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Abstract: Topoisomerase (Topo) inhibitors have long been known as clinically effective drugs, while
G-quadruplex (G4)-targeting compounds are emerging as a promising new strategy to target tumor
cells and could support personalized treatment approaches in the near future. G-quadruplex (G4)
is a secondary four-stranded DNA helical structure constituted of guanine-rich nucleic acids, and
its stabilization impairs telomere replication, triggering the activation of several protein factors at
telomere levels, including Topos. Thus, the pharmacological intervention through the simultaneous
G4 stabilization and Topos inhibition offers a new opportunity to achieve greater antiproliferative
activity and circumvent cellular insensitivity and resistance. In this line, dual ligands targeting both
Topos and G4 emerge as innovative, efficient agents in cancer therapy. Although the research in
this field is still limited, to date, some chemotypes have been identified, showing this dual activity
and an interesting pharmacological profile. This paper reviews the available literature on dual
Topo inhibitors/G4 stabilizing agents, with particular attention to the structure–activity relationship
studies correlating the dual activity with the cytotoxic activity.

Keywords: topoisomerases; G-quadruplexes; telomeres; cancer; dual ligand; small molecules

1. Introduction

Cancer is a serious disease that, despite the increasingly widespread prevention
campaign and advances in therapeutic treatments, still remains a major challenge for
human health around the world [1]. At the molecular level, cancer is considered a genetic
disease whose development is strictly related to the aberrant expression of tumor silencers
and oncogenes [2].

To date, it is widely accepted that the crucial event which limits the lifespan of nor-
mal cells is the progressive erosion of the extremities of chromosomes with specialized
sequences, termed telomeres [3]. Telomeres include tandem repetitions of DNA sequences
and, in particular, human telomeres are constituted by repeats of the hexanucleotide se-
quence 5′-TTAGGG in double-stranded DNA, being one strand rich in guanine (G strand)
and the complementary one in cytosine (C-strand) [4].

The primary function of telomeres is to plug the ends of the chromosome to maintain
its stability [5]. To satisfy the capping function, telomeres must have a minimum length
to form three-dimensional structures named T-loops [6]. In addition, to protect the end of
chromosomes, telomeres are involved in further important functions associated with the cell
cycle, replication and aging [3,7]. During aging, most human tissues and organs undergo a
telomere shortening, and each cycle of cell division causes a shortening of the telomeres by
about 50–200 nucleotides [6,8]. To compensate for this telomere shortening, the enzyme
telomerase, a DNA polymerase, adds telomere repeat sequences on the ends of telomeres,
ensuring the telomere has the correct length for the subsequent cell division cycles [9].

As cancer incidence abruptly increases during aging, cancer can be viewed as an aging-
associated disease in which telomere shortening might play a significant role. Initially,
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telomere shortening was proposed as a tumor suppressor mechanism, being a limiting
factor in the lifespan of human cells [3]. Accordingly, cancer cells need to stabilize telomeres
in order to gain immortal proliferative capacity. Although more than 90% of human cancers
(liver, lung, breast, prostate, colon, brain, pancreas and head and neck cancers, as well as
malignancies of the hematopoietic system) show a strong reactivation of telomerase [10],
they have very short telomeres, much shorter than the surrounding healthy tissue [10].
A plausible explanation for this apparent paradox derives from studies in telomerase-
deficient mice, showing that telomere dysfunction increases the rate of cancer initiation by
inducing chromosomal instability and a DNA damage response [11,12]. According to these
studies, telomere shortening seems to have a dual role in cancer. It can increase tumors’
initiation by inducing chromosomal instability and genetic alterations that lead to cellular
transformation. However, tumor cells need to stabilize telomere shortening to avoid too
high levels of instability, which would ultimately lead to the cancer cells’ death; thus, they
still reactivate telomerase [13] to maintain telomeres at a constant length [3].

Based on these observations, human telomerase has been proposed as a new and highly
selective target for antitumor drug design campaigns [9,14,15]. Sen and Gilbert suggested
that telomere DNA sequences may join to initiate the alignment of four sister chromatids
to form parallel guanine quadruplexes called G-quadruplexes (G4). This hypothesis was
subsequently confirmed by biophysical studies on DNA oligonucleotides with sequences
similar to those from telomeres that highlighted the stable formation of G4 structures under
near-physiological conditions in vitro [16]. Specifically, the protruding 3′ single-strand of
the telomere DNA, more thermodynamically stable than double-stranded DNA, can adopt
the peculiar G4 fold, which is a secondary four-stranded DNA helical structure composed
of guanine-rich nucleic acids [17,18]. About 50% of human genes are expected to produce
G4, which is generally found close to oncogenic promoters rather than to the neighboring
household genes [19].

G4 typically consists of three or even more layers of G-quartet, each of which is
formed by four planar guanines linked by hydrogen bonds and stabilized in the center by
a monovalent cation (more frequently K+) (Figure 1) [20–22].
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Figure 1. G-Quadruplexes framework: structure of a G-quartet consisting of a coplanar structure of
four guanines bound with their N1 and O6 (outlined in red) and stabilized by a central monovalent
metal cation (M+).

Changes in G4 formation/stability can alter telomerase activity [23,24] and transcrip-
tion efficiency (inhibiting or promoting it) [25], stall DNA replication and induce genome
instability [26]. These changes can be triggered chemically with G4-ligands or by pro-
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teins that modulate G4 formation. G4 ligands able to modulate or stabilize G4 structures,
and consequently block cellular replication or oncogenes’ expression, have, therefore, the
potential to be used in anti-tumor treatment strategies [27].

Formation and/or stabilization of G4 structures represent potential therapeutic tools
against tumor cells [27,28], and three main therapeutic strategies have been investigated [29].
The first is based on the observation that most promoters of oncogenes harbor more G4
motifs than the promoters of regulatory or tumor suppressor genes [30], and changes
within the G4 structure in the promoters correlate with a reduction in gene expression
(e.g., MYC [31], VEGF [32], BCL2 [33], KRAS [34] and KIT [35]). Thus, regulating oncogene
expression by inducing G4 structures in the corresponding promoters might represent a
valuable strategy to reduce tumor growth. As an example, inducing G4 structures within
the oncogene promoter MYC [31,36–38] blocks the expression of MYC, a transcription factor
that is upregulated in 70% of cancers, altering cell proliferation, metabolism and immune
evasion [37]. Several G4 ligands are reported to reduce tumor growth as a consequence
of a decreased expression of MYC and other oncogenes [39], even if, due to the low
selectivity of these compounds, other molecular mechanisms cannot be excluded [40].
The second therapeutic strategy is based on the evidence that, under specific conditions,
G4 structures can cause genome instability [20], inducing genetic alterations (e.g., point
mutations, insertion, deletion, telomere addition, or even epigenetic changes), which are
observed in many cancers. Treatment with G4 ligands might increase genome instability
leading to enhanced DNA double-strand breaks, replication pauses, micronuclei formation
and telomere maintenance problems [41,42]. Finally, G4 formation/stabilization at the
telomeres was used to block telomerase activity in tumors, thus hindering uncontrolled
DNA replication. In fact, telomerase activity is upregulated in about 85–90% of cancer cells,
which are thus able to replicate without telomere shortening [43]. The G4 structures at the
telomeres can alter telomerase binding and block telomerase activity in tumor cells [44],
while somatic cells do not express telomerase and are thus not affected.

Based on these considerations, small molecules stabilizing or inducing G4 structures
have been suggested as potential anticancer drugs [45,46]. In fact, a number of interactive
G4 compounds not only inhibit telomerase activity in cell-free systems and in vitro, but
they also affect telomere shortening and, above all, cell death in cancer cells [47–51]. To
date, numerous G-quadruplex ligands are listed in the G4 ligands database (G4LDB). As ex-
amples, 2,6-diamidoanthraquinone (DAAQ) [45], TmPyP4 [52], and PIPER [53] (Scheme 1)
were the first described G-quadruplex interactive agents, and they were used as lead com-
pounds for the development of many other G4 interactive analogs. In particular, TmPyP4 is
commercially available, and it has been widely used as a reference standard for biological
assays. Structural modifications to improve the physicochemical properties of PIPER led to
the development of naphthalene diimide derivatives [54], and, among them, BMSG-SH-3
(Scheme 1) entered clinical trials. BMSG-SH-3, together with telomestatin (Scheme 1) [55],
a natural macrocyclic compound isolated from Streptomyces anulates, have been shown
to promote cell cycle arrest and apoptosis in glioblastoma and in uterus, prostate and
gastrointestinal cancers. To date, quarfloxin (Scheme 1), an anti-neoplastic fluoroquinolone
derivative developed by Cylene Pharmaceuticals, is the only G-quadruplex ligand to
have entered phase II clinical trials (ClinicalTrials.gov identifier: NCT00780663), due to
its ability to interact with G4s in vivo [56]. Ultimately, quarfloxin was discarded due to its
poor bioavailability.

G4 stabilization impairs telomere replication and triggers the specific involvement and
activation of several protein factors at telomere levels, such as topoisomerases (Topos) and
poly-(ADP-ribose) polymerases (PARPs) [57,58]. In addition, in cancer cells, G4 can be con-
verted back into duplex DNA, thanks to the action of highly expressed Topo enzymes [59],
thus activating c-MYC transcription [60].

ClinicalTrials.gov
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DNA Topos are ubiquitous nuclear enzymes involved in solving all the topological
problems of the DNA during all cellular transactions [61]. In eukaryotic organisms, Topos
can be classified into two main different classes: topoisomerase I (TopoI) and topoisomerase
II (TopoII), with different structural organization, enzymatic catalysis modalities and bio-
logical functions. Under physiological conditions, Topos operate transient DNA cleavages
as the relegation phase is faster than the breaking one and, therefore, is well tolerated by
cells. On the other hand, if the amount or duration of the breakage becomes too high, the
DNA undergoes permanent changes, which prevent the progression of the subsequent
phases, and this is of fundamental importance in cancer cells, which are in continuous
proliferation [62–64]. Topo inhibitors can carry out their activity by exploiting two different
molecular mechanisms. The first consists of the formation of a blocked ternary Topo-DNA-
inhibitor cleavable complex [65–68], the accumulation of which prevents the enzyme from
completing its catalytic cycle; DNA breaks are stabilized, thus leading to a cytotoxic effect.
The enzyme is therefore covalently trapped in the DNA, and such a cleavable complex is
termed “poisoned”. Therefore, the inhibitors that act with this mechanism are termed Topo
poisons [68,69]. The second one consists of interfering with the binding of Topos to DNA or
in the catalytic inhibition of the Topos, stopping DNA transcription and replication that ulti-
mately leads to cell death. Compounds that act by this mechanism are called Topo catalytic
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inhibitors or suppressors and may belong to different classes [65,70,71]: (i) DNA binders or
intercalators, which change the shape of free DNA so that Topos bind less effectively [71];
(ii) agents that bind the free enzyme (such as some porphyrin compounds) and prevent
the nicking reaction [72]; (iii) agents that react with specific amino acids of Topos (such as
cysteines) and inhibit the enzyme [73]; (iv) molecules that compete for the ATP binding site
of TopoII, resulting in the catalytic inhibition of TopoII [65,70]; and (v) compounds that can
bind to the DNA–Topos complexes and prevent cleavage [74]. The ability to interfere with
the Topos’ activity has been exploited as an effective strategy for cancer therapy and, in
fact, many Topo (I or II) inhibitors have been marketed drugs for several decades [75–81].
Marketed Topo inhibitors for the treatment of cancer include both TopoI and TopoII poi-
sons. The class of TopoI poisons includes camptothecins such as topotecan (Scheme 2),
approved in 1996 for the treatment of metastatic ovarian cancer and, later, in 1998 for the
treatment of small cell lung cancer. Anthracyclines (e.g., doxorubicin), anthracenediones
(i.e., mitoxantrone), epipodophyllotoxines (e.g., etoposide) and amsacrine (Scheme 2) are
TopoII poisons used in many types of cancer including breast, lung, ovarian cancer and also
acute leukemia [63]. Despite their clinical effectiveness, the use of these drugs is limited
by several important side effects. Their mechanism of action appears to be responsible
for further toxicities, including cardiotoxicity (especially anthracyclines) and secondary
leukemia [82–84]. Moreover, multi-drug resistance (MDR) has been one of the challenges in
targeting cancer cells employing TopoI or TopoII inhibitors. This acquired resistance may
be due to reduced drug absorption, conformational changes, overproduction of the target
enzyme and reduced activation and/or increased pharmacological catabolism [85,86].
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A new opportunity for pharmacological intervention to achieve greater antiprolifer-
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side effects, might be offered by the concomitant G4 stabilization and inhibition of Topos
(Figure 2) [87].
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The present review analyzes the available literature on dual Topo inhibitor/G4 stabi-
lizing agents, with particular attention to the structure–activity relationship (SAR) studies.
The final goal is to highlight the structural requirements necessary for the development
of potent dual modulators of these targets, thus providing useful data to the scientific
community involved in the development of more efficient and safer anticancer agents.

2. Dual Topoisomerase Inhibitor/G-Quadruplex Interacting Agents

While Topos’ inhibitors have long been widely studied, and some of them have en-
tered the market for the treatment of cancer, and G4-interacting agents have been studied
for years, some of them entering the clinical trial phase, the dual topoisomerase inhibitor/
G-quadruplex interacting agents are, instead, still poorly studied. Indeed the combi-
nation of a TopoI inhibitor with RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]
acridinium methosulfate), a G4 stabilizing agent, was found to be a highly effective treat-
ment, allowing for complete tumor regression and a significant increase in the overall
survival of mice, even when the treatments are initiated at a very advanced stage of tumor
growth [58]. For this reason, there is still much to be investigated and documented in
this field.

In practice, single-target treatment in severe and complex diseases involving many
pathogenic factors such as, for example, cancer, may be inadequate due to the activation of
compensatory mechanisms and alternative pathways [88,89]. As a result, the use of a drug
simultaneously targeting different pathways involved in the onset and/or progression
of the tumor can lead to a synergistic effect that might have considerable potential in
anticancer therapy. The development of G-quadruplex agents, for which MDR has not yet
been recognized and that simultaneously inhibit Topos activity, might also minimize drug
resistance, because cancer cells are frequently incapable of adapting to the simultaneous
toxic effects of dual-targeting agents. In addition, the enhanced therapeutic effects of a
multitarget drug require lower doses, with the potential to reduce side effects compared to
individual drug treatments [87,90].
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In this manuscript, dual Topo inhibitor/G-Quadruplex interacting agents reported
in the recent literature are described and classified, focusing attention on their chemical
structures. In particular, the biological profiles of the reported compounds are discussed,
with particular attention to those able to exert cytotoxicity in vitro towards some human
tumor cell lines and also in vivo (if carried out). When possible, SARs are also discussed.

2.1. Fluoroquinoanthroxazines

Fluoroquinolones (e.g., norfloxacin) are well-known antimicrobial agents that inhibit
bacterial DNA gyrase [91], but, recently, fluoroquinolones have been demonstrated to be
Topo II [92], or telomerase inhibitors [93]. Among them, A-62176, a quinobenzoxazine,
(Scheme 3), showed good activity against several human and murine cancer cell lines
in vitro and in vivo [94], acting as a catalytic inhibitor of Topo II [95], or as Topo II poison
under certain conditions [96]. Thus, it was used as a lead compound for designing many
potent Topo II inhibitors by means of a structure-based approach [97].
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The extended aromatic conjugation system of A-62176 suggests that quinobenzox-
azines may also intercalate with the more expansive G-quadruplex DNA system and thus
act as telomerase inhibitors [47,97].

Initially, A-62176 was used as starting point to design the extended analog QQ58,
a fluoroquinophenoxazine (Scheme 3) [47], in which the phenoxazine ring selectively
enhances the stacking interactions with G-quadruplex structures, thereby increasing the
telomerase inhibition. At any rate, the Topo II poisoning activity of the parent compound
A-62176 was lost in the QQ58.



Biomedicines 2022, 10, 2932 8 of 20

So, in 2003, Kim et al. [98], with the aim of identifying new compounds with increased
G-quadruplex interactions, while maintaining the TopoII poisoning effects, designed a
series of fluoroquinoanthroxazines (FQAs) [47,97]. A naphthyl extension was inserted in
the FQAs to increase the planar aromatic system with respect to the parent compound
A-62176, in which the π-π stacking interactions were considered insufficient to adequately
stabilize the G-quadruplex.

The polymerase inhibition and DNA cleavage assays, carried out on the FQAs, gave
important indications of the interaction with G-quadruplex and of TopoII poisoning activity,
respectively. Among the newly synthesized FQAs, two compounds, namely FQA-CS and
FQA-CR (Scheme 3), showed good cytotoxicity (1.1 µM and 0.46 µM, respectively) towards
MCF7 breast cancer cells, due to a dual mechanism of action towards the TopoII and
G-quadruplex (Table 1) [98].

Table 1. Summary of the biological activities of FQA-CS and FQA-CR.

FQA-CS FQA-CR

G-4 interaction polymerase stop assay (IC50) 0.67 µM 0.06 µM
Topoisomerase II poison effects +++ +

Cytotoxicity on MCF7 breast cells (IC50) 1.1 µM 0.46 µM
Major mechanism of action Topo II poison G-4 interaction

In particular, while A-62176 is both a TopoII poison and a catalytic inhibitor, the FQAs
were found to be only TopoII poisons, with FQA-CS being by far the most potent one and
for which the DNA cleavage activity increased in a concentration-dependent manner [98].

Moreover, the R-enantiomer (FQA-CR) interacts with G-quadruplexes to a greater
extent than the S-enantiomer (FQA-CS) does. This is due to the amino hydrogens of the
aminopyrrolidine in the FQA-CR that are more favorably disposed than the corresponding
ones in the S-enantiomer, so facilitating the formation of a stabilizing hydrogen bonding
interaction with the 5′-phosphate group of G-quadruplexes [47]. In contrast, FQA-CS is
more favored for binding with TopoII-DNA complexes [96]. FQA-CS activity significantly
decreases in resistant cells, while FQA-CR retains a similar level of potency against the
TopoII-resistant cells compared to the TopoII-sensitive cells, Figure 3. This might represent
an important advantage in the development of drugs with a dual mechanism of action for
treating tumors having developed resistance mechanisms for one specific target.
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2.2. Indenoisoquinolines

Indenoisoquinolines are largely reported as TopoI inhibitors, with improved physico-
chemical and biological properties compared to the classical camptothecin TopoI inhibitors.
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They are clinically used for the treatment of various solid tumors [99–102], and some of
them have entered phase I clinical trials for relapsed solid tumors and lymphomas [103–105].

Based on a report by Ou et al. suggesting that monosubstituted quindoline derivatives
(general formula 1, Scheme 4) show a high stabilization of G-quadruplex [106], a series of
tetracyclic 6-substituted indenoisoquinolines 2, featuring only one side chain, was designed
(Scheme 4) [107]. Indeed, the indenoisoquinolines 2 are represented by a crescent shape
and share a structural similarity with the quindoline 1 compounds.

The compounds of series 2 resulted in a new class of G-quadruplex-stabilizing agents,
with good antiproliferative activity in vitro on gastrointestinal stromal tumors (GIST882)
and on colon adenocarcinoma (HT-29) cell lines, with IC50 values ranging from 0.3 to 23.0
µM, with HT-29 being the most sensitive cell line for all the derivatives 2.

On the basis of these premises, in 2019, 56 indenoisoquinoline derivatives were ex-
amined and 44 of them were proven to stabilize G-quadruplex by fluorescence resonance
energy transfer (FRET) melting experiments [108]. Moreover, Western blotting experiments,
using MCF-7 breast cancer cells, were carried out to assess the MYC-inhibitory effects of
the 44 indenoisoquinolines, which were then ranked into four groups, i.e., strong, medium,
weak and no inhibition. Interestingly, the most potent G4-stabilizing derivatives (apparent
binding affinity Kd values ranging from 5.6 to 23.9 nM, Table 2) also showed a potent
MYC-inhibitory effect. All 44 compounds, for which the TopoI inhibitory activity has al-
ready been previously determined [102,109–114], were also tested for their antiproliferative
activity on the NCI-60 cancer cell lines screen [115,116], and 31 of them showed potent
antiproliferative activity (some mean graph midpoint, MGM and values are reported in
Table 2), often related to TopoI inhibition or G-quadruplex stabilization activity [108].

The most interesting results concerning indenoisoquinolines are shown in Table 2; an
analysis of these results with regard to the compounds’ ability to interact with G-quadruplex
allowed us to identify clear SARs.

Table 2. Summary of the biological activities of indenoisoquinolines 3–11.

Cpd TopoI Inhibition 1 MYC Inhibitory Effect G-Quadruplex Interaction
Kd Values (nM) 2 MGM 3

3 + strong 14.8 ± 0.3 0.24
4 +++ strong N.D. 4 0.07
5 ++ strong N.D. 4 0.5
6 ++ strong 8.5 ± 0.5 0.16
7 ++ strong 7.3 ± 0.3 0.05
8 ++++ strong 5.6 ± 0.2 0.06
9 ++++ strong 23.9 ± 0.7 0.40
10 N.D. 4 weak N.D.4 N.D. 4

11 0 no interaction N.D.4 53
1 The relative topoisomerase I (TopoI)-inhibition levels of the compounds were previously determined and
classified into six levels (0–5, +++++ = 5). 2 Apparent binding affinity Kd values (nM). N.D. indicates that the value
was not determined due to the negligible change of fluorescence signal. 3 The MGM values for each compound are
the average of GI50 values across the entire panel of NCI-60 cancer cell lines, where compounds with GI50 values
that fall outside the test range of 10−4 to 10−8 M are assigned values of 10−4 or 10−8 M. 4 N.D. not determined.

In particular, the 7-azaindenoisoquinolines 3–8 (Scheme 4) showed high selectivity for
G-quadruplex, while compounds with an N6-substitution, but no A- or D-ring substituents,
were less selective. As the indenoisoquinolines lacking the aminopropyl side chain (struc-
tures not reported) were found to be poor MYC-binders and G4-stabilizers, the N6-alkyl
amine side chain proved to be important for G-quadruplex binding and stabilization, due
to the ability of the positively charged basic N to engage favorable electrostatic interactions
with the negatively charged phosphate backbone in the G-quadruplex groove.
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In fact, the 9-methoxy-7-azaindenoisoquinolines (3–8, Scheme 4) developed to improve
water solubility and to increase the charge-transfer properties [117,118], strongly bound
G-quadruplex, and those with substituents, such as fluoro- (3, 6, Scheme 4), nitro- (4, 7, 8,
Scheme 4) and chloro- (5, Scheme 4) at position 3 of the A ring, were potent G-quadruplex
binders and stabilizers, Figure 4.
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Even in compound 9, although without substituents on the A and D rings, a strong
interaction with the G-quadruplex is maintained, again emphasizing the importance of the
N6-aminoalkyl side chain for a favorable interaction. The presence of bulkier N-containing
ring systems can sterically hinder the binding. For example, the presence of a more
cluttered ring containing N (compound 10), and a ring with a reduced positive charge for
N (compound 11), weakened and abolished the G-quadruplex interaction, respectively
(Table 2).
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2.3. Dibenzoquinoxalines

Quinoxaline moiety has gained considerable attention in the field of contemporary
medicinal chemistry, thanks to its documented wide range of pharmacological, including
anticancer, activities [119].

A substituted quinoxaline derivative 12 (Scheme 5), inhibiting triple-negative breast
cancer (TNBC) growth thanks to its G-quadruplex binding, was recently reported by
Hu et al. [120]. Although quinoxalines retain suitable structural requirements to target
Topos [119], compound 12 showed little TopoI inhibitory activity. Therefore, in 2021, it
was suitably modified with the aim to obtain dual ligands, targeting both Topo I and the
G-quadruplex with high inhibitory effects on tumor growth [121].

Exploiting the Topo inhibitors’ structures, which are always characterized by a copla-
nar skeleton (e.g., topotecan, doxorubicin and etoposide) [122], compound 12 was modified
by extending its aromatic core by bridging the two pendant phenyl groups at positions 2 and 3.

In this context, a new series of 12 dibenzoquinoxaline derivatives was obtained, and,
among them, compounds 13–15 (Scheme 5) were potent TopoI and c-MYC transcription
inhibitors, also inhibiting cancer cell growth in TNBC cell lines, with IC50 values in the
range of 1.0 µM (Table 3). These results suggested that there was a combined effect of TopoI
inhibition and c-MYC inhibition on the antitumoral activity of the tested compounds.
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Table 3. Summary of the biological activities of dibenzoquinoxalines 12–15.

Cpd TopoI Inhibition 2 G-4 Interaction/MYC Inhibition 2 IC50 (µM) 1

12 - +++ 1.9
13 +++ +++ 1.1
14 +++ +++ 0.7
15 +++ +++ 1.1

1 IC50 is the half maximum concentration for cytotoxicity in TNBC cells at 24 h, determined using the CCK8 assay.
2 The c-MYC (or TopoI) inhibition levels were classified into four levels: inhibition (+++), medium inhibition (++),
weak inhibition (+), and no inhibition (-).

For this series of dibenzoquinoxaline derivatives, it was possible to define some
SAR. The quinoxaline core was an important prerequisite, as extending or altering this
structure weakened the TopoI or c-MYC transcription inhibitory activity. The insertion
of a nitrogen atom to obtain the pyrido [2,3-b]pyrazine scaffold (structure not reported)
abolished the inhibitory activity on the c-MYC transcription and greatly reduced the
cytotoxicity; this is probably due to the increase in molecular polarity, which may reduce
the compounds’ ability to penetrate cellular membranes and reach their targets in the
nuclei, thus resulting in poor intracellular activity. Regarding the substituents inserted
into the quinoxaline core, an electron-donating substituent (−OCH3) increased the overall
activity, while an electron-withdrawing one (−CF3) reduced it. Moreover, a bulky group in
the same position, regardless of its electronic characteristics, seems to reduce the activity
of the derivatives, probably due to a weaker interaction with the target. However, the
introduction of two substituents decreased the overall activity, indicating that the extra
substituent may sterically hinder the binding, Figure 5.
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Among all the dibenzoquinoxaline derivatives, compound 14 was selected for further
studies, and, finally, it was identified as the most promising dual ligand, effectively inhibit-
ing TopoI activity and strongly stabilizing the G-quadruplex, so inhibiting the c-MYC. In
particular, RT-PCR, Western blotting and other biological assays revealed that compound 14
is an effective non-intercalative TopoI catalytic inhibitor, and it strongly binds and stabilizes
the G-quadruplex. Moreover, cell-based assays demonstrated the ability of compound 14
to inhibit cancer cell growth by inducing apoptosis. It also showed good in vivo antitumor
activity in an MDA-MB-231 tumor-bearing mouse model, which is a reliable animal model
for human triple-negative breast cancer (TNBC) [121].

Taken together, these results were extremely encouraging, as they affirmed com-
pound 14 as a sound and viable candidate for the development of new dual Topo1 and
G4 ligands.

2.4. Ruthenium(II) Polypyridyl Complexes

Ru(II) complexes with polypyridyl ligands have become prominent DNA-intercalating
agents and have been widely investigated, thanks to a combination of easily constructed
three-dimensional spacial structures and abundant photophysical properties [123].

In 2015, [124] three ruthenium polypyridyl complexes [Ru(bpy)2(icip)]2+ (16), [Ru(bpy)2
(pdppz)]2+ (17) and [Ru(bpy)2(tactp)]2+ (18) (Scheme 6, bpy = 2,2′-bipyridine, icip = 2-
(indeno[2,1-b]chromen-6-yl)-1H-imidazo-[4,5-f ][1,10]phenanthroline, pdppz = phenanthro[4,5-
abc]dipyrido[3,2-h:2′,3′-j]phenazine and tactp = 4,5,9,18-tetraazachryseno[9,10-b]-triphenylene)
were investigated [125,126].

Ru-complexes 16–18 interact with the G-quadruplex according to two different mech-
anisms, which consist of a stacking mode for complexes 17 and 18 and an intercalation
mode for complex 16, in which the rotatable C–C bond allows the ligand to be able to
assume the right conformation to insert itself among the DNA quartets. Behind the G4
interaction, derivative 16 was also a TopoI poison, while complexes 17 and 18 were dual
TopoI/TopoII poisons.

The MTT assay after 48 h of drug treatment revealed that complexes 17 and 18 are
able to exert acute cytotoxicity at a similar concentration of cisplatin, whereas derivative 16
shows to be a weaker cytotoxic complex. These results were in accordance with the ability
of compounds 16–18 to inhibit Topos (Table 4) and to induce apoptosis. Moreover, a cell
cycle analysis indicated that, although compounds 16–18 do not exactly follow the same
anticancer mechanism, they can all induce cell apoptosis.
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Table 4. Summary of the biological activities of ruthenium(II) polypyridyl complexes 16–18 and cisplatin.

Cpd Topos Inhibition G-4 Interaction HeLa IC50 (µM)
HepG2

A549

16 TopoI poison Intercalation (stronger interaction) 37.45 46.31 52.45
17 TopoI/II poison stacking mode 21.37 27.91 24.67
18 TopoI/II poison stacking mode 23.85 21.90 24.06

cisplatin - - 16.75 12.15 18.55
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3. Conclusions and Future Perspective

Telomere biology has greatly evolved over the past 70 years: it started with McClin-
tock’s observation that chromosomes need protection and was followed by the 2009 Nobel
Prize in Physiology and Medicine to Elizabeth Blackburn, Carol Greider and Jack Szostak
for the discovery of telomerase and the effects of telomere shortening on cells. Telomere
function has been implicated in the replicative aging process and shown to play a major
role in the establishment of genome instability in cancer development.
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The main function of telomeres is to plug the chromosomal ends to maintain chromo-
somal stability and, to fulfill the capping function, the telomeres must have a minimum
length and form three-dimensional structures (T-loops).

One of the mechanisms that leads to “telomere uncapping”, which is an alteration
of the T-loop structure, is provided by the G-quadruplex (G4) stabilization. In this view,
G4 stabilization is widely recognized as an interesting target to block cellular replication
and/or expression of oncogenes, including MYC, and the small molecules able to modulate
or stabilize the G4 structures can represent useful tools for the development of effective
antitumor therapeutic approaches. However, the topoisomerases (Topos) can dissipate this
negative supercoiling, leading to the continuous activation of the transcription of several
oncogenes, such as MYC.

In this context, the dual targeting of Topos and G4 appears to be an innovative and
promising strategy for the development of effective anticancer drugs.

To date, the dual Topo inhibitor/G-quadruplex interacting agents are still poorly studied,
and the few classes reported in the literature are related to fluoroquinoanthroxazines [98],
indenoisoquinolines [108], dibenzoquinoxalines [120] and ruthenium(II) polypyridyl com-
plexes [124]. For these classes, a focus on SAR studies, the biological profile as well as the
reported ability to exert cytotoxicity against tumor cell lines in vitro and in vivo (if carried
out), were described.

Although the research in the field of dual Topo inhibitor/G-quadruplex interacting
agents is still limited, some compounds possess very interesting pharmacological profiles,
highlighting some chemotypes as promising scaffolds for dual G4 and Topos activity. In
particular, the dibenzoquinoxaline derivative 14 [120] was one of the most promising dual
ligands, effectively inhibiting TopoI activity and strongly stabilizing the G-quadruplex; it
was also shown to inhibit the proliferation of the triple-negative breast cancer growth in
in vivo studies.

In conclusion, the purpose of this review was to highlight to medicinal chemists how
targeting both Topos and G4s may represent a valuable option within drug discovery
programs to develop antitumor agents that are increasingly potent, efficient, safer, and
able to circumvent cell insensitivity and drug resistance. Finally, this report provides
exciting perspectives on the essential primary SARs of known dual Topo/G4 agents, and
exploiting novel lead compounds featuring a dual mechanism at the telomeres, namely
Topo inhibition/G-quadruplex stabilization, will help to open new avenues in drug design
and development, resulting in more efficient drug candidates introduced onto the market
and into the clinical pipeline.
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