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Abstract: Growing evidence suggests that there is an essential link between the gut and lungs.
Asthma is a common chronic inflammatory disease and is considered a heterogeneous disease. While
it has been documented that eosinophilic asthma affects gut immunity and the microbiome, the effect
of other types of asthma on the gut environment has not been examined. In this study, we utilized
an OVA/poly I:C-induced mixed granulocytic asthma model and found increased Tregs without
significant changes in other inflammatory cells in the colon. Interestingly, an altered gut microbiome
has been observed in a mixed granulocytic asthma model. We observed an increase in the relative
abundance of the Faecalibaculum genus and Erysipelotrichaceae family, with a concomitant decrease
in the relative abundance of the genera Candidatus arthromitus and Streptococcus. The altered gut
microbiome leads to changes in the abundance of genes associated with microbial metabolism, such
as glycolysis. We found that mixed granulocytic asthma mainly affects the gut microbial composition
and metabolism, which may have important implications in the severity and development of asthma
and gut immune homeostasis. This suggests that altered gut microbial metabolism may be a potential
therapeutic target for patients with mixed granulocytic asthma.

Keywords: mixed granulocytic asthma; gut microbiota; intestinal immune cells; microbial metabolism

1. Introduction

Asthma is a common chronic inflammatory disease that affects more than
350 million people worldwide [1]. It is now considered a heterogeneous disease based on
phenotypes describing clinical characteristics and endotypes describing pathophysiological
mechanisms. Therefore, many studies have classified asthma phenotypes, and dividing
type 2 asthma and non-type 2 asthma is the most common clinical classification method.
Type 2 asthma was well known in the past for mechanisms related to allergic asthma,
but recently, it has been known about the importance of non-allergic pathway such as
epithelial alarmins and group 2 innate lymphoid cells (ILC2s). Non-type 2 asthma includes
neutrophilic inflammation and paucigranulocytic inflammation, and various mechanisms,
such as the inflammasome pathway and metabolic dysfunction, are being studied [2,3].
However, type 2 inflammation and non-type 2 inflammation influence each other; therefore,
it is more common to be mixed. For example, eosinophil activation induces ETosis and

Biomedicines 2022, 10, 2946. https://doi.org/10.3390/biomedicines10112946 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10112946
https://doi.org/10.3390/biomedicines10112946
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-6568-0383
https://orcid.org/0000-0002-0942-6564
https://doi.org/10.3390/biomedicines10112946
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10112946?type=check_update&version=1


Biomedicines 2022, 10, 2946 2 of 12

the formation of Charcot-Leyden crystals, leading to inflammasome and neutrophilic in-
flammation [4]. In addition, various stimuli associated with airway inflammation, such as
viruses and fatty acids, can stimulate both eosinophilic and neutrophilic inflammation [5,6].
Therefore, it is more common for mixed inflammation to be intertwined in real-world
patients. In addition, patients with mixed granulocytic asthma show more severe and
persistent inflammation-related symptoms and frequent exacerbations despite the use of
corticosteroids rather than neutrophilic asthma and eosinophilic asthma [7,8].

Growing evidence suggests the importance of the gut environment, which consists
of host immune cells and microbiota, for human health and diseases. Proper interactions
between the microbiota and host immune cells in the gut are important for immune system
development and immune homeostasis in the airway [9]. For example, short-chain fatty
acids (SCFAs) produced by commensal microbes enhance bone marrow hematopoiesis,
resulting in an increase in dendritic cells (DCs) with impaired ability to induce Th2 cell
differentiation and macrophages in the lung. This immune regulation by gut microbial
metabolites has significant implications for the development of lung inflammation, re-
ducing susceptibility to allergic airway inflammation, and increasing antiviral immunity
against influenza in the lung [10,11]. Mice with cigarette smoke exposure-induced lung
inflammation showed elevated intestinal inflammation, which was mainly driven by the
Th17 cell–neutrophil response [12]. However, critical questions remain as to how lung
immunity alters gut immunity and vice versa.

Epidemiological studies have reported the presence of comorbidities between airway
and intestinal inflammatory diseases. Considering that the lung and gut are both mucosal
tissues and originate from identical embryonic organs, pulmonary and intestinal crosstalk
needs to be elucidated in detail for more efficient treatment. The prevalence of inflammatory
bowel disease (IBD) is significantly increased in patients with asthma, and the incidence
of asthma is higher in IBD patients [13–17]. Therefore, researchers have attempted to
understand the interaction between asthma and the gut environment in terms of immune
cells and the microbiome to develop better therapeutics to limit the progression of diseases
in both mucosal tissues. However, most previous studies have focused only on lung
tissue and systemic immunity and not on the gut tissue environment in asthma. Moreover,
most studies have been limited to allergic asthma, which is dominated by eosinophils.
It is currently unknown how other types of asthma such as mixed granulocytic asthma
affect the gut environment. Thus, in the current study, we aimed to determine whether
mixed granulocytic asthma influences the gut microbiome and immune cell deposition. We
found that OVA/poly I:C-induced mixed granulocytic asthma increased regulatory T cell
deposition in the colon and altered the composition of the gut microbiome, which is related
to host metabolism. These results may provide useful information for the development of
effective therapeutic strategies in patients with mixed granulocytic asthma.

2. Materials and Methods
2.1. Mice

Male C57BL/6 mice (6–7 weeks of age) were purchased from Central Lab Animal Inc.
(Seoul, Republic of Korea), and all mice used in our experiments were bred at our facilities.
All mice were bred in a specific pathogen-free (SPF) at the Pusan National University
Laboratory Animal Resources Center. The SPF C57BL/6 mice used in this study were
handled in the conventional room of Pusan National University. The mice were allowed
access to food and water ad libitum. All animal experiments were performed according to
the National Institutes of Health Guide for the Care and Use of Laboratory Animals and
protocols approved by the Pusan National University-Institutional Animal Care and Use
Committee (PNU-IACUC; approval no. PNU-2022-0172).

2.2. OVA/Poly I:C Induced Mixed Granulocytic Asthma Mouse Model

The mice were anesthetized with isoflurane and sensitized by intranasal inhalation
(i.n.) of 50 µg OVA (Sigma-Aldrich, St. Louis, MO, USA) mixed with 10 µg poly I:C
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(Calbiochem, Darmstadt, Germany) on days 0, 1, 2, and 7. After 21 days, mice were
re-challenged with OVA for four days (days 21, 23, 28, and 30) by intranasal inhalation
(i.n.). The procedure was carried out by injecting 50 µg OVA in PBS into individual nasal
passages. All the mice were sacrificed 24 h after the last OVA challenge (day 30).

For analysis of lung inflammation, bronchoalveolar lavage (BAL) fluid was col-
lected by instilling and withdrawing 0.8 mL of cold sterile PBS twice through the tra-
chea. Total cell counts were obtained using a hemocytometer and stained with Diff-Quick
(Sysmax, Kobe, Japan). Dissected lung tissue was used to prepare single-cell suspensions,
and histopathological studies were performed using hematoxylin and eosin (H&E) stain-
ing. The single-cell suspensions were cultured overnight at 37 ◦C, and the supernatant
was collected as lung homogenate for IL-4 (cat#431104, BioLegend, San Diego, CA, USA),
IFN-γ (cat#430804, BioLegend, San Diego, CA, USA), and IL-17A (cat#432504, BioLegend,
San Diego, CA, USA) ELISA according to the manufacturer’s instructions.

2.3. Isolation of Gut Lamina Propria Cells

Colonic lamina propria cells were isolated, as previously described [18]. Briefly,
colon tissues were washed in PBS containing 1 mM DL-dithiothreitol (DTT; Sigma-Aldrich,
Irvine, UK), 30 mM ethylenediaminetetraacetic acid (EDTA; Thermo Fisher Scientific/Ambion,
Waltham, MA, USA), and 10 mM 4-[2-hydroxyethyl]-1-piperazineerhanesulfonic acid
(HEPES; Thermo Fisher, Waltham, MA, USA) at 37 ◦C for 10 min. The tissues were washed
again in PBS containing 30 mM EDTA and 10 mM HEPS at 37 ◦C for 10 min. After
washing, the tissues were digested in RPMI 1640 containing 0.5 mg/mL collagenase VIII
(Sigma-Aldrich, Chem, Fort Lauderdale, FL, USA) and 15 ug/mL DNase I (Sigma Aldrich;
90 mg/mL) at 37 ◦C for 1 h. The cell suspensions from the enzyme digestion were then
applied to a Percoll (GE Healthcared/Amersham, Bucking-hampshire, UK) gradient (for
lymphocytes: 40% Percoll on the top and 80% Percoll on the bottom) by centrifugation
without breaking at room temperature.

2.4. Isolation of Gut mRNA and Quantitative PCR

Gut samples were treated with TRIzol™ Reagent (Thermo Fisher Scientific, Waltham,
MA, USA) and mRNA was extracted with chloroform (Sigma Aldrich, Chem, USA), pre-
cipitated in isopropanol (Biosesang, Seoul, Republic of Korea), and washed in 75% alcohol
(Bioseang, Seoul, Republic of Korea). cDNA was synthesized using AccuPower® RT PreMix
(Bioneer, Daejeon, Republic of Korea) in accordance with the manufacturer’s instructions.
qRT-PCR was performed using a QuantStudio 1 Real-Time PCR system (Applied Biosys-
tems, Waltham, CA, USA) with reaction conditions as follows; 50 ◦C for 2 min, 95 ◦C for
15 min, 95 ◦C for 20 s, 60 ◦C for 40 s, and 72 ◦C for 20 s (40 cycles), followed by melting
curve analysis. The following primers for the analyzed genes were purchased from Applied
Bionics (Seoul, Republic of Korea): GAPDH (forward primer 5′-ATC CTGCAC CAC CAA
CTG CT-3′ and reverse primer 5′-GGG CCA TCC ACA GTC TTC TG-3′), IL-10 (forward
primer 5′-CAT CAT GTA TGC TTC TAT GCA G-3′ and reverse primer 5′-CCA GCT GGA
CAA CAT ACT GCT-3′), occludin (forward primer 5′-CCT TCT GCT TCA TCG CTT CCT
TA-3′ and reverse primer 5′-CGT CGG GTT CAC TCC CAT TAT-3′), ZO-1 (forward primer
5′-GCC GCT AAG AGC ACA GCA A-3′ and reverse primer 5′-TCC CCA CTC TGA AAA
TGA GGA-3′), MUC2 (forward primer 5′-CCG ACT TCA ACC CAA GTG AT-3′ and reverse
primer 5′-GAG CAA GGG ACT CTG GTC TG-3′), LGR5 (forward primer 5′-ATT CGG TGC
ATT TAG CTT GG-3′ and reverse primer 5′-CGA ACA CCT GCG TGA ATA TG-3′), CHGA
(forward primer 5′-AAG GTG ATG AAG TGC GTC CT-3′ and reverse primer 5′-GGT GTC
GCA GGA TAG AGA GG-3′), Vil (forward primer 5′-TCA AAG GCT CTC TCA ACA TCA
C-3′ and reverse primer 5′-AGC AGT CAC CAT CGA AGA AGC-3′), and Lyz1 (forward
primer 5′-GTC ACA CTT CCT CGC TTT CC-3′ and reverse primer 5′-TGG CTT TGC TGA
CTG ACA AG-3′).
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2.5. Immunophenotyping Using Flow Cytometry

Flow cytometric analysis was performed on a Canto II flow cytometer (BD Biosciences)
using FlowJo software v10.7.1 (Tree Star Inc., Ashland, OR, USA). Dead cells were excluded
using a live/dead fixable dead cell stain (Thermo Fisher Scientific, Waltham, MA, USA).
The following mouse-specific antibodies were used for staining: CD3 (145-2C11, BioLegend,
San Diego, CA, USA), CD4 (RM4-5, BioLegend), Foxp3 (FJK-16s, Invitrogen), T-bet (4B10,
Invitrogen, Eugene, OR, USA), RORγt (B2D, Invitrogen), GATA3 (16E10A23, BioLegend),
Siglec F (S17007L, Biolegend), Ly6G (1A8, Biolegend), CD11b (M1/70, BioLegend), B220
(RA3-6B2, BioLegend), IgA (C10-3, Biolegend), and IgM (RMM-1, Biolegend).

2.6. 16s rRNA Gene Amplification and Sequencing

Fecal samples were kept frozen at −80 ◦C until further processing. DNA was ex-
tracted using the DNeasy PowerSoil Kit (Cat. No. 12855, Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. The extracted DNA was quantified using a
Quant-IT PicoGreen (Invitrogen). Sequencing libraries were prepared according to Il-
lumina 16S Metagenomic Sequencing Library protocols to amplify the V3 and V4 re-
gions. The input gDNA 2 ng was PCR amplified with 5× reaction buffer, 1 mM dNTP
mix, 500 nM each of the general F/R PCR primers, and Herculase II fusion DNA poly-
merase (Agilent Technologies, Santa Clara, CA, USA). The general primer pair with Il-
lumina adapter overhang sequences used for the first amplification was as follows: V3-
F:5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′, V4-
R:5′-GT-CTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-
3′. The 1st PCR product was purified using AMPure beads (Agencourt Bioscience). Fol-
lowing purification, the 2 µL of 1st PCR product was PCR amplified for final library
construction containing the index using NexteraXT Indexed Primer. The PCR products
were purified using AMPure beads. The final purified product was then quantified using
qPCR according to the qPCR Quantification Protocol Guide (KAPA Library Quantification
kits for Illumina Sequencing platforms) and qualified using TapeStation D1000 ScreenTape
(Agilent Technologies, Waldbronn, Germany). Paired-end (2 × 300 bp) sequencing was
performed by Macrogen using the MiSeq platform (Illumina, San Diego, CA, USA). For
microbial identification, FASTQ files for each sample were generated from the raw MiSeq
sequence data. Sequences with a quality score over 25 were eliminated in paired-end
reads in the FASTQ files, and F/R primer and chimera sequences were cut using DADA2
(v1.22.0). forward sequence 280 bp and reverse sequence 202 bp were removed, and the
amplicon sequence variant (ASV) was generated. In addition, for the comparative analysis
of microbial clusters, the QIIME2 (v2022.02) program was used to perform subsampling
and normalization based on the number of reads of samples with a minimum number of
reads among all samples. Sequences from each ASV were subjected to BLAST matching to
the Reference DB (Silva 138) and assigned taxonomy information for the organism of the
subject with the highest similarity.

To analyze the microbiome data, ASVs abundance and taxonomic information were
utilized for the analysis of various microbial clusters using QIIME2. Alpha diversity was
confirmed through the Shannon index and Chao1 index to confirm the species diversity and
uniformity of the microbial community in the sample. Beta diversity between samples was
confirmed through weighted UniFrac distance, and the relationship between samples was
visualized using PCoA. The functional gene content of the microbes was classified based on
the Greengenes (v.13.5) database and predicted using PICRUSt 2. Classified and predicted
genes were normalized by 16S rDNA copy number, and metagenomic information was
hierarchically clustered and classified based on the Kyoto Gene and Genome Encyclopedia
(KEGG) database. The LEfSe method was used to identify the difference between normal
and NID pathways. The threshold of the Kruskal–Wallis test was 0.05, and the algebraic
linear discriminant analysis score (LDA) was ≥2.
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3. Results
3.1. Establishment of the OVA/Poly I:C Model of Mixed Granulocytic Asthma

To investigate the influence of mixed granulocytic asthma on the gut, we estab-
lished an OVA/poly I:C mouse model by sensitization with the widely used allergen
OVA for eosinophilic asthma and the viral mimetic poly I:C to activate neutrophils, fol-
lowed by OVA challenge (Figure 1A). Histologically, the lungs of the OVA/poly I:C
model mice showed inflammation with infiltration of inflammatory cells (Figure 1B). Bron-
choscopy and bronchoalveolar lavage (BAL) of the OVA/poly I:C model showed that
both eosinophils and neutrophils were significantly increased in addition to the total cell
numbers (Figure 1C). Considering that the OVA-induced eosinophilic asthma model
showed an increase in eosinophils without neutrophil accumulation, these results suggest
that the OVA/poly I:C model elicited both eosinophil- and neutrophil-mediated airway
inflammation, corresponding to the cellular characteristics detected in the mixed granulo-
cytic asthma phenotype. Th2 cytokines (IL-4, IL-5, and IL-13) are well-known inflammatory
mediators in eosinophilic asthma, and Th1 and Th17 related cytokines are implicated in the
pathobiology of non-eosinophilic asthma, with increased neutrophils, neutrophilic asthma,
and mixed granulocytic asthma [19]. Thus, we assessed cytokine levels in BALF and lung
homogenates to identify inflammatory mediators in OVA/poly I:C-induced mixed granu-
locytic asthmatic mice. Mice in the OVA/poly I:C model released highly elevated levels of
IFN-γ and slightly higher levels of IL-4 (Figure 1D). However, IL-17A levels did not differ
between control and asthmatic animals. These results suggest that the OVA/poly I:C model
is a mixed granulocytic asthma model related with immune response of type I immunity.
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Figure 1. Establishment of the OVA/poly I:C model of mixed granulocytic asthma. (A) Schematics
diagram of the OVA/poly I:C model. Mice were sensitized with OVA and poly I:C and then
challenged with OVA as shown. (B) Representative images of hematoxylin and eosin stained lung
section (original magnification: X200). (C) Differential cell counts in BAL fluid showing total cells,
macrophages (Mac), eosinophils (Eos), neutrophils (Neu), and lymphocytes (Lym). (D) Levels of
cytokine in whole lung homogenates of mice. Data shown are represented as mean ± SEM and
representative of 3 independent experiments with 5 to 7 mice in each group. * p < 0.05, *** p < 0.001,
and **** p < 0.0001, as determined by Student’s t test.

3.2. Increased Regulatory T Cells in the Gut with Mixed Granulocytic Asthma

We performed immunophenotyping of the gut by focusing on granulocytes, T cells,
and B cells to determine the effects of lung inflammation on gut immune homeostasis in
an OVA/poly I:C-induced mixed granulocytic asthma model. In contrast to the lungs, the
OVA/poly I:C model did not influence the deposition of eosinophils and neutrophils in the
colon (Figure 2A,B). However, we found that Foxp3 expression in CD4+ T cells increased
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in the colonic lamina propria of the OVA/poly I:C model, mainly in RORγt−Foxp3+CD4+

T cells (Figure 2C and Supplementary Figure S1). However, IL-10 expression in the colon
did not differ between the groups (Figure 2D). Other types of T cells, such as RORγt−,
T-bet, or GATA3 expressing CD4+ T cells, did not change (Figure 2C). In addition, no
difference was observed in B cells and expression of genes for tight junction and in-
testinal epithelial cell markers regarding tissue damage or inflammation in the colon
(Figure 2E and Supplementary Figures S1 and S2).
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Figure 2. Increased regulatory T cells in the gut of mixed granulocytic asthma. Representative and
cumulative flow cytometric analyses of (A) CD11b+ SiglecF+ eosinophils after neutrophil exclusion
and (B) CD11b+ Ly6G+ neutrophils in the colon of the indicated group of mice. (C) Representative
and cumulative flow cytometry analyses of Foxp3, RORγt, T-bet, or GATA3 expressing CD4+ T cell
subsets gated on CD3 in the colon of the indicated group of mice. (D) Relative IL-10 expression in
the colon. (E) Representative and cumulative flow cytometry analyses of IgA+B220− and IgM+B220+

B cells in the colon of mice in the indicated groups. Data are represented as mean ± SEM and
are representative of three independent experiments with 5 to 7 mice in each group. ** p < 0.01 as
determined by Student’s t test.

3.3. Altered Gut Microbiome in Mixed Granulocytic Asthma

To examine whether mixed granulocytic asthma in the airways influences changes
in gut microbial populations, we compared the gut microbial diversity and composition
in fecal samples obtained from three independent experiments. There were no significant
differences in alpha and beta diversities among the groups (Figure 3A,B). In the bacterial
taxa analysis, we did not observe significant changes in bacterial composition at the phylum
level. However, significant changes were detected at both the genus and family levels.
Interestingly, OVA/poly I:C-induced mixed granulocytic asthma mice showed changes in
the phylum Firmicutes only. Clostridiaceae and Streptococcaceae families of the Firmicutes
phylum were significantly reduced, and the Erypsipelotrichaceae family was significantly
increased in the OVA/poly I:C model. Similarly to the family level, OVA/poly I:C mice
displayed a significant decrease in Candidatus arthromitus and Streptococcus at the genus
level (Figure 3C,D). The relative abundance of the genus Faecalibaculum, belonging to
Erypsiplelotrichaceae, was increased in OVA/poly I:C-induced mixed granulocytic asthma.
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In addition, the NK4A214 group at the genus level, belonging to the Oscillospiraceae family
of the Firmicutes phylum, was increased in the model (Figure 3C,D).
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3.4. Changes of Functional Gene Abundance in Gut Microbiome of Mixed Granulocytic Asthma

Next, we investigated changes in functional gene abundance within the gut micro-
biome using PICRUst 2 analysis. There were 25 types of functions that differed significantly
between the control and OVA/poly I:C-induced mixed granulocytic asthma mice, of which
15 functional levels were reduced and 10 were increased. The genes associated with carbo-
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hydrate metabolism pathways, namely glycolysis, the pentose phosphate pathway, and the
tricarboxylic acid (TCA) cycle, were increased in the fecal microbiome of the OVA/poly I:C
model. In contrast, genes associated with the purine and fatty acid biosynthesis pathways
were decreased in the fecal microbiome of the OVA/poly I:C model (Figure 4). These
results implied that microbial metabolism is influenced by the development of mixed
granulocytic asthma.
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4. Discussion

Although growing evidence shows an interaction between the gut environment and
the pathophysiology of asthma, most previous studies have focused on eosinophilic asthma,
and there is no study in terms of mixed granulocytic asthma. This is the first report to
show the effect of mixed granulocytic asthma on the gut environment, including gut
immunity and microbiome, using immunophenotyping of immune cells in colon tissue and
metagenomic analysis of fecal samples. We established an OVA/poly I:C mouse model in
which both neutrophils and eosinophils were increased in the lungs. Moreover, the model
showed increased immune response of type 1 immunity, with increased levels of IFN-γ
in the lungs. Clinical studies have reported an association between IFN-γ and asthma
severity [20–23]. Therefore, although further human clinical studies are needed to verify
the results shown here, our mouse model in the present study may imply the influence of
severe asthma accompanied by type 1 immunity involved mixed granulocytic phenotype
on the gut environment.
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Human and murine studies have reported an association between gut microbiota
and asthma, mainly with eosinophilic asthma phenotypes. The decrease in short-chain
fatty acid (SCFAs)-producing bacteria, including Lactobacillus and Bifidobacterium, in the
gut has received much attention in eosinophilic asthma. In a human birth cohort study of
fecal microbiology, children with a decrease in the relative abundance of Bifidobacterium
had a higher risk of developing asthma [24,25]. Oral supplementation with Lactobacillus
and Bifidobacterium, metabolite SCFAs, and soluble fiber fermented to SCFAs alleviated
eosinophilic asthma [26]. We also found that lung inflammation, defined as mixed granulo-
cytes, changed the gut microbiome with substantial differences in microbial composition
compared with control animals. Despite the increased frequency of regulatory T cells in
the colons of mice with mixed granulocytic asthma, there was no difference in the relative
abundance of SCFA-producing bacteria in our study. The major end product of microbial
fermentation, SCFAs, are known to induce regulatory T cell (Treg cell) differentiation via
increased histone acetylation or activation of the SCFA receptor GPR41 or GPR43. In line
with the lack of changes in SCFA-producing bacteria, mixed granulocytic asthma did not
show a decreased Treg population or IL-10 expression in the colon. In fact, we observed a
slight increase in the proportion of Treg cells (CD4+Foxp3+ T cells) in the colon following
the development of mixed granulocytic asthma without tissue damage or inflammation. A
major increase was observed in RORγt−Foxp3+CD4+ T cells. Considering that the most
of IL-10 producing Treg cells are RORγt+Foxp3+CD4+ T cells maintained and induced by
microbial antigens [27–29], these results suggest that changes in colonic Tregs are induced
by host immune factors rather than by gut microbial factors. Although the reason for
the increased Treg count in the colon of mice with mixed granulocytic asthma should be
identified in detail in the future, systemic environmental changes by lung inflammation
such as cytokine milieu or function of circulating immune cells may be associated with the
changed colonic immune environment. Additionally, intestinal Foxp3+ Treg cells constitute
a group of distinct subsets, which differ developmental origins (thymus-derived Treg or
peripherally derived Treg) and have functional heterogeneity and plasticity depending
on intestinal tissue microenvironment. Thus, we need to figure out what kinds of Treg
cell were increased in the gut of mice with mixed granulocytic asthma to understand
the biological relevance. Although we did not observe changes in gut pro-inflammatory
immune cells such as Th1, Th17, and neutrophils in the mixed granulocytic asthma model,
we did not determine whether gut inflammation and immune responses were altered in
the presence of mixed granulocytic asthma in the context of gut inflammation. Because
these data imply that mixed granulocytic asthma change the systemic immune system
leading to intestinal immune microenvironmental change without direct tissue damage
or inflammation, gut inflammation models, such as DSS-induced colitis models, can be
applied in future studies.

Our data showed that OVA/poly I:C-induced mixed granulocytic asthma in mice
increased the relative abundance of the Faecalibaculum genus and Erysipelotrichaceae
family, with a concomitant decrease in the relative abundance of the genera Candidatus
Arthromitus and Streptococcus. Erysipelotrichaceae is known to be a highly immuno-
genic bacterium that is enriched in antibiotic-induced gut dysbiosis and positively cor-
relates with the level of tumor necrosis factor alpha (TNF-α) [30–32]. The taxon in
Erysipelotrichaceae was discovered as a highly IgA-coated colitogenic bacterium [31].
Notably, a recent study showed that Faecalibaculum Rodentium, the only species in the genus
Fecalibaculum, alters intestinal epithelial homeostasis by suppressing the production of
retinoic acid, which supports eosinophil survival and consequently inhibits epithelial
turnover by IFN-γ [33]. Furthermore, Erysipelotrichaceae is highly associated with host
lipid metabolism. Erysipelotrichaceae was highly enriched in obese individuals and high-
fat or Western diet-induced obese mice [34–36]. The correlation between host cholesterol
metabolism and the abundance of Erysipelotrichaceae has been observed in human and
animal models of hypercholesterolemia, which show a decrease in abundance due to
improvements in cholesterol metabolism [37,38]. Candidatus arthromitus, another altered
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microbial bacterium in mixed granulocytic asthma, is also involved in the modulation of
host metabolism. The reduction of Candidatus arthromitus has been detected in high-fat
diet-induced obesity [37,39]. Genetically manipulated metabolically resistant mice, even in
high-fat diet feeding, showed a higher abundance of Candidatus arthromitus compared to
normal mice with high-fat diet-induced metabolic diseases [40]. Therefore, mixed granu-
locytic asthma might influence host cholesterol metabolism, and further investigation is
needed to verify these mechanisms in detail.

Altered gut microbiomes usually lead to changes in the gut microbial fermentation. In
the present study, several microbial pathways were found to be altered by mixed granulo-
cyte asthma. Interestingly, KEGG pathway analysis revealed that most of the changes in
microbial pathways were metabolic pathways. For example, a mixed granulocyte asthma
model showed a decreased abundance of genes for 5-Aminoimidazole ribonucleotide
biosynthesis and L-lysine biosynthesis, but an increased abundance of genes associated
with the pentose phosphate pathway and glycolysis I/II. Therefore, mixed granulocytic
asthma may influence intestinal glucose metabolism, and further investigation to under-
stand the functional role of this metabolic change is needed to verify the mechanisms in
detail. Understanding this information may help develop new strategies to improve the
efficacy of medication for patients with mixed granulocyte asthma.

Although this study sheds light on the effect of mixed granulocyte asthma devel-
opment on gut immunity and the microbiome, it has some limitations. Each set of mice
experiments showed a differential baseline in microbiota composition; thus, we combined
three different sets of mice experiments to distinguish the changed microbial taxa between
groups. In addition, the relative abundance (%) of the significantly altered microbial taxa
was less than 3%. Therefore, we must carefully consider the meaning of minor compo-
sitional alterations. Other limitations to interpret the influence of lung inflammation on
the gut microbiota and immunity shown here will be health condition of mice and chal-
lenge route. General health condition of mice in disease model can affect feeding behavior
leading to weight loss or food intake reduction that can affect gut immune environment,
particularly gut microbiome. In general, it is normal phenomenon in the most of disease
development, which is hard to exclude in animal study. Thus, even if the changed health
condition is natural, we always need to be careful to interpret results of gut environmen-
tal change in various disease model. Additionally, reagents administrated via intranasal
challenge may enter esophagus and affect the gut environment directly, thus intratracheal
challenge will be better than intranasal challenge to exclude possibility of oral ingestion for
lung-gut axis study.

In summary, the mixed granulocyte asthma model showed distinct gut microbiome
changes, which were characterized by an increased relative abundance of the Faecalibaculum
genus and Erysipelotrichaceae family with a concomitant decrease in the relative abundance
of the genera Candidatus Arthromitus and Streptococcus. Gut microbial metabolism, including
glycolysis, is also altered by the development of mixed granulocyte asthma. These results
suggest that altered gut microbial metabolism is a potential therapeutic target for patients
with mixed granulocyte asthma.
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