Ca2+-dependent
depolarization through L-type Ca2+ channels (ICa,L). Adenosine incudes negative chronotropy. On
an atrial working myocardium, adenosine increases the outward K+ current (IK,Ado) and shortens
the action potential duration and the refractoriness, thereby adenosine can reduce atrial contractil-
ity. Dotted arrows correspond to the corresponding RR intervals. Solid arrows correspond to the
corresponding action potential refractory period.
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In an atrioventricular node, adenosine induces mainly a direct negative dromotropic
effect. Whereas the nodal-his bundle cells are insensitive to adenosine, adenosine decreases
the action potential duration in atrio-nodal cells. The most important action occurs on nodal
cells, since the concentration-dependent effect of adenosine can decrease the amplitude
and duration of the action potential and abolish the action potential at high concentrations
of adenosine [41,60,68].

Conversely to nodal cells, atrial and ventricular myocardium are fast response car-
diac tissues with Na+-dependent depolarization (INa) through the voltage-gated sodium
channels Nav1.5 [88]. Because of the smaller density of the inward rectifier K+ current
(IK1) in atrial cells, the human atrial action potential typically demonstrates a triangular
morphology and a more depolarized resting membrane potential (~−70 mV) compared to
the spike-and-plateau shape of ventricular cardiomyocytes (−90 mV) [89]. The initiation
of the atrial action potential is permitted by a rapid inward Na+ current (INa), followed
by an inward Ca2+ current due to the opening of L-type Ca2+ channels (ICa,L), which
finally close during repolarization, while inward rectifier K+ channels open (Figure 4B).
Even if a specific A2AR stimulation is associated with a positive inotropy in atria, the main
physiological effect of adenosine is mediated through A1R due to the atrial distribution
of the adenosine receptors, their affinity for adenosine and the sympathetic regulation of
atrial myocardium. Contrary to sinoatrial cells, the direct activation of IK,Ado slightly
hyperpolarized the resting membrane potential of atrial cells, since this resting voltage is
near the potassium equilibrium potential and the GIRK-induced K+ outward current is
reduced [90]. However, adenosine shortens the action potential duration and decreases the
refractory period thanks to the IK,Ado outward current, which increases the potassium re-
polarization flux (Figure 4B). It is noteworthy that under adrenergic stimulation adenosine
can also reduce the cAMP-dependent effect on ICa,L in atrial cells [55,60,91] Moreover, this
shortening of the atrial action potential by the direct and fast onset of IK,Ado may reduce
the time needed for the slowed onset of cAMP-dependent pathways, leading to cardiac
electromechanical coupling and thereby depressing the twitch amplitude and decreasing
the atrial contractile force [55].

On ventricular cardiomyocytes, adenosine action does not cause any significant effect
on the resting membrane potential, action potential duration or amplitude [55].

Using these characteristics, the major diagnosis interest and clinical use of adenosine is
due to the fact of its action on an atrioventricular node. It confers to adenosine its diagnosis
properties used in supra ventricular tachycardia [60,61]. While shortening the action poten-
tial duration, adenosine can also elicit a post-repolarization refractoriness prolongation [92].
Thus, a high exogenous dose of adenosine can lead to an atrioventricular block.

3. Pathophysiology of Atrial Fibrillation

Atrial fibrillation (AF) is the most common pathologic tachyarrhythmia, defined by
the absence of distinct repeating P-waves, irregular atrial activations on surface ECGs
and irregular R-R intervals. At the beginning, episodes of sinus rhythm are punctuated
by periods of arrhythmia (paroxysmal AF). AF progression leads to more frequent and
longer episodes until they last more than 7 days (persistent AF). After one year, in the
absence of spontaneous or medical cardioversion, which allow a return to sinus rhythm,
AF is then considered as a “long-standing persistent” AF. Finally, AF can be defined as a
“permanent” AF when the therapeutic attitude is to consider that no further attempts to
control sinus rhythm will be undertaken [1]. AF can lead to a large number of symptoms,
including palpitation, breathlessness, heart failure, dizziness or syncope, asthenia or chest
pain. In addition to symptomatic forms, asymptomatic AF is called subclinical AF [1]. The
AF consequences are multiple. The increasing risk of thromboembolic events is the best
known [93]. However, more evidence has also been published concerning the increasing
risk of heart failure [94], dementia [95], depression [96] and impaired quality of life [97].

The pathophysiology of AF is supported by anatomical and electrophysiological
changes in atria for which all of the exact molecular mechanisms are still unknown. Un-
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derstanding of this complex AF pathophysiology is essential to identify the underlying
molecular mechanisms. According to the Coumel triangle, AF pathophysiology first de-
pends on trigger factors, which are rapid focus firing activity, initiating the arrhythmia.
Then, the arrhythmogenic substrate are electrophysiological, mechanical and anatomical
characteristics of the atria that sustain AF. Further, multiple neuro-humoral dynamic mod-
ulators also interfere with the initiation, progression and termination of AF. Therapeutic
targets for a rhythm control strategy should consider all aspects of this classification [98].
Unfortunately, the patterns of AF are only partially correlated with the progression of the
underlying mechanism of AF [99]. It is thought that the first episodes of paroxysmal AF are
usually based on triggering activity. Then, according to the underlying fibrosis progression,
functional drivers of AF begin to anchor on the structural remodeling area, and AF tends
to become persistent [99].

3.1. Atrial Fibrillation Triggers

Repeated atrial ectopias are known to initiate AF and are considered as triggers of
AF [100]. They can be localized within the pulmonary veins (PVs) and, less frequently,
in others atrial areas (non-PV triggers). Among patients affected by AF, 20% of them
exhibit non-PV foci [101], which can be predicted by female gender (odds ratio: 2.00), left
atrial enlargement (odds ratio: 2.34) and AF episode prolongation [102,103]. Mapping
studies have identified and localized a discrete clustered anatomical area corresponding to
non-PV foci in the inferior mitral annulus, the posterior left atrium, the interatrial septum
particularly at the fossa ovalis/limbus region, the crista terminalis and Eustachian ridge,
the coronary sinus, and the superior vena cava [103].

PV ectopias originate all along the myocardium sleeve of PV and present unpredictable
firing with various, intermittent and delayed conduction to the left atrium. They are
defined as focal discrete sites of early and centrifugal activation [104]. Compared to the
atrial cells, the PV cardiomyocytes have specific action potential properties that predispose
to arrhythmogenesis [105]. Indeed, PV cells have a higher resting membrane potential, a
lower amplitude of the action potential, a smaller maximum phase 0 upstroke velocity and
a shorter action potential duration (Figure 5).

Figure 5. Schematic illustration of differences between action potentials (APs) in atrial cardiomyocytes
and in pulmonary vein (PV) cardiomyocytes. Action potential of PV cardiomyocytes have a more
depolarized resting membrane potential, a lower AP amplitude, a smaller maximum phase 0 upstroke
velocity and a shorter action potential duration compared to atrial AP.

PV ectopia beats are mainly related to Ca2+ handling abnormalities leading to cy-
tosolic Ca2+ overload. Indeed, the Ca2+ overload leads to the diastolic leak of Ca2+ from
sarcoplasmic reticulum (SR), called Ca2+ sparks and Ca2+ waves. The SR Ca2+ released is
supported by the ryanodine receptors type-2 (RyR2), whereas Ca2+ storage is endorsed
by the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA2). Dysfunction of one or the
other can induce diastolic Ca2+ leaks [106,107]. Consequently, the cytosolic Ca2+ overload
activates the Na+-Ca2+ antiporter (NCX) to remove Ca2+ from cells with a stoichiometry of
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3Na+:1Ca2+ [108]. The associated inward NCX current (INCX) can induce delayed afterde-
polarizations (DADs) [109], which can be sufficient to meet the threshold cell membrane
voltage and to trigger an action potential [110].

Secondary to PV ectopy, firing can be related to DAD due to the fact of abnormal
diastolic spontaneous calcium release [111]. Induced electromechanical coupling beat-
to-beat alternans may especially precede and induce AF by an increasing dispersion of
refractoriness [112,113]. Furthermore, atrial myocytes at the entrance of the PV have
abrupt changes in their fiber orientation, which locally reduce the conduction velocity. This
anisotropy leads to further increased dispersion of refractoriness and favor reentry [114,115].
Such abnormal depolarization and subsequent firing activity at the junction between the
PVs and left atrium are responsible for the occurrence of arrhythmias [116] and promote
reinduction of AF [117].

3.2. Mechanisms of AF Perpetuation

Two major mechanisms of perpetuation supported by anatomical and/or electro-
physiological changes are described by the multiple wavelets hypothesis [98,118] and the
localized (focal or reentrant) AF drivers.

The multiple-wavelet phenomenon hypothesizes that multiple random wavefronts
propagate through the atria until depolarizable tissue is available. Secondary to AF, atrial
enlargement increases the critical atrial mass that is required to self-perpetuate this mech-
anism [119]. Within a same critical atrial mass, a short refractory period and delayed
conduction velocities increase the theoretical number of wavelets. Furthermore, as the
number of wavelets increases, the chance of spontaneous AF termination is lower [120,121].
This phenomenon is supported by the fact that larger mammals are more likely to exhibit
AF [122]. Furthermore, an effective left atrium conduction size enlargement has recently
been associated with AF vulnerability in persistent AF [123].

AF drivers are defined as a localized source of fast and repetitive activity during AF
episodes from which activation propagates and breaks down into fibrillation of the rest
of the atria [124]. The drivers are considered to be focal when the wavefront activation
originates from a focal site with centrifugal activation and as reentrant when the waves
fully and continuously rotate around an anatomical or functional pivot point [125]. As
ectopias, because of the electrophysiological characteristics of PV cells and the brutal
change in PV orientation fiber, the drivers are mostly located in the PV antral and adjacent
regions [114,125]. With a longer AF duration, the complexity of the AF drivers increases,
and they are located at extra-PV sites [125].

Anatomical reentries are defined by the presence of an unidirectional slow conduction
area or block resulting in a fixed cycle length and localization circuit. Atrial fibrosis favors
these slow conduction areas [126]. The nonuniform anisotropic conduction within a fibrosis
area is an important substrate for reentrant tachycardia [118]. Functional reentries are
defined by an absence of an underlying substrate and/or anatomical obstacle. Figure 6
illustrates the formation of a functional reentrant circuit due to the heterogeneity of the
atrial potential duration at the PV junction. Then, the functional reentry can be schematized
as a central refractory area maintained by centripetal waves moving around [127] or a
propagation of spiral wave reentry or “rotor” around a core area at which the depolariza-
tion and the repolarization curves join each other [128]. In these models, the size of the
reentrant circuit is dependent on the conduction velocity and refractory period (minimal
time allowing for re-excitation). As the conduction velocity increases and the refractory
period decreases, the circuit size decreases and the potential number or circuit within the
same atria increases [128]. A recent computational modeling study supported an increased
reentry inducibility in the case of shortening the PV action potential duration compared
to the left atrium action potential duration and slowing the conduction velocity within
the PV toward the PV/ left atrium junction [114]. Other authors have also confirmed that
a shortened action potential duration and effective refractory period associated with a
hyperpolarization increase the rotors’ stability [129,130]. The underlying molecular mech-
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anisms in paroxysmal AF patients are suspected to be related with the heterogeneity of
the potassium inward rectifier channels’ (IK1 and IKACh) expression and conductance
within the left atria [131]. This heterogeneity could promote a reentry mechanism by the
heterogeneous shortening of the action potential durations. The induced hyperpolarization
of atrial cardiomyocytes also removes the voltage-dependent sodium current inactivation
and increases the sodium channel availability [132]. This leads to the acceleration and
stabilization of the rotors.

Figure 6. Formation of a functional reentrant circuit due to the heterogeneity of the atrial potential
duration at the pulmonary vein (PV) entrance. The delay after depolarization in area no. 1© initiates
a PV ectopy within the PV sleeve, where the action potential duration (APD) is shorter, with a
subsequently shorter effective refractory period (ERP) and propagates toward the PV junction where
the APD is longer. The ectopic beat blocks are in area no. 2© because of the refractory tissue. However,
the impulse propagation continues laterally until the APD tissue is out of the refractory time (area
no. 3©.). Finally, the PV ectopic beats move around the functional refractory area and then across the
previous refractory region of the block in area no. 4©, which is now out of the refractory time. The
dotted line represents the functional unidirectional refractory area, the solid arrows represent the
propagation of the action potential and the star represents the initiation of the ectopic focus.

Both mechanisms of reentry can be present within the same atrium. There is evidence
of intermittent and spatially unstable drivers anchored to the structural heterogeneities
of the atrial fibrosis area, which is considered to be the major mechanism of human AF
perpetuation [118].

3.3. Substrate of Atrial Fibrillation and Atrial Cardiomyopathy

The AF perpetuation is caught in a vicious circle. The triggers and perpetuation
mechanisms are dependent on multiple underlying electrical remodeling and atrial fibrosis
which are also induced by AF. This vicious circle is supported by the fact that a complete
electrical reverse remodeling occurred within weeks after medical or electrical cardiover-
sion [121,133]. Then, the structural alterations can also partially or completely reverse
within months after cardioversion [121,133]. Consistently, in 2020, the guidelines of AF
management considered that all cardiovascular risk and comorbidities contributing to the
development of an abnormal atrial substrate should be strictly controlled in order to limit
AF progression [1].

Atrial cardiomyopathy has been defined as “any complex of structural, architectural,
contractile or electrophysiological changes affecting the atria with the potential to produce
clinically relevant manifestations” [134]. Thus, any initial electrostructural changes sec-
ondary to AF should be considered as an atrial cardiomyopathy. As a consequence, AF
should be considered as a risk factor of atrial cardiomyopathy. All other atrial aggressions
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(i.e., diabetes, hypertension, aging, heart failure, valvular diseases, amyloidosis, granu-
lomatosis and inflammatory infiltrates) primarily responsible for atrial changes, such as
fibroblast or noncollagen deposits, are risk factors of AF. In this context, AF is considered
as a marker of underlying atrial cardiomyopathy.

3.4. Pejorative Modulators of Atrial Fibrillation

The onset and the termination of AF episodes are likely related to dynamic modu-
lators, which interact with both the trigger and substrate of AF. They exhibit multiple
timescales and sites of action, including immediate and long-term electrophysiological
atrial changes, ion channel conductance and homeostasis, and local and general inflamma-
tion status as well as fibrosis promotion [109]. Nonexhaustive modulators of AF are the
autonomic nervous system, obstructive sleep apnea, electrolytes and plasma glucose levels,
gastroesophageal reflux disease, ischemia, inflammation, thyroid diseases and advancing
age [109].

4. Arrhythmogenic Effects of the Adenosinergic System
4.1. Adenosine Level and Expression of Adenosine Receptors in AF Patients

High adenosine plasma levels have been found in the left atria of patients during
episodes of paroxysmal AF and in persistent AF [135]. The adenosine plasma concentra-
tions then normalized after spontaneous or electrical cardioversion in sinus rhythm [135].
Moreover, the adenosine plasma concentrations in peripheric blood circulation were also
higher in permanent AF compared to paroxysmal AF and controls [135]. The high adeno-
sine plasma concentrations could be attributed to peripheral hypoxemia caused by the
decrease in the left ventricular output in AF [135,136]. Interestingly, AF prolongation
episodes were inversely correlated with the decrease in the atrial bioenergetic level [136].
Moreover, adenosine deaminase (ADA) activity is decreased in patients with paroxysmal
AF contrary to patients with isolated dilated left atrium without AF [135,137]. Therefore,
it was hypothesized that decreasing the ADA activity could be a further step before AF
occurrence [137]. Nevertheless, further studies are still needed to understand whether a
reduction of the ADA activity is the cause of the adenosine plasma level increase.

A high adenosine plasma concentration could also be a consequence of energy use in
specific underlying cardiovascular conditions, including hypertension [138,139], chronic
heart failure [13,140] or vagal syncope [141,142]. These are especially known to be AF
risk factors. Interestingly, AF initiation has been described during the strong release of
adenosine or the use of extrinsic adenosine injection [143,144]. Thus, AF would be a
consequence of adenosine release.

The expression of adenosine receptors is modified in AF. Our team recently described
the upregulation of A2AR and A2BR expressions in the left and right atrium in postoperative
AF [47]. This overexpression was significantly higher in the left atrium than in the right
atrium [47]. Li et al. also showed the upregulation of A1R in AF, especially in the right
atrium [72]. In patients affected by AF, the overexpression of A2A and A2B receptors, as
was also described in peripheral blood mononuclear cells (PBMCs), was correlated with
the atrial expression of adenosine receptors, suggesting that the peripheric status of the
adenosinergic system could be a mirror of the underling atrium disease [135,137].

4.2. Implication of A1 Receptors in AF

In Langendorff preparation of rat hearts, the injection of a specific A1R agonist (CCPA)
produced a profound negative chronotropic effect, whereas the selective A1R antagonist
(PSB36) produced a nonsignificant positive chronotropic effect [145]. The increased con-
centration of both agonist and antagonist produced runs of repetitive atrial ectopy. This
clinical effects appears to be mainly driven by a shortening of the action potential and
effective refractory period durations, resulting in an increasing AF susceptibility due to the
A1R activation [145]. Indeed, the activation of A1R through IK,Ado modulation induces a
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resting membrane potential hyperpolarization, a reduction of the action potential duration
and a shortened effective refractory period (ERP) on atrial cardiomyocytes [65] (Figure 7).

Figure 7. Effects of A1R activation by adenosine on pulmonary vein (PV) action potential (AP).
AP: action potential; ERP: effective refractory period; PV: pulmonary vein. In PV sleeves of AF
patients, A1R activation opens GIRK channels, which are responsible for an outward potassium
current (IK,ADO). This current shortens the atrial AP duration and effective refractory period (ERP).
This enhanced PV firing follows PV ectopy. Furthermore, the outward potassium current is also
responsible for a resting membrane potential hyperpolarization which reactivates the If current,
increasing PV automaticity.

In a canine model, Datino et al. showed that adenosine enhanced a larger IK,Ado
current in PV cardiomyocytes compared to left atrium cells, which resulted in the het-
erogeneity of the hyperpolarization. Conversely, the ERP of PV cardiomyocytes and left
atrial cells both similarly decreased [146]. Hyperpolarization activates hyperpolarized-
activated cyclic nucleotide-gated (HCN) channels [147,148]. The activation of HCN results
in a Na+ inward current (If or pacemaker current), which is usually specifically located
within the sinoatrial node cells. However, their presence has been demonstrated within PV
cardiomyocytes [149].

Following PV ectopic activity, a shortened effective refractory period allows for PV
firing. Furthermore, a similar decrease in the ERP between PV and LA cells does not modify
the underlying heterogeneity of the ERP between both structures [105]. Hyperpolarization
also increases sodium channel availability [132], which increases the velocity of the phase
0 depolarization within PV cardiomyocytes [146] and enhances the local rotors’ initiation
and prolongation [128].

Observations by Li et al. support this concept. They showed that adenosine-induced
APD shortening was more significant in the right atria than in the left atria. They also
showed that adenosine-induced atrial fibrillation was mainly associated with reentrant
drivers localized in the lateral right atria, which is associated with a higher expression of
A1R and GIRK4 [72]. In this study, the use of ex vivo atrial preparation from a transplanted
failing heart avoided the analysis of the compounding influence of the autonomic nervous
system. However, for its ability to stabilize the AF rotors, adenosine was proposed by the
authors as a tool to detect the location of possible AF foci during ablation procedures [72].
Recently, Pope et al. confirmed that adenosine injection in persistent AF shortened the
mean AF cycle length and increased the density of the rotating wavefronts throughout the
left atrium [130]. Unfortunately, the utility of these rotor ablations in AF termination is
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uncertain, because the increased density of the rotors may just reflect a more excitable state
of the left atrium [130].

Interestingly, in AF, the reduced supply of oxygen in localized atrial regions of a canine
model showed a profound conduction slowing within the ischemic zone, which promoted
reentry mechanisms [150]. Furthermore, during hypoxia, HIF-1α activation increases
adenosine availability and slows the adenosine metabolism rate [24]. This can support
the hypothesis that the expression and signal transduction of adenosine receptors could
differ between cardiomyocytes in several regions and participate in electrophysiological
atrial heterogeneity.

The brady-tachycardia syndrome associates a sinus bradyarrhythmia with tachyarrhyth-
mia, such as AF, which is a hallmark of heart failure [151]. Chronic heart failure is associated
with A1R overexpression [140]. In a canine model, the increased A1R expression in a sinoa-
trial node and atrial cardiomyocytes was associated with adenosine-induced sino-atrial
node conduction abnormalities and shorter atrial repolarization, which increase the risk of
AF [152]. These effects are abolished by a selective GIRK channel blocker [71]. In clinical
practice, these effects support the clinical use of theophylline, a nonselective adenosine
antagonist, to prevent the occurrence of congestive heart failure in patients with brady-
tachycardia syndrome. However, the high rate of side effects associated with global A1R
inhibition limits its practical use [153].

4.3. Implication of AR in the Remodeling of Calcium Handling

In atrial cardiomyocytes, a reduced L-type Ca2+ current (ICa,L) density [154] and
increased spontaneous Ca2+ release from the sarcoplasmic reticulum through the ryanodine
receptor [110] are implicated in the cytosolic Ca2+ overload responsible for delayed afterde-
polarization (DAD), which promotes AF [116,117]. These effects on calcium remodeling are
consistent with adenosine receptor signaling. Despite A1R activation inducing a c-AMP-
dependent decrease in ICa,L, it has limited or no effect on the action potential duration [155].
Indeed, most studies report the major role of A2AR in Ca2+ handling remodeling in AF.

Interestingly, the evidence for proarrhythmic effects of A2AR was reported in trans-
genic mice with cardiac overexpression of human A2AR [81]. In human right atrial car-
diomyocytes, the selective activation of atrial A2AR can increase the frequency of a PKA-
dependent spontaneous Ca2+ release from the sarcoplasmic reticulum without modulating
L-type Ca2+ current [46]. This was confirmed in right atrial samples of patients with
AF, where A2AR overexpression is associated with an increased phosphorylation state of
the ryanodine receptor, an increase in Ca2+ spark and wave frequency and a subsequent
increase in the spontaneous INCX frequency [76]. However, it is noteworthy that A2AR
activation in these right atrial samples did not modulate the Ca2+ content of sarcoplasmic
reticulum, the amplitude of ICa,L and the INCX. However, the remodeling of Ca2+ handling
associated with A2AR activation by adenosine has been reported to alter the ability of
human atrial myocytes to maintain a uniform beat-to-beat response [156]. In parallel to
the beat-to-beat alteration, Molina et al. confirmed that A2AR activation was linked to
an increased spontaneous Ca2+ release, which can elicited DAD by the arrhythmogenic
transient inward current (Iti) (Figure 8).

4.4. Modulation of Atrial Fibrosis by A2B Receptors

The activation of A2BR has an important role in cardiac fibroblast homeostasis, but the
role of A2B in fibrosis is controversial, since both profibrotic [157–160] and antifibrotic effects
are reported [161–165]. In cardiac fibroblasts, the increase in cAMP production following
A2BR activation plays an essential role in the inhibition of angiotensin-II-induced collagen
production [162]. However, activation of the A2BR increases the production of collagen
and increases the release of IL-6 in human cardiac fibroblasts, resulting in a profibrosis
state [160,166]. These opposite results may be the consequence of an activation of the A2BR
that is time dependent on the A2BR, with early protective effects in acute post-myocardial
ischemia and a later inappropriate healing runaway [167].
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Figure 8. Remodeling of the calcium handling associated with A2AR overexpression in AF. Atrial
remodeling in atrial fibrillation is associated with the overexpression of A2AR. This is responsible for
an increased phosphorylation state of ryanodine receptors into dyads, which can induce diastolic
Ca2+ leaks without modulating the L-type Ca2+ current. In parallel, the cytosolic Ca2+ overload
activates the Na+-Ca2+ antiporter exchanger to remove Ca2+ from cells with an accepted stoichiometry
of 3Na+:1Ca2+. Consequently, the associated cytosolic Ca2+ diastolic overload and the increased
cation inward currents can induce delayed afterdepolarizations, which can be sufficient to meet the
threshold cell membrane voltage and to trigger an action potential.

Until there, scarce data are published on implication of A2BR in atrial fibrillation and
fibrosis proliferation. Recently, our group demonstrated an overexpression of A2BR in AF,
especially within the left atrium [47]. In the same manner as A2BR antagonist reduces
ventricular remodeling and tachycardia vulnerability after myocardial infarction [167],
A2BR may be implicated in fibrosis modulation in atrial fibrillation.

Other ARs have also been implicated in profibrotic action or reduction of myocardial
remodeling. Similarly, activation of A2AR could also reduce the angiotensin-II-induced
collagen production, especially in the case of hypertension [168]. Nevertheless, it has also
been associated with profibrotic effects in other organs, such as the liver and skin [169].
However, other AR expressions in cardiac fibroblasts are lower than A2BR, explaining
perhaps a lower interaction with left atrium fibrosis modulation [170]. Further studies
focusing on A2BR activation or blockade in AF and on atrial fibrosis are needed.

5. Association between Atrial Fibrillation Risk Factors and the Adenosinergic System

Dysregulation of the autonomous nervous system are characterized by an exces-
sive sympathetic activation, and a diminished parasympathetic influence is central to
the pathogenesis of cardiovascular diseases, including heart failure, hypertension and
AF [141]. Combined sympatho-vagal activation reflects the equilibrium between the release
of epinephrine/norepinephrine, which activate the adrenergic receptors, and the release of
acetylcholine, which induces the activation of the muscarinic receptors.

Atrial sympathetic innervation is controlled by adrenergic receptors, which are divided
into three major subfamilies: α1-, α2-, and β-adrenergic receptors. They are all coupled to
different classes of heteromeric G proteins. The α1 and α2 receptors are coupled to Gq/11
and Gi/o, respectively. β-Adrenergic receptors are coupled to Gs. The α1 and α2 receptors
induce a strong extracellular ATP release, while the β-adrenergic receptors activate cAMP
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production [9]. The activation of the β-adrenergic receptors by isoproterenol leads to the
phosphorylation of nonjunctional RyR2 and L-type Ca2+ channels (LTCC) and is responsible
for large increases in the Ca2+ flux [78]. Interestingly, after the use of an A2AR agonist, the
increase in the heart rate was attenuated by a β-blocker. Thus, Wragg et al. demonstrated a
direct activation of the sympathetic nervous system by A2AR stimulation [171].

In parallel, atrial parasympathetic innervation is controlled by muscarinic recep-
tors (M2Rs). As with A1R stimulation, M2R activation leads to the opposite effect on
β-adrenergic stimulation. The M2R stimulation activates inhibitory G proteins, subse-
quently reduces the activity of the HCN and LTCC and leads to decreased automaticity
and conduction velocity in the nodal cell. M2R also activates the GIRK channel responsible
for hyperpolarization [172].

Sympathovagal activation is a strong modulator of AF. Interestingly, hypertension,
sleep apnea and heart failure are known to induce sympathetic tone activation and spe-
cific atrial remodeling [1,173–176]. Moreover, all three AF risk factors also induce specific
adenosinergic system remodeling. Especially in patients suffering from essential hyperten-
sion, an A2AR overexpression was described in PBMCs [139]. Because of the vasodilator
effect of A2AR, it was hypothesized that the A2AR overexpression was a compensatory
mechanism of high blood pressure [176]. However, the chronic release of adenosine in
the peripheral cardiovascular system during high blood pressure may also induce atrial
remodeling of adenosine receptors. In the same manner, in sleep apnea or heart failure, the
associated hypoxia may contribute to the atrial adenosinergic system’s remodeling and
induce a pro-arrhythmogenic environment.

To go further, a recent study confirmed that vagus nerve stimulation promotes atrial
pro-arrhythmogenicity, mainly through GIRK channel activation [172]. Interestingly, GIRK
activation is enhanced in persistent AF [177], which can promote APD shortening even in
the absence of vagal stimulation [178].

As the A1R stimulation induces GIRK activation, the question remains whether A1R
remodeling and its activation by adenosine can also contribute to arrhythmogenic effects
through a similar pathway.

The stimulation of the adrenergic and parasympathetic tone alone or combined can
predispose to the AF onset [179]. Sequential combined stimulations had a synergic effect
rather than vagal or sympathetic drive alone [179]. Interestingly, heart rate variability
analyses before the occurrence of AF showed that AF patients have specific sympathetic
and parasympathetic patterns [180]. Furthermore, prolonged atrial pacing in dogs induced
sympathovagal activation and increased the risk of AF. Interestingly, the cryoablation of
both autonomic nerves prevents the occurrence of AF [181]. However, the exact interaction
between the adenosine receptors and cardiac autonomic innervation, as facilitator or
inhibitor, is still unclear.

6. Conclusions

The remodeling of the adenosinergic system has been described in many cardiovascu-
lar diseases; however, it is of note that the repetition of pathophysiological characteristics by
exogenous adenosine injection have been described only in syncope [182] and atrial fibrilla-
tion [144], which underlies a direct causal role of adenosine in AF. This review illustrates
how the adenosinergic system interferes with all steps of the Coumel triangle to promote
the initiation and maintenance of AF. Indeed, adenosine receptors’ activation promotes
the occurrence of delayed depolarization, all the more so as A2ARs are overexpressed.
Adenosine, through A1R activation, shortened the action potential duration and induced
resting membrane potential hyperpolarization, which both initiates and maintains AF by
promoting pulmonary vein firing, stabilizing the AF rotors and allowing for functional
reentry. Moreover, A2BR has been associated with atrial fibrosis homeostasis, and the
adenosinergic system can modulate the autonomous nervous system and is associated with
AF risk factors (heart failure, arterial hypertension and sleep apnea).
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The question remains whether adenosine release would be a cause or a consequence of
AF. On the one hand, the release of adenosine could be a consequence of increased energy
requirements related to AF risk factors, which then secondarily enhance AF. On the other
hand, adenosine release could be just a consequence of the cardiac hypoxia associated
with AF.

7. Future Directions

As illustrated in this review, multiple electrophysiological modulations secondary
to adenosine receptor activation and overexpression may coexist as part of the initiation,
recurrence or maintenance of AF. To go further, continuous monitoring of adenosine plasma
levels could help to understand whether AF or adenosine is the chicken or the egg.

It is also hypothesized that the vicious circle of AF initiation and maintenance may
also be driven by the modulation of adenosine receptors’ expression. Until now, the
antiarrhythmic action of adenosine is still debated, and the results of studies evaluating the
antiarrhythmic actions of adenosine agonists or antagonists are controversial. To overcome
this barrier, research efforts in AF could explore other pharmacological approaches, such
as biased agonist at adenosine receptors. The specific modulation of adenosine receptor
signaling and activity may then play a protective antiarrhythmic role in AF.
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