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Abstract: Hyaluronic acid (HA) has been suggested to be a preferential material for the delivery
of adipose-derived stem cells (ASCs) in wound healing. By incorporating HA in electrospun poly
(lactide-co-glycolide) (PLGA)/gelatin (PG) fibrous membrane scaffolds (FMS), we aim to fabricate
PLGA/gelatin/HA (PGH) FMS to provide a milieu for 3D culture and delivery of ASCs. The
prepared FMS shows adequate cytocompatibility and is suitable for attachment and growth of ASCs.
Compared with PG, the PGH offers an enhanced proliferation rate of ASCs, shows higher cell viability,
and better maintains an ASC-like phenotype during in vitro cell culture. The ASCs in PGH also
show upregulated expression of genes associated with angiogenesis and wound healing. From
a rat full-thickness wound healing model, a wound treated with PGH/ASCs can accelerate the
wound closure rate compared with wounds treated with PGH, alginate wound dressing, and gauze.
From H&E and Masson’s trichrome staining, the PGH/ASC treatment can promote wound healing
by increasing the epithelialization rate and forming well-organized dermis. This is supported by
immunohistochemical staining of macrophages and α-smooth muscle actin, where early recruitment
of macrophages, macrophage polarization, and angiogenesis was found due to the delivered ASCs.
The content of type III collagen is also higher than type I collagen within the newly formed skin
tissue, implying scarless wound healing. Taken together, using PGH FMS as a topical wound dressing
material for the therapeutic delivery of ASCs, a wound treated with PGH/ASCs was shown to
accelerate wound healing significantly in rats, through modulating immunoreaction, promoting
angiogenesis, and reducing scar formation at the wound sites.

Keywords: wound healing; adipose-derived stem cells; hyaluronic acid; electrospinning; scaffold;
cell delivery

1. Introduction

Being a highly complex multicellular process, wound healing involves the coordi-
nation of different cell types and many cytokines [1]. The repair process can be divided
into inflammation, tissue formation, and reconstruction stages, which involve interactions
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among dermal and epidermal cells, extracellular matrix (ECM), growth factors, and cy-
tokines [2]. During the inflammatory stage, monocyte and neutrophil recruitment as well
as macrophage activation occur [3]. The endothelial cells will migrate to the wound and
proliferate in the next tissue formation stage where new blood vessels can be formed. At
the same time, resident fibroblasts will form contractile granulation tissue by invading
fibrin clots [4]. This process proceeds to form epidermal attachments after proliferation of
epidermal stem cells. Therefore, a well-regulated coherent participation of many complex
biological events occurs during healing of a cutaneous wound, which includes migration
and proliferation of cells, angiogenesis, as well as ECM deposition and remodeling [5].

Stem cell-based therapy is gaining ground in skin wound management as the prolifer-
ation of stem cells and their signaling play a crucial role during every stage of the wound
healing process, offering promise for the repair and/or replacement of damaged tissues
and restoration of their lost functions [6]. In particular, cell therapy using adipose-derived
stem cells (ASCs) has emerged as an attractive route to treat skin wounds due to their
abundance, easy access, minimal invasiveness during, and large quantity after harvesting,
as well as self-renewal and in vitro cell expansion capabilities [7]. It is widely known that
ASCs can actively participate in different wound healing phases, through promoting the
proliferation and migration of fibroblasts, accelerating neo-vascularization, secreting anti-
inflammatory cytokines, regulating fibroblast phenotype, depositing ECM, and fastening
re-epithelialization [8]. Furthermore, reduced scarring has recently been studied as one of
the effects elicited by ASCs during skin regeneration. Although this effect may be related
to the secretion of anti-scarring factors such as transforming growth factor-β3 (TGF-β3) by
ASCs, the mechanism is still largely unknown [9].

Many studies employing locally transplanted ASCs to accelerate wound healing
by taking advantage of their differentiation and vasculogenesis abilities in addition to
the secretion of paracrine factors [10]. However, the ASCs after topical application will
experience cell death within a short time, while retention of the transplanted cells in
the delivery site is also severely limited [11]. To overcome the disadvantages associated
with local delivery, a suitable biomaterial could be used as a delivery vehicle during
transplantation of ASCs to maintain the cell viability. Hence, there is a urgent need for a cell
delivery approach that can deliver ASCs to the wound site for recapitulating the complex
microenvironments of ASCs and to maximize their therapeutic potentials [12]. The wound
healing capacity from ASCs is synergistically regulated by soluble factors as well as by
direct interaction with neighboring cells and ECM. Therefore, the local microenvironments
in which ASCs reside plays a vital role in their phenotypic expression and determine their
wound healing capacity [13]. To create a favorable microenvironment for ASCs to maximize
their therapeutic potential, the properties of supporting biomaterial should be tailored
to mediate the cell’s secretome [14]. The fibroblasts and keratinocytes can regenerate
the wound tissue during the remodeling phase of wound healing by deposition of ECM.
During wound healing, the delivered ASCs can differentiate into different cell types such
as fibroblasts, keratinocytes, and endothelial cells, which may also secrete cytokines to
promote their own proliferation and migration [15].

The tissue engineering approach for wound healing, where ASCs are combined with a
biomaterial-based scaffold, is facing a major challenge to induce skin regeneration while
avoiding scarring [16]. Recently, fibrous membrane scaffolds (FMS) prepared by electrospin-
ning have attracted much attention for application in wound repair, which arises as their
morphological and dimensional properties are similar to the ECM of native skin tissues [17].
Furthermore, by incorporating ECM-like molecules into an electrospun fibrous structure, a
biomimetic microenvironment may be created to imitate the native environment for cell
growth [18]. Therefore, it can be hypothesized that transplantation of ASCs, which are
pre-cultured in FMS, may be a feasible approach for therapeutic delivery ASCs, pending
the ability of the scaffold to support cell growth and properly maintain cell phenotype [19].
Undoubtedly, the use of FMS for ASCs culture could allow improved cellular migration,
proliferation, and differentiation. Nonetheless, as the mechanical and structural properties
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of a scaffold will affect the function of delivered cells, careful development of FMS in ASC
delivery is important.

Considering the materials for fabricating FMS for culture of ASCs, the biodegradable
and biocompatible polymer poly (lactic-co-glycolic acid) (PLGA) has been approvable by
the U.S. Food and Drug Administration (FDA) for clinical use as a wound dressing material.
This polymer was reported to promote wound healing and accelerate angiogenesis by the
sustained release of exogenous lactate [20]. Gelatin is formed from collagen after partial
denaturation and degradation of collagen fibrils, and like collagen, it can attract fibroblasts
during the wound healing process [21]. Due to its low cost and biodegradability, gelatin
is widely used in wound management, which is further supported by other important
characteristics such as its low antigenicity compared with collagen, and strong hemostatic
effect [22]. Hyaluronic acid (HA) is a polysaccharide composed of D-N-acetylglucosamine
and D-glucuronic acid and is endowed with unique characteristics for use in regenerative
medicine [23]. As one of the main components of ECM, HA also exists in many biolog-
ical fluids and participates in the processes of adhesion, migration, and proliferation of
fibroblasts and keratinocytes, as well as in fetal wound healing [24]. It is involved in
an array of biological functions in the human body, such as wound healing, inflamma-
tion, cell proliferation, migration, angiogenesis, etc. [25]. However, as gelatin and HA are
both water-soluble, a gelatin and HA-containing FMS should be crosslinked for long-term
biomedical applications.

To overcome the limitations of the available skin wound healing treatments, we pro-
posed the use of FMS for the delivery of ASCs by offering a suitable environment to
promote the secretion of growth factors and enhance ECM deposition with reduced scar-
ring. We hypothesize that incorporating the skin ECM component HA in an electrospun
PLGA/gelatin FMS could augment the phenotype of seeded ASCs by promoting vascu-
larization and restoring the functional properties of wounded skin tissue. The purpose
of this study was therefore to investigate the role of HA in a scaffold that is used for
ASC delivery. We first demonstrate the successful preparation of PLGA/gelatin (PG) and
PLGA/gelatin/hyaluronic (PGH) FMS for ASC culture. The advantages of incorporat-
ing HA in an FMS as a preferred cell delivery vehicle were studied by comparing the
proliferation and phenotype of seeded ASCs to achieve the most effective cell carrier for
wound healing. Finally, the impact of ASC-seeded PGH on wound healing was studied
in a cutaneous excision model in rats to elucidate the functions of transplanted ASCs for
accelerated wound healing.

2. Materials and Methods
2.1. Materials

Poly (lactic-co-glycolic acid) (PLGA) 50/50 (intrinsic viscosity = 0.45 dL/g, hydroxyl
end groups) was provided by Green Chemical Inc. (Taipei, Taiwan). Hyaluronic acid (HA,
average molecular weight = 1,300,000) was obtained from Bloomage Freda Biotechnology
Corp., Ltd. (Jinan, China). Gelatin (from porcine skin, type A), polyethylene oxide (PEO) of
2,000,000 Da molecular weight, N-hydroxysuccinimide (NHS), and 1-(3-dimethylaminopropyl)-
3-ethylcarbodiimide (EDC) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Dul-
becco’s modified eagle medium (DMEM), 2-(N-morpholino)ethanesulfonic acid, HyClone
fetal bovine serum (FBS), ABsolute q-PCR SYBR Green Mix, and DAB Quanto Chromogen
were purchased from Thermo Fisher Scientific (Waltham, MA, USA). The Live/Dead Viabil-
ity/Cytotoxicity Kit for Mammalian Cells, 4′,6-diamidino-2-phenylindole (DAPI) for nuclear
staining, and phalloidin-tetramethylrhodamine B isothiocyanate (phalloidin-TRITC) for F-actin
staining were obtained from Life Technologies (Carlsbad, CA, USA).

2.2. Fabrication of PLGA/Gelatin (PG) and PLGA/Gelatin/HA (PGH) Fibrous Membrane
Scaffolds (FMS)

For fabricating FMS, a 10 mL plastic syringe was filled with a polymer solution
containing PLGA, gelatin, HA, or PEO prepared in formic acid. The syringe was placed in
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a KDS 100 syringe pump (KD Scientific, Holliston, MA, USA) for the delivery of polymer
solution under a high electric voltage. A blunted stainless steel needle (23-gauge) was
fitted to the syringe, which was connected with a high-voltage power supply provided
by Glassman High Voltage (High Bridge, NJ, USA), and operated at 26 kV. By placing
a collector 15 cm from the needle tip, the fibers were collected by an aluminum foil on
the collector surface. For PG FMS, the polymer concentration is 21/11/0.5 (%, w/v) of
PLGA/gelatin/PEO. For PGH FMS, the polymer concentration is 13/7/3/0.4 (%, w/v)
of PLGA/gelatin/HA/PEO. The flow rate is set at 0.6 and 0.5 mL/h for PG and PGH,
respectively. The FMS was removed from the aluminum foil and dried overnight under
vacuum. For crosslinking, the scaffold was treated with 4% (w/v) EDC/NHS (5:1 weight
ratio) in 99.5% ethanol for 24 h, and washed with copious distilled water before use.

2.3. Characterization of Electrospun Fibrous Membrane Scaffolds

A scanning electron microscope (SEM) (Hitachi S-3000N, Tokyo, Japan) operating at
15 kV was used to observe fiber morphology after sputter coating with Au for 30 s. The
average fiber diameter was determined by randomly choosing 10 fibers each from 10 SEM
images using ImageJ (Version 1.53t, NIH, Bethesda, MD, USA). The tensile mechanical
properties of FMS were evaluated with an H1KT uniaxial tensile testing machine (Tinius
Olsen, Salfords, UK). A 50 mm × 10 mm rectangular membrane was pre-immersed in
phosphate-buffered saline (PBS) for 1 h and vertically mounted in the testing machine with
two mechanical grippers, leaving a 30 mm gauge length for mechanical loading. The load
deformation value was recorded using a 10 N load cell until reaching 30 mm elongation
length at 5 mm/min crosshead speed. A stress–strain curve was obtained, from which the
ultimate stress (tensile stress at break), ultimate strain (tensile strain at break), and Young’s
modulus (slope within the linear region) could be determined. The thermal property of an
FMS sample (10 g) was characterized using TGA Q50 from TA Instruments (New Castle,
DE, USA) for thermogravimetric analysis (TGA) and derivative thermogravimetric analysis
(DTA). The tested temperature was from room temperature to 750 ◦C at 10 ◦C/min heating
rate under nitrogen.

2.4. In Vitro Cell Culture

The ASCs were isolated from the inguinal fat pad of Sprague Dawley (SD) rats (LASCO,
Taipei, Taiwan), 12 weeks old and weighing ~250 g [26]. The cells were cultured in low-
glucose DMEM supplemented with 10% FBS in a T-75 culture flask and incubated at
37 ◦C in a CO2 atmosphere containing 5% CO2. The culture medium was changed every
2–3 days until 90% confluence. The cells at passage 4 were used for the experiments.
Then, 100 µL of ASCs was seeded onto a disk-shaped FMS (1.5 cm diameter) placed in
a well of a 24-well culture plate at 1 × 105 cell density. After cell attachment for 4 h,
1 mL of cell culture medium (low-glucose DMEM supplemented with 10% FBS and 1%
penicillin/streptomycin) was added and cultured for 7 days. On days 1, 3, and 7, the
morphology of ASCs was observed by SEM. For sample preparation, the FMS after cell
seeding was rinsed in PBS, followed by 2.5% glutaraldehyde fixation for 2 h. A stepwise
dehydration process using a 50% to 95% gradient ethanol concentration was used to
dehydrate the sample, and the sample was finally immersed in absolute ethanol for 30 min
and dried. After coating the sample with gold for 60 s, it was examined under SEM. The
proliferation of ASCs was determined from the MTS assay with the CellTiter 96® AQueous
One Solution Cell Proliferation Assay Kit (Promega, Madison, WI, USA). The [3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-2H-tetrazolium] salt
in the MTS assay solution was reduced by dehydrogenase enzymes in metabolically active
cells, and the formed purple formazan crystals were dissolved in dimethyl sulfoxide for
solution absorbance measurements. The absorbance of the solution is measured at 492 nm
(OD492), which is proportional to the number of live cells.

The viability of ASCs in FMS was determined using the Live/Dead Viability/Cytotoxicity
Kit for Mammalian Cells (Thermo Fisher Scientific, Waltham, MA, USA). After being cultured
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for 7 days, the cell-seeded FMS was washed with PBS and incubated with 0.5 mL of staining
solution at 37 ◦C for 30 min. The calcein-AM in the kit can stain live cells green from cellular
esterase activity and the ethidium homodimer-1 can stain dead cells red from the loss of plasma
membrane integrity. The live and dead cells were imaged under a confocal laser scanning
microscope (Zeiss LSM 510 Meta, Jena, Germany) at excitation/emission wavelengths of
490/515 nm and 535/617 nm for live and dead cells, respectively. To assess the cytoskeletal
structure of ASCs, a 7-day in vitro cultured FMS/ASCs sample was washed with PBS and fixed
in 4% (w/v) paraformaldehyde at room temperature. The cells were permeabilized for 3 min
with 0.1% Triton X-100, stained for 3 min with DAPI, and stained for 20 min with phalloidin-
TRITC, before washing three times with PBS. The cytoskeletal arrangement was observed
with a Zeiss LSM 510 Meta confocal laser scanning microscope. The nucleus shows blue
fluorescence at 340/488 nm emission/emission wavelength after DAPI binding, and the F-actin
microfilaments in the cytoskeleton show red fluorescence at 540/570 nm excitation/emission
wavelength after phalloidin-TRITC binding.

For gene expression of ASCs in FMS after 7-day in vitro culture, quantitative real-time
polymerase chain reaction (qRT-PCR) was used. After isolating total RNA with Trizol in
DEPC-treated water, the RNA was reverse transcribed to complementary DNA (cDNA)
with the QuantiTect Reverse Transcriptase Kit (Qiagen, Hilden, Germany). For internal
control, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used. Amplification
was conducted for 50 cycles in a thermo cycler. Each cycle consisted of 15 min at 95 ◦C
for denaturation, 15 s at 95 ◦C for annealing, and 1 min at 60 ◦C for extension. The RT-
PCR reactions were carried out in a CFD-3120 detection system (Bio-Red, Hercules, CA,
USA) and the SYBR Green RT-PCR kit was used to detect the products after PCR. The
expression of each gene was evaluated in triplicate. The primers used were vascular en-
dothelium growth factor (VEGF) (forward: 5′ TACCTCCACCATGCCAAGT 3′; reverse:
5′ TGCATTCACATTTGTTGTGC 3′), transforming growth factor-β1 (TGF-β1) (forward:
5′ GGCCGTACTGGCTCTTTACA 3′; reverse: 5′ TAGATTGGTTGCCGCTTTC 3′), TGF-β3
(forward: 5′ AAGAAGGAACACAGCCCTCA 3′; reverse: 5′ GCGGAAGCAGTAGTTG-
GTGT 3′), keratinocyte growth factor (KGF) (forward: 5′ CTGCCAAGTTTGCTCTACAG
3′; reverse: 5′ TCCAACTGCCAGGGTCCTGAT 3′) and GAPDH (forward: 5′ GCTTTGCC-
CCGCGATCTAATGTTC 3′; reverse: 5′ GCCAAATCCGTTCACTCCGACCTT.

2.5. Animal Studies

The wound model was created in twenty-week-old male SD rats (LASCO, Taipei,
Taiwan). All animal protocols were approved by the Institutional Animal Care and Use
Committee of Chang Gung University (IACUC approval no. CGU107-271, date of approval:
19 March 2019). By completely anesthetizing the animals with Zoletil-50 and Rompun
through intraperitoneal injection, two full-thickness wounds of 2 cm × 2 cm dimensions
were created on each side in the dorsum of each animal. The animals were randomly
divided into 4 groups (n = 4, each group at each time point). The wound was covered
with 2.5 cm × 2.5 cm gauze (control), commercial alginate dressing (Melgisorb Ag from
Mölnlycke, Gothenburg, Sweden), PGH, or PGH/ASCs. The PGH/ASCs sample was
prepared by seeding 3.5 × 105 ASCs in 2.5 cm × 2.5 cm PGH and culturing for 7 days
in vitro. The wounded area was covered with Tegaderm (3M, Saint Paul, MN, USA) and
fixed with an elastic bandage to prevent the rat from removing the covering. The rats were
kept in individual cages and observed daily throughout the experimental period. On days 3,
7, and 14 post-treatment, four rats were euthanized by CO2 inhalation and the dressing was
removed. The wounds were grossly examined and digitally photographed with a constant
optical zoom. To quantitatively determine the remaining wound size, each wound was
traced with a transparent tracing paper along the epithelium-covered border of a wound.
The tracing paper was scanned to analyze the wound size with the ImageJ software. The
relative wound healing rate was calculated from the closure rate of the original wound (%)
as B/A × 100, where A is the original wound area and B is the remaining wound area at a
specific time.
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The excised skin tissue retrieved from sacrificed animal was subject to histological
analysis by immersing in 10% formaldehyde, dehydrating, and embedding in paraffin. A
5 µm thick tissue section was prepared for examination. The tissue slice was subject to
hematoxylin–eosin (H&E) and Masson’s trichrome staining following standard protocols.
For immunohistochemical (IHC) staining, nonspecific binding was blocked with Ultra V
Block for 5 min, followed by incubation with diluted primary antibody for CD68, CD163,
type 1 collagen (COL I), type III collagen (COL III), or α-smooth muscle actin (α-SMA)
at 4 ◦C for 24 h. After rinsing, the slide was incubated with N-Histofine Simple Stain
Rat MAX PO for 30 min, followed by color development with DAB Quanto Substrate.
After hematoxylin counterstaining, the slide was examined under an IX-71 inverted optical
microscope. For semi-quantitative analysis of the region of interest within the whole tissue
area, the PAX-it image analysis software was used. For this analysis, five randomly chosen
fields from the images were examined, from which the area percentages of COL I, COL III,
α-SMA+ vessels, and the number of CD68+ and CD163+ macrophages were calculated.

2.6. Statistical Analysis

The results are reported as mean ± standard deviation (SD). Statistical differences
were determined by one-way analysis of variance (ANOVA). The least significant difference
(LSD) test was used, and the differences were considered statistically significant if p < 0.05.

3. Results
3.1. Preparation and Characterization of Fibrous Membrane Scaffolds (FMS)

The scanning electron microscope (SEM) images of pristine FMS reveal a smooth fiber
morphology of uniform fiber size (Figure 1). After crosslinking, the average fiber diameter
increased from 664 ± 13 nm to 1014 ± 15 nm for PG and from 416 ± 12 nm to 716 ± 14 nm
for PGH, with a moderate change in fiber morphology. Most importantly, the crosslinked
FMS could maintain its fibrous structure during the in vitro cell culture period, as observed
from the SEM images after immersing the FMS in cell culture medium for 7 days (Figure 1).
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The thermal stability of the FMS was studied by thermogravimetric analysis (TGA)
(Figure 2A). The PG shows a single decomposition peak at 300 ◦C due to the combined
thermal decomposition of PLGA and gelatin. In contrast, the PGH shows a minor decom-
position peak at 233 ◦C from HA in addition to a major decomposition peak at 290 ◦C
(Figure 2B). Undoubtedly, the major decomposition peak arises from the decomposition of
both PLGA and gelatin, which shifts slightly to a lower temperature due to interactions
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with HA. It should be noted that the residual weight of PGH (16.5%), after burning in
nitrogen to 750 ◦C, is higher than that of PG (13.2%). This is due to the difference in residual
weight between a natural polymer (HA or gelatin) (>0%) and a synthetic polymer (PLGA)
(=0%) after complete thermal decomposition in nitrogen.
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Figure 2. The thermogravimetric analysis (TGA) (A) and derivative thermograms (B) of PG and PGH
fibrous membrane scaffold (FMS).

The tensile strength of a membrane-type FMS is important during handling and
application. The FMS should be endowed with sufficient mechanical properties, which
can resist stretching during application [27]. For this purpose, FMS was subject to tensile
mechanical testing, and typical stress vs. strain curves are shown in Figure 3A. The ultimate
stress, ultimate strain, and Young’s modulus were determined from the stress vs. strain
curves and compared in Figure 3B. Overall, the incorporation of HA significantly influenced
the tensile strength of the FMS, as PGH shows significantly reduced Young’s modulus and
ultimate stress. However, HA in PGH can substantially raise the ultimate strain 14.7-fold
from PG, which is brittle and easily breaks at 0.8% strain.
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Figure 3. The tensile mechanical properties of PG and PGH fibrous membrane scaffold (FMS). (A) The
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3.2. In Vitro Cell Culture

In order to investigate whether the FMS could support attachment, proliferation, and
maintenance of the phenotypic profile of ASCs, we seeded ASCs in FMS and cultured for
7 days in vitro. The morphological appearance of cell-seeded FMS was examined from
time-lapsed SEM images to confirm cell migration and proliferation. After cell seeding,
a mesenchymal stem cell-like phenotype was observed from attached ASCs, which can
maintain the undifferentiated spindle-like morphology in normal cell culture medium with
protruded lamellipodia attaching firmly to the filamentous fibers (Figure 4A). The PGH
was more rapidly colonized by ASCs than PG within 7 days. Furthermore, the ASCs in
PG incline towards altered cell morphology on day 7, where a flat cell morphology with
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fibroblast-like appearance was observed. The proliferation of ASCs in FMS was evaluated
quantitatively by using the MTS assay for the determination of viable cells in the scaffold.
As shown in Figure 4B, the cell attachment rate showed no significant difference between
scaffolds on day 1. However, the viable cell number was significantly higher in PGH on
days 3 and 7. The increase in OD492 from day 1 to day 7 was 2.9-fold and 4.0-fold for
PG and PGH, respectively, which indicates that PGH may provide a better milieu for the
proliferation of ASCs.

Biomedicines 2022, 10, x FOR PEER REVIEW 8 of 20 
 

 
Figure 3. The tensile mechanical properties of PG and PGH fibrous membrane scaffold (FMS). (A) 
The typical stress–strain curves. (B) The ultimate stress, ultimate strain and Young’s modulus (n = 
4). * p < 0.05 compared with PG. 

3.2. In Vitro Cell Culture 
In order to investigate whether the FMS could support attachment, proliferation, 

and maintenance of the phenotypic profile of ASCs, we seeded ASCs in FMS and cul-
tured for 7 days in vitro. The morphological appearance of cell-seeded FMS was exam-
ined from time-lapsed SEM images to confirm cell migration and proliferation. After cell 
seeding, a mesenchymal stem cell-like phenotype was observed from attached ASCs, 
which can maintain the undifferentiated spindle-like morphology in normal cell culture 
medium with protruded lamellipodia attaching firmly to the filamentous fibers (Figure 
4A). The PGH was more rapidly colonized by ASCs than PG within 7 days. Furthermore, 
the ASCs in PG incline towards altered cell morphology on day 7, where a flat cell mor-
phology with fibroblast-like appearance was observed. The proliferation of ASCs in FMS 
was evaluated quantitatively by using the MTS assay for the determination of viable cells 
in the scaffold. As shown in Figure 4B, the cell attachment rate showed no significant 
difference between scaffolds on day 1. However, the viable cell number was significantly 
higher in PGH on days 3 and 7. The increase in OD492 from day 1 to day 7 was 2.9-fold 
and 4.0-fold for PG and PGH, respectively, which indicates that PGH may provide a 
better milieu for the proliferation of ASCs. 

 
Figure 4. Scanning electron microscope (SEM) images (A, bar = 100 μm) and cell proliferation rate 
(B) after culture ASCs in PG or PGH scaffolds. The viable cell number was determined by the MTS 
assay by measuring the solution absorbance at 492 nm (OD492) in (B). * p < 0.05 compared with PG. 

The confocal microscopy analysis was used to elucidate cell viability from 
Live/Dead staining, and cell morphology was examined from cytoskeleton staining on 
day 7 (Figure 5). As expected, the ASCs reveal high cell viability when cultured in both 
FMS. Only a few dead cells showing red fluorescence but abundant viable cells showing 
green fluorescence could be found. However, more dead cells and less live cells were 
found in PG, which is consistent with the number of viable cells determined from the 
MTS assay (Figure 4B). The ASCs in FMS were stained with rhodamine-labeled phal-

Figure 4. Scanning electron microscope (SEM) images (A, bar = 100 µm) and cell proliferation rate
(B) after culture ASCs in PG or PGH scaffolds. The viable cell number was determined by the MTS
assay by measuring the solution absorbance at 492 nm (OD492) in (B). * p < 0.05 compared with PG.

The confocal microscopy analysis was used to elucidate cell viability from Live/Dead
staining, and cell morphology was examined from cytoskeleton staining on day 7 (Figure 5).
As expected, the ASCs reveal high cell viability when cultured in both FMS. Only a few
dead cells showing red fluorescence but abundant viable cells showing green fluorescence
could be found. However, more dead cells and less live cells were found in PG, which is
consistent with the number of viable cells determined from the MTS assay (Figure 4B). The
ASCs in FMS were stained with rhodamine-labeled phalloidin for cytoskeleton arrangement
and with DAPI for nuclei (Figure 5). The red fluorescence due to actin microfilaments in
ASCs was evident in both scaffolds on day 7, albeit more elongated stress fibers composed
of actin filament bundles were found in PG.

To study whether HA can stimulate the expression of genes important for skin regener-
ation, relative mRNA expressions of VEGF, TGF-β1, TGF-β3, and KGF were determined by
qRT-PCR on day 7. Compared to cells in PG, ASCs in PGH show significantly up-regulated
gene expression for all tested genes (Figure 6).

3.3. Animal Studies

The wound healing ability was determined from a rodent critical-sized wound model
created in SD rats. The wound size change was evaluated by covering the wound with
gauze, alginate wound dressing, PGH, or PGH/ASCs. The dressing was removed from the
wound on day 3, 7, or 14 in each group and the wound was grossly observed for wound
healing (Figure 7A). The relative wound area was calculated by normalizing the remaining
wound area at a specific time with its initial wound area on day 0. The wound closure
rate was compared among groups treated with gauze, alginate, PGH (without ASCs),
or PGH/ASCs (PGH seeded with ASCs and cultured in vitro for 7 days). The wounds
treated with PGH and PGH/ASCs showed an accelerated wound healing rate, and the
PGH/ASC treatment provided the best overall wound healing outcomes. As shown in
Figure 7B, as early as 3 days post-treatment, all groups showed significantly decreased
relative wound area when compared with gauze. All treatments continuously accelerated
wound closure with time from day 7, and a significant difference in relative wound area
was found when compared with gauze. However, the PGH/ASCs group started to show a
significant difference from the alginate group at this time point. On day 14, the accelerated
wound healing ability provided by PGH/ASCs manifests itself by significantly reducing
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the relative wound area compared with all other groups. Indeed, the relative wound area
is in the order of PCH/ASCs (9.4 ± 2.1%) < PGH (15.6 ± 3.0%) < alginate (25.5 ± 3.4%) <
gauze (36.7 ± 3.9%).
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Biomedicines 2022, 10, 2902 10 of 19Biomedicines 2022, 10, x FOR PEER REVIEW 11 of 20 
 

 
Figure 7. (A) The representative gross view images of wounds in SD rats on days 3, 7, and 14 after 
treatment with gauze, alginate wound dressing, PGH, or PGH/ASCs. (B) The relative wound area 
for each treatment was determined from the traced wound border covered with epithelia and 
normalized to the initial wound area on day 0 (n = 4). * p < 0.05 compared with gauze, # p < 0.05 
compared with alginate, & p < 0.05 compared with PGH. 

The skin tissue samples harvested from each group were examined by H&E and 
Masson’s trichrome staining on day 14. From H&E stains, the difference in 
re-epithelialization rate and granulation tissue formation is clearly demonstrated. Spe-
cifically, differentiated epithelia in the epidermis layers of PGH/ASC-treated wounds 
were found. This is different from a less-differentiated epidermis in PGH-treated 
wounds or incomplete epithelization accompanied by fibrinous debris in gauze or algi-
nate-treated wounds (Figure 8). The PGH and PGH/ASCs groups also demonstrate dif-
ferent degrees of migration of the epithelium over the dermis and granulation tissue 
formation, in contrast to poor epithelium formation in the control and alginate groups. 
However, the PGH/ASC treatment led to complete re-epithelialization of the wound and 
significantly increased deposition of connective tissue. This treatment is also associated 
with a more stratified epidermal layer showing clear epidermal–dermal junctions. In 
Masson’s trichrome staining images, the red color indicates muscle fiber and keratin. The 
blue color indicates stained collagen, which can be used to reveal collagen deposition 
and collagen fiber alignment. Masson’s trichrome staining shows distinct collagen 
structures in the dermal layer of the PGH/ASCs group with increased collagen synthesis 

Figure 7. (A) The representative gross view images of wounds in SD rats on days 3, 7, and 14 after
treatment with gauze, alginate wound dressing, PGH, or PGH/ASCs. (B) The relative wound area for
each treatment was determined from the traced wound border covered with epithelia and normalized
to the initial wound area on day 0 (n = 4). * p < 0.05 compared with gauze, # p < 0.05 compared with
alginate, & p < 0.05 compared with PGH.

The skin tissue samples harvested from each group were examined by H&E and Mas-
son’s trichrome staining on day 14. From H&E stains, the difference in re-epithelialization
rate and granulation tissue formation is clearly demonstrated. Specifically, differentiated
epithelia in the epidermis layers of PGH/ASC-treated wounds were found. This is different
from a less-differentiated epidermis in PGH-treated wounds or incomplete epithelization
accompanied by fibrinous debris in gauze or alginate-treated wounds (Figure 8). The PGH
and PGH/ASCs groups also demonstrate different degrees of migration of the epithelium
over the dermis and granulation tissue formation, in contrast to poor epithelium formation
in the control and alginate groups. However, the PGH/ASC treatment led to complete
re-epithelialization of the wound and significantly increased deposition of connective tis-
sue. This treatment is also associated with a more stratified epidermal layer showing clear
epidermal–dermal junctions. In Masson’s trichrome staining images, the red color indicates
muscle fiber and keratin. The blue color indicates stained collagen, which can be used
to reveal collagen deposition and collagen fiber alignment. Masson’s trichrome staining
shows distinct collagen structures in the dermal layer of the PGH/ASCs group with in-
creased collagen synthesis and neovascular structure, as visualized from H&E staining
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images, as well. These newly formed vessels can promote vascularization and accelerate
wound healing.
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Figure 8. The histological analysis of wounds after treatment with gauze (a,b), alginate wound
dressing (c,d), PGH (e,f), or PGH/ASCs (g,h) for 14 days by hematoxylin and eosin (H&E) and
Masson’s trichrome staining (bar = 100 µm). A low-power image of each wound is shown to the left,
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red rectangle in the low-power image is shown to the right.

The expression of CD68, a marker for macrophages, was detected by immunohisto-
chemical (IHC) staining. The number of CD68+ macrophages was significantly increased
in the PGH group 3 days post-treatment (Figure 9). Moreover, the CD163+ macrophage
population showed a significant increase in the PGH/ASCs group when compared with all
other groups on day 7, indicating the increased population of alternatively activated M2
macrophages. At this time point, although both material-based treatment groups (alginate
and PGH) show significant differences in CD163+ macrophages from the gauze group, no
significant difference was found between them. The in vivo experiments thus demonstrate
that ASCs delivered by PGH may exhibit an immunomodulatory effect by early recruitment
of macrophages to the wound bed, followed by increasing the number of M2 macrophages
by polarization.
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(day 3) and CD163+ macrophage (day 7) in wound tissues of SD rats after treatment with gauze,
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high-power field (HPF) (n = 4). * p < 0.05 compared with gauze; # p < 0.05 compared with alginate; &

p < 0.05 compared with GPH.

Increased α-SMA expression by myofibroblasts and pericytes is shown from the
wound treated with PGH/ASCs on day 14 from IHC staining (Figure 10). This staining
result for the PGH/ASCs group indicates that the vascularization of wounds is not present
in other groups. Indeed, abundant blood vessel formation from stained pericytes in blood
vessel walls, which secrete positively stained α-SMA marker protein, was found after
PGH/ASC treatment (Figure 10). Follow-up semi-quantitative image analysis shows a
significantly higher area percentage of α-SMA-positive vessels in the PGH/ASCs group
when compared with other groups (Figure 10).

To investigate possible differences in scar formation, the IHC staining of COL I and
COL III in treated wounds was conducted (Figure 11). The area percentage expressing
COL I or COL III within each high-power field was then estimated from the IHC images.
As the area percentage is calculated within the tissue, the different tissue thickness in
Figure 11 will not influence the comparison between treatments. The wound covered with
PGH/ASCs shows the lowest area percentage of COL I (20.9 ± 3.6%) and the highest area
percentage of COL III (79.0 ± 4.1%), which are significantly different from all other groups,
implying minimum scar tissue formation (Figure 11). Indeed, the average area ratios of
COL I/COL III were calculated to be 3.1, 2.5, 1.2, and 0.3 for gauze, alginate, PGH, and
PGH/ASCs, respectively.
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Figure 11. The representative immunohistochemical (IHC) staining images of type 1 collagen (COL I)
and type 3 collagen (COL III) (bar = 100 µm) in wound tissues of SD rats after treatment with gauze,
alginate wound dressing, PGH, or PCH/ASCs for 14 days, and the area percentage of COL I and
COL III per high-power field (HPF) (n = 4). * p < 0.05 compared with gauze; # p < 0.05 compared with
alginate; & p < 0.05 compared with PGH.
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4. Discussion

Although the use of FMS for ASC delivery can lead to improved cell migration,
proliferation, and differentiation, the physico-chemical properties of these scaffolds demand
careful analysis [28]. From SEM analysis, the crosslinking treatment is deemed necessary
when FMS is intended for the delivery of ASCs, as the scaffold can maintain its stability
throughout the in vitro culture period (Figure 1). The crosslinked FMS was thus employed
exclusively in this study. The successful incorporation of HA in PGH could be concluded
from TGA analysis, which shows a decomposition peak temperature associated with HA
(Figure 2). Furthermore, the PGH shows higher residual weight than PG after complete
thermal decomposition in nitrogen, which reflects a higher mass percentage of PLGA in PG
(66%) than PGH (57%), as calculated from the composition of the spinning solutions. This
is due to the nature of components in the FMS, as PLGA is a synthetic polymer providing
0% residual weight in contrast to a natural polymer such as HA or gelatin providing some
residual weight [29]. From mechanical testing, the tensile mechanical strength of both
scaffolds is within an acceptable range to cover a wound with a membrane-type scaffold,
which is also suitable for loading and delivery of ACSs (Figure 3) [30]. However, the
increased ultimate strain associated with PGH may provide higher flexibility to withstand
higher stretching during its application to the wound.

The better maintenance of cell morphology supports the preferential use of PGH for
ASC culture (Figure 4A), as previous reports indicate that changes in the morphology of
ASCs following in vitro expansion can reduce their proliferation potential [31]. This is
consistent with a higher cell proliferation rate for ASCs cultured in PGH, which indicates
that this FMS can provide a better milieu for the growth of ASCs (Figure 4B). Taken together
with the confocal microscopy analysis results in Figure 5, ASCs were found to proliferate
and survive better while preserving their phenotype in PGH. Furthermore, all target genes
associated with skin regeneration were upregulated in PGH, which may increase the
growth factor secretion by ASCs to collectively enhance their wound healing functions
(Figure 6) [32]. The mechanisms of wound healing associated with ASCs are complex
and diverse and they may participate in the entire wound healing process, including
inflammation, proliferation, and remodeling [33]. During the inflammation stage, the ASCs
can induce transformation of macrophages from pro-inflammatory M1 to anti-inflammatory
M2 phenotype to regulate inflammation [34]. During the proliferation and remodeling
phase, the ASCs can secrete growth factors such as VEGF, TGF-β, insulin growth factor
(IGF), hepatocyte growth factor (HGF), and platelet-derived growth factor (PDGF). These
biological factors can promote the proliferation and migration of fibroblasts, the synthesis
of collagen and other ECM components, and the growth of new blood vessels during
wound healing [35,36]. Considering growth factors involved in wound healing and skin
regeneration, the VEGF can stimulate angiogenesis as well as enhance endothelial cell
migration and proliferation [37]. All isoforms in the TGF-β family were reported to be
positively correlated with accelerated wound healing [38], with TGF-β1, TGF-β2, and
TGF-β3 showing overlapped functions [39]. Both TGF-β1 and TGF-β3 act as a potent
chemo-attractant for macrophages and as a mitogen for fibroblasts [40]. They also promote
the formation of granulation tissue and regulate the tensile strength of neo-skin tissue [41].
However, some research suggests that TGF-β1 may be related to fibrotic scar formation,
which is different from the TGF-β3-induced scarless wound healing. Nonetheless, the
underlining mechanism responsible for such a difference appears to be far more complex.
For KGF, it plays an important role during the repair of injured epithelium and the induction
of activin in granulation tissue formation [42].

Overall, from the assessment of the relative wound area (Figure 7) and from histo-
logical analysis (Figure 8), the PGH/ASC treatment can significantly accelerate wound
healing by regenerating skin with a defined underlying collagen layer in 2 weeks compared
to wound healing in other groups. During wound healing, the neutrophils will migrate
to the wound bed to initiate the initial inflammatory response to repair the wound. This
is followed by the movement of macrophages into the sites to secrete cytokines, and the
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secreted cytokines can attract cells responsible for wound repair [43]. As a reduction in
macrophage infiltration is associated with significantly delayed wound healing, the de-
livery of macrophage-activating ASCs into healing wounds is expected to augment its
repair process. By participating in ECM remodeling and granulation tissue formation
during wound repair, macrophages are critical for proper wound healing [44]. However,
the macrophages will undergo phenotypic change during the wound healing process. By
changing from activated pro-inflammatory M1 to alternatively activated anti-inflammatory
M2 phenotype, such a transition contributes to changing a pro-inflammatory to a pro-
resolution wound microenvironment [45]. Upon initial infiltration, the M1 macrophages
will remove damaged matrix, cellular debris, and neutrophils. They begin to transition
into an M2 state during new tissue formation by secreting anti-inflammatory cytokines to
promote ECM synthesis and wound contraction. These anti-inflammatory macrophages
help the reorganization of the ECM along tension lines with concurrent phagocytosis of re-
maining debris during the final wound healing stage [46]. Moreover, the anti-inflammatory
M2 macrophages play an important role in angiogenesis. Other than degrading ECM to
create tunnels and guide endothelial proliferation and migration, M2 macrophages also
release angiogenic factors [47]. Therefore, the early recruitment of macrophages to the
initial inflammatory response is instrumental for supplying the biological signals to direct
cell movement, which is necessary for wound healing. As shown in Figure 9, the number
of CD68+ macrophages significantly increased after 3 days of treatment with PGH/ASCs.
This significantly increased M1 macrophage population in the wound area endorses the
ability of delivered ASCs to recruit macrophages early during the inflammation phase of
wound healing. Furthermore, the marked increase in the CD163+ macrophage population
in the PGH/ASCs group on day 7 indicates its higher macrophage polarization ability
for transforming into the anti-inflammatory M2 phenotype [48]. The ASCs delivered by
PGH can therefore recruit macrophages to the wound bed and induce non-activated M1
macrophages into anti-inflammatory regulatory M2 macrophages to promote healing and
inhibit inflammation/immune response [49]. Overall, the results shown in Figure 9 are
consistent with the critical role that macrophages play in ASC-mediated wound healing,
indicating that PGH/ASC treatment can deliver ASCs and enhance the recruitment of
macrophages to the wound bed, as well as increase the M2 macrophage population by
inducing macrophage polarization towards the M2 phenotype [50].

Both neovascularization and angiogenesis represent important considerations of
wound healing outcomes, as the newly formed blood vessels can provide nutrition and oxy-
gen to growing tissues and promote wound healing [51]. Thus, a higher angiogenesis rate in
the wound bed can enhance the dermal layer formation rate. As a marker of myofibroblasts,
the α-smooth muscle actin (α-SMA) is largely responsible for wound contraction and ECM
production [52]. Other than myofibroblasts, pericytes also synthesize α-SMA, which wrap
around the capillary vessel after blood vessel maturation [53]. A higher extent of α-SMA
marker expression can thus contribute to blood vessel maturation and wound contraction.
The roles ASCs play in promoting wound healing have been linked to their ability to
promote angiogenesis [54]. By topically administering ASCs to ulcers in diabetic mice,
enhanced wound closure by neovascularization was previously shown [55]. Enhanced
wound healing in mice has been found from the differentiation of ASCs into endothelial
cells [56]. Overall, the enhanced expressions of α-SMA, a widely used marker for blood
vessel formation, supports that PGH/ASCs can promote endothelial cell differentiation
and accelerate blood vessel maturation to meet the demand of oxygen and nutrients during
wound repair (Figure 10) [57]. Other than angiogenesis, we also found vast enhancement
of COL III over COL I expression in the neo-skin tissue of PGH/ASC-treated wounds
(Figure 11). It has been shown that collagen subtype deposition can predict scar formation,
as fetal skin is known to contain a greater proportion of COL III in comparison with COL
I [58]. This differential collagen deposition is thought to contribute to scarless wound
healing [59]. As fetal skin contains a higher proportion of COL III in contrast to adult skin
that consists mostly of COL I, the types of collagen in adult skin show an increased COL
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I/COL III ratio as the fetus develops, which also correlates with a shift from scarless wound
healing to scar formation [60]. Indeed, histologic examinations in healed fetal wound tissue
demonstrate a higher COL III/COL I ratio than adults [61]. Taken together, this implies that
the COL III/COL I ratio may be a useful target to assess wound scaring [62]. Furthermore,
a hypertrophic scar is usually associated with excess deposition of COL I [63]. Although
considering COL III/COL I ratio alone for scarless wound healing may be limited by the
complex nature of the factors involved, the histological assessment of COL I and COL
III remains a possible way to measure outcomes in scarring research [64]. Overall, our
findings suggest that skin wound healing is accelerated and less prone to scar formation in
the presence of PGH/ADSCs, which may be related to a controlled inflammatory process
associated with a high level of alternatively activated macrophages, as well as linked to
increased angiogenesis in wound areas.

5. Conclusions

We demonstrate that PGH is a preferred cell carrier for ASC delivery in cellular
regenerative therapy to accelerate wound healing. The PGH FMS can accommodate ASCs
and be used as a vehicle for therapeutic cell delivery. Incorporating HA can produce a
PGH FMS that can enhance the wound healing function of ASCs by increasing the cell
proliferation rate and upregulating the gene expression level of maker genes important for
wound healing, as well as better maintain cell phenotype. By accommodating the survival
and proliferation of ASCs, followed by the delivery ASCs to the wound site, the PGH/ASC
treatment is shown to modulate inflammation through the recruitment and polarization of
macrophages, as well as to promote angiogenesis for possible scarless wound healing.
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