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Abstract: The high mortality of coronary heart disease (CHD) among Czech men—one of the highest
worldwide—began to decline in 1991 soon after the abolition of government subsidies to all foodstuffs
rich in animal fat. As participants in the WHO MONICA Project, we were able to analyze the CHD
risk factors just before and after this major economic change. We had previously documented that
the originally subsidized prices decreased animal fat consumption and consequently non-HDL
cholesterol concentrations in the population. By the early 1990s, no progress had been made in
the treatment of acute myocardial infarction, statins were unavailable as was not the currently
more effective antihypertensive therapy. Our recent research proved a close relationship between
cholesterolemia and proinflammatory macrophages in adipose tissue and accelerated macrophage
polarization with increased palmitate and palmitoleate contents in cell membrane phospholipids.
By contrast, the proportion of proinflammatory macrophages decreases with increasing presence of
n-3 fatty acids in the cell membrane. The combination of non-HDL cholesterol drop and a decreased
proportion of proinflammatory macrophages due to replacement of alimentary fat decreased CHD
mortality immediately.

Keywords: diet; economy; inflammation; macrophages; coronary heart disease mortality; cholesterol;
n-3 fatty acids

1. Introduction

Coronary heart disease (CHD) mortality has been decreasing continuously in the
industrialized nations since the mid-1960s, first in the USA [1], followed by similar changes
in Australia and Western Europe. The very beginning of this encouraging development
in the USA and the United Kingdom is difficult to pinpoint as no definite changes in the
risk factors or treatment of acute coronary syndrome heralding a turn of the tide could be
identified [2]. The subsequent trajectory of CHD mortality in the 1970s and 1980s is believed
to have been dependent on several different effects. It was essentially unknown at that
time whether or not the decline was occurring because of the lower incidence of new cases
(beneficial changes in cardiovascular health-related habits, number, and severity of risk
factors, and preventive medicine) or substantial improvements in the medical management
of acute events [2].

The late 20th century brought completely new perceptions of the importance of lifestyle
change, primary prevention, and treatment of established coronary heart disease [3]. With
the introduction of the IMPACT model, the effects of acute treatment on the clinical compli-
cations of atherosclerosis in the USA were described and compared with current practices
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in New Zealand and a few European countries [4]. In the 1990s, estimates of the relative
importance of risk factor modification in Europe varied from 44% (in The Netherlands)
to 55% (in Scotland), with the exception of 76% in Finland [4]. An updated version of the
IMPACT model was used to analyze the declining rates of CHD mortality in Sweden [5].
The greatest contributor to this decrease was a reduction in major risk factors which ac-
counted for 55%, whereas only 36% was believed to have been due to all other types of
management of acute complications of CHD. The effect of diet on reducing cholesterol
levels was estimated at only 40% of the total, representing the most important factor of all
those analyzed.

New substantial information about progression of coronary atherosclerosis has been
published within the last two decades, documenting the interplay of intravascular levels
of cholesterol-containing lipoprotein particles [6] and immune processes in the suben-
dothelial space of coronary arteries. Data documenting the presence and importance of
monocytes/macrophages in the atherosclerotic plaque, both in man and experimental
models, are available in reviews [7,8]. Although the effect of monocytes/macrophages in
atherogenesis occurs within the subendothelial space of arteries, it may also manifest itself
through the systemic proinflammatory status [9,10] induced by adipose tissue enlargement.
Adipose tissue enlargement induces proinflammatory changes and increasing amounts of
resident-tissue macrophages [11]; however, this relationship is not simple [12].

We have documented earlier [13,14] that the proportion of proinflammatory macrophages
in human adipose tissue correlated closely with non-HDL cholesterol levels. The patho-
physiology of coronary atherosclerosis is currently perceived as a combination of shear
stress in the coronary arteries leading to changes in the endothelium [15] that induce adhe-
sion of monocytes and their migration to the subendothelium and increasing penetration
of cholesterol-containing lipoproteins [7,16,17]. This synergy accelerates atherogenesis,
and it also stabilizes pre-existing plaques [18] when the risk is decreasing. In the present
paper, we combine our earlier epidemiologic, biochemical [19], anthropometric, as well as
economic data with recent experimental data related to human adipose tissue inflammation.
Our goal was to take advantage of a major socioeconomic change followed by a dramatic
drop in CHD mortality and our participation in the well-designed population-based WHO
MONICA study to be merged with our recent results.

2. Materials and Methods
2.1. Epidemiological Data

Data related to CHD mortality as well as CHD treatment were provided by the Institute
of Health Information and Statistic of the Czech Republic based on individual death
certificates. Biochemical and anthropological data of the Czech general population were
obtained from a representative 1% random population stratified sample of residents from
six regions of the Czech Republic in the 1st and 2nd WHO MONICA surveys conducted in
1988 and 1992, respectively. In these surveys, 2570 and 2768 individuals aged 25–64 years
were examined with response rates of 81% and 73%, respectively.

2.2. Biochemistry

Total cholesterol, triglyceride, and HDL cholesterol fractions of living kidney donors
(LKDs) were determined from fasting blood samples obtained immediately before surgery
(prior to anesthesia) using an enzymatic method (Hoffmann-LaRoche, Basel, Switzerland).
High-sensitivity C-reactive protein was measured by immunoturbidimetric assay using
a Cobas Mira Plus Autoanalyzer (Hoffmann-LaRoche, Basel, Switzerland). All parameters
were analyzed in a lipid laboratory participating in the CDC Atlanta, GA, USA control
system and serving as a control laboratory within the WHO MONICA project.

2.3. Analysis of Adipose Tissue

All 154 individuals (enrolled between July 2014 and December 2020) were fully in-
formed about the process of kidney donation and transplantation. All participants signed
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informed consent forms in relation to adipose tissue sampling. Samples of VAT were
obtained intraoperatively to be immediately cooled and transferred to the laboratory.
The method of adipose tissue processing has been described in detail earlier [20]. Stro-
mal vascular fraction (SVF) was isolated and analyzed after cleaning, dissecting, and
disintegrating by collagenase (2 mg/L) for 15 min (37 ◦C). Monoclonal antibodies and
fluorochromes (CD14, phycoerythrin-cyanine, CD16, phycoerythrin-Texas Red X (ECD),
CD36, and fluorescein isothiocyanate (FITC)) were used to distinguish different subsets of
viable monocytes/macrophages.

Based on our results published earlier [21], we defined cells with a combined phe-
notype CD14+ and CD16+ with high phagocytic receptor CD36 expression as normally
stimulated M1 proinflammatory macrophages (PIMs), whereas those CD14+ with no CD16
expression and low CD36 expression represented M2 anti-inflammatory macrophages.
However, we are well aware that this approach is an oversimplification of the complex
in vivo situation where several transient phenotypes not followed in our study may exist
and their role should be considered. In the present study, these minor transition fractions
represented, altogether, 15 ± 2.3% of the total of macrophages within the adipose tissue of
LKDs, varying between 6% and 35%.

2.4. Analysis of Fatty Acid Composition

The extraction, separation, and methylation of adipose tissue phospholipids have been
described in detail earlier [22]. Total lipids were extracted with dichlormethane:methanol
using a modified Folch method and phospholipids were isolated by thin-layer chromatogra-
phy. The fatty acids in phospholipids of the whole adipose tissue were converted to methyl
esters and separated by gas chromatography using a Hewlett-Packard GC system with
a flame ionization detector and a carbowax-fused silica capillary column [23]. Individual
peaks of FA methyl esters were identified by comparing retention times with those of
authentic standards (mix of standard FAs, Restek Corporation, Bellefonte, PA, USA). The re-
lationships of the eight main FAs in tissue membrane phospholipids with the macrophage
phenotype were assessed (n = 43). The other minor FAs (<2%) were pooled to satu-
rated (SAFA), monounsaturated (MUFA), and n-3 and n-6 polyunsaturated fatty acids
(PUFA), accordingly.

2.5. Statistics

Our data are presented as means with standard deviations for continuous variables.
The correlations of the proportion of PIMs to non-HDL cholesterol and different FAs were
documented using the coefficient of correlation r, which was calculated with the Pearson
method, including the p-value. All tests were two-tailed and the level of significance was
set at 0.05. Statistical analyses were performed using Prism 6 (GraphPad Software, Inc.,
La Jolla, CA, USA).

3. Results
3.1. Epidemiological, Economical, and Experimental Data

During the 1960s and 1970s, CHD mortality in the Czech general population was
still increasing in contrast to the progressive downward trend seen in the industrialized
Western countries. This trend in CHD mortality ranked the Czech Republic among coun-
tries with the highest CHD-related death rates worldwide. During the early 1980s, CHD
mortality in men (Figure 1) somewhat plateaued to be followed by a significant downward
trend between 1985 and 1988. An unexpected peak occurred in 1990 (with a similar peak
observed in Poland [24]) with a prominent downward trend continuing until 2010. The
CHD mortality rates in Czech women displayed a similar pattern with only modest dif-
ferences. Similar to other countries, the decrease was driven by a combination of medical
and lifestyle modifications [4]. The only exception in the Czech population was seen in the
1991–1994 period, when no changes in the health care service were introduced and the
proportion of gross national product to health service budget was rather low, varying
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between 3.7 and 4.2%; hence, the dramatic decline in CHD mortality since 1991 should be
attributed solely to lifestyle modifications.

Figure 1. Development of standardized mortality of Czech men/100,000 population.

3.1.1. Treatment of Atherosclerosis Risk Factors and Acute Myocardial Infarction

Based on data obtained from the Institute of Health Information and Statistics of the
Czech Republic and those released by the Czech Society of Cardiology, acute treatment of
CHD remained rather unaltered during this period [25]. Primary and secondary prevention
of CHD did not change either, as no statins were available at that time and use of novel
antihypertensive agents was limited. This is best illustrated by the percentages of gross
national product spent on health service, i.e., 3.72, 3.35, and 3.42% in 1991, 1992, and 1993
(similar to the 1980s), changing substantially, in 1994, with the advent of health insurance
companies. The fees paid by those insured (almost 100%) were shifted directly to health
insurance companies and not indirectly as part of the state budget assigned to cover health
service costs, whereby, the proportion of funds allocated to the health care service increased
to 5.2% in 1994, and thereafter, ranged between 5 and 6%.

3.1.2. Economic Change and Atherosclerosis Risk Factors

On the contrary, a major economic change came into effect on 1 January 1991 in the
form of universal price liberalization. The Czech government decided to deregulate all
prices, not only those of steel or corn, to realistically reflect those on the international
market while also stopping subsidies to meat, meat products, milk, and dairy products
(up to 50% of the total price). As a result, and to give an example, the price of butter dou-
bled and, consequently, its consumption decreased from 10.2 kg/capita per year in 1989 to
5.3 kg in 1992. Generally, the economic change and abolition of subsidies to animal products
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placed immediate pressure on the budgets of the majority of families. The concentration of
non-HDL cholesterol dropped by 14% in the population sample and the distribution curve
of cholesterol concentration was shifted to the lower concentration (Figure 2) between
1988 and 1992 as a consequence of the changes in FA consumption. Understandably, after
a positive dietary change, there was also a slight decrease in HDL cholesterol concen-
tration. The ratio of total cholesterol/HDL concentrations significantly decreased from
5.01 to 4.66, documenting a substantial decrease in CHD risk. Unlike the slightly de-
creased consumption of SAFA, an increase in n-3 FA consumption appeared, mainly by
increased consumption of α-linolenate due to replacement of butter by soft margarine and
rapeseed oil.
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3.1.3. ProInflammatory Macrophages in Visceral Adipose Tissue and Cholesterolemia

Essentially, we can divide the bulk of adipose tissue macrophages into three basic
phenotypes. The proportions of PIMs in human visceral adipose tissue range between 20
and 60% of total adipose tissue macrophages characterized as CD14+, CD16+, and CD36high.
Correspondingly, anti-inflammatory adipose tissue macrophages with the CD14+CD16-
CD36low phenotype shows a mirror-like pattern. In addition to these two main subfrac-
tions, adipose tissue contains several intermediate subfractions representing an average
15 ± 2%. Our preliminary data [13] documented a significant positive correlation between
the proportion of PIMs and non-HDL cholesterol levels in a relatively small number of
LKDs. We, herein, present this correlation in 154 LKDs (Figure 3) [26]. On the one hand,
the highly significant correlation demonstrated that, in individuals with low non-HDL
cholesterol levels, the proportion of PIMs was about 20%. On the other hand, the propor-
tion of PIMs in the visceral adipose tissue of hypercholesterolemic individuals (non-HDL
cholesterol levels >4.5 mmol/L) was in the range of about 50–60%, i.e., almost twice to
three times as high. When the proportion of PIMs was related to the level of non-HDL
cholesterol in our entire group of LKDs, a very highly positive and significant correlation
(p < 0.0001) with an r2 value of 0.1288 was found. As is evident from the shift of the curve of
distribution of cholesterol concentrations, the decrease in the proportion of PIMs occurred
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in the whole population sample (Figure 3). The change in the proportion of PIMs was
estimated at 18% for every 1 mmol of increase in non-HDL cholesterol levels.
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Looking at the relationship, we might propose that the documented shift in non-HDL
cholesterol levels in the population in the early 1890s implies a decrease in the proportion
of PIMs in visceral adipose tissue.

3.1.4. The Proportion of Proinflammatory Adipose Tissue Macrophages and Fatty
Acid Composition

Finally, we analyzed the spectra of FAs in the adipose tissue phospholipids in our
group of LKDs. The proportion of PIMs correlated significantly with several FAs in the
adipose tissue phospholipids analyzed. Principally, the proportion of PIMs correlated
positively (Figure 4) with the levels of palmitate and (its desaturated product) palmitoleate,
while not correlating with the levels of monounsaturated FAs. The correlation between
the proportion of PIMs and palmitoleate content being the closest among all FAs. On the
contrary, the proportion of PIMs correlated negatively with content of both α-linoleate and
eicosopentaenate (EPA). A significant inverse correlation of all n-3 FAs to α-linolenic acid
was likewise documented. In addition, a very significant inverse correlation between the
proportion of PIMs and the n-3/n-6 fatty acid ratio was found. Although the content of EPA
in human adipose tissue is rather low, this polyunsaturated FA also correlated inversely
highly significantly with the proportion of PIMs.

In summary, the effect of the FA spectrum in human adipose tissue on the proin-
flammatory status and polarization of tissue-resident macrophages was substantial. As
the presence of palmitate and palmitoleate in the phospholipid fraction of adipose tissue
increased, the character of adipose tissue became more proinflammatory. On the contrary,
with increasing presence of α-linoleate and total n-3 FAs, the proportion of PIMs tended to
decline. A very potent effect was also documented for EPA.
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4. Discussion
4.1. CHD Mortality Changes and Cholesterol

The impressive downward trajectory of CHD mortality in Czech males for two decades
has extended their life expectancy by almost 7 years. Two decades ago, we suggested [19]
that this decrease in CHD mortality rates may have been initially due to the elimination of
the long-term program of subsidies to animal products (believed to be healthy after the
end of World War 2) and subsequent decrease in the levels of atherogenic lipoproteins.
This statement was based on the quite simplified principles of the pathophysiology of
hyperlipoproteinemia and atherosclerosis, disregarding as it did the interplay between
atherogenic lipoproteins and inflammation in the formation of atherosclerotic plaques and
their stability [27].

The very beginning of this drop was likely induced only by the change of diet at that
time due to economic pressures on the majority of family budgets. The decreased con-
sumption of SAFAs (contained in the foodstuffs subsidized up to that time) and increase in
PUFAs (contained in the originally non-subsidized foodstuffs) reflected these price changes.
We took advantage of the participation of our institutions in the large epidemiological
WHO MONICA study and related parameters were analyzed in a representative popula-
tion sample. The first MONICA survey was conducted just before the economic changes
and the second survey was conducted just after the economic changes, making the drop
in non-HDL cholesterol concentrations as well as the shift in cholesterolemia in the whole
population sample clearly evident (Figure 2).

An older concept of atherogenesis already assumed qualitative changes in the endothe-
lium of the inner arterial lining, which increases the rate of inflow of cholesterol-carrying
lipoproteins (necessary for the normal functioning of smooth muscle cells) together with
inflow of circulating monocytes. The presence of cholesterol-carrying particles in the
subendothelial space higher than the physiological requirement of the arterial wall cells
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accelerates scavenging of these particles in local macrophages by specific receptors. On the
one hand, cholesterol accumulation (when reverse cholesterol transport becomes inade-
quate) leads to foam cell production and sets off the process of atherogenesis. On the other
hand, a decrease in cholesterol inflow to the artery may start a reversal of atherosclerosis
and reduce the likelihood of atherosclerosis-related complications [28]. In addition, there
may also be decreased transport of cholesterol molecules to the lipid rafts in circulating
monocytes [26]. The documented decrease in non-HDL cholesterol levels and the shift of
the general population to lower cholesterol levels, thus, resulted in lowering CVD mortality.

4.2. CHD and Inflammation

At the same time, a substantial decrease in the prevalence of obesity from 25 to 20%
(BMI > 30) was demonstrated in the MONICA analysis. Adipose tissue hypertrophy is
connected with substantial proinflammatory changes, so one may assume that systemic
subclinical inflammation also decreased. Systemic inflammation may have been influenced
by the diet change per se, as demonstrated previously [28]. This effect became obvious
as early as the first year after the economic change and the consequences of a reduction
in adipose tissue volume probably stabilized the incidence of coronary atherosclerosis
and decreased the incidence of acute coronary syndrome. Hanson’s laboratory (among
others) focused their attention on the crucial importance of monocytes in the pathogenesis
of atherosclerosis [7]. These cells are active in monocyte/endothelial adhesion and produce
numerous protein-attracting cells, which promote the process of atherogenesis. In addition,
macrophages play a dominant role in the regulation of systemic inflammation born in
adipose tissue [29]. It is widely acknowledged that the number of macrophages and also
the proportions of their different phenotypes play a role in local inflammatory change [30].
We have already documented direct links among macrophage phenotypes in the adipose
tissue, the different cardiovascular disease predictors [31], and diet [14].

Therefore, we suggest that our data demonstrate an immediate effect of dietary modi-
fications on coronary plaque stabilization and, consequently, reduced likelihood of CHD-
related clinical complications and reduced CHD mortality, in agreement with the relevant
data [32]. Based on our previous results [14], the cholesterol molecule as well as a dis-
crepancy of n-3 FAs and SAFAs in phospholipids of the adipose tissue cell membrane
(Figure 4) affect proinflammatory macrophage polarization, systemic inflammation [16],
and the process of atherogenesis [27,33].

4.3. Combined Effect

Although statin treatment has been shown to be most effective in decreasing the inci-
dence and severity of atherosclerosis-related clinical complications, there is still
a proportion of individuals dying from acute myocardial infarction while on high-dose
statins. This residual risk is due to the relatively high levels of remnant particles of
triglyceride-rich lipoproteins. Their atherogenic effect was best documented by the Copen-
hagen General Population Study [34]. These remnant particles also carry cholesterol to the
arterial wall and are able to furnish it to the monocyte/macrophage lipid rafts and stimulate
the inflammatory status of cells (−5). Although it has been suggested that the atherogenic ef-
fect of LDL cholesterol is—unlike that of triglyceride-containing lipoproteins—independent
of inflammation, it is most likely that both lipoproteins require an inflammatory stimulus
to accelerate atherogenesis. We assume that the beneficial dietary modification replacing
the presence of palmitate and palmitoleate with a higher proportion of n-3 FAs is able to
positively influence the process of atherogenesis and stabilize pre-existing plaques.

The metabolic pathways that influencs the potential synergy of diet-induced decreased
lipoprotein concentrations and adipose tissue inflammatory status in CHD mortality are
intricate (Figure 5). Decreasing inflow of LDL particles is further potentiated by slow-
ing cholesterol molecule transfer to circulating monocytes which, in turn, translates into
slower macrophage polarization to the proinflammatory phenotype [26]. At the same time,
an improved proportion of n-3 PUFAs and SAFAs in the cell membrane decreases CHD mor-
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tality by diminishing the proportion of PIMs in adipose tissue, slowing down
the production of TNF-α and inflammatory interleukins with a beneficial effect on the
arterial wall.
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Figure 5. Metabolic changes associated with the decrease in FAs and increase in n-3 PUFA con-
sumption are related to LDL receptors in the liver (mainly) and decreasing of LDL particles in the
circulation. At the same time, VLDL synthesis is downregulated and, consequently, the levels of
VLDL remnants decline. Changes in SAFAs/n-3 PUFAs decrease PIM polarization in adipose tissue
and slow down the production of TNF-α and proinflammatory interleukins. In addition, a decrease
in cholesterol levels in the intravascular space impairs its transport to the lipid rafts of circulating
monocytes, thus, reducing their inflammation. All these changes attenuate atherogenesis and stabilize
pre-existing plaques. All arrows represent metabolites or cells shift. +/− represents increase or
decrease of metabolic rate or number.

As it is, we are unable to explain the unusual proinflammatory effect of palmitoleate
on adipose tissue. A plausible and possible explanation is that palmitate is the end product
of FA synthesis from a non-lipid substrate and a locally produced saturated molecule,
whereby palmitate converts in a one-step process (by stearyl CoA dehydrogenase) to locally
acting palmitoleate. However, data regarding palmitoleate local effects are still lacking.

A limitation of this paper is that the initial data and confirmation of the decrease in
intravascular cholesterol levels were obtained three decades ago, whereas the above data
about inflammation are the result of recent research. It is obvious that only our recent
adipose tissue inflammation data put the older epidemiological data into context, enabling
a better understanding of the complex issue of decreased cardiovascular mortality. We
would like to underline that the above changes clearly show that even “well meant”
subsidies may not necessarily have a beneficial impact on society but may be outright
counterproductive or even harmful.

5. Conclusions

In conclusion, we hypothesize that the sudden economic change led to a substantial
diet change and an immediate decrease in atherogenic lipoproteins together with decreased
proinflammatory status of adipose tissue. The synergy of both these beneficial changes
enhanced the stability of pre-existing coronary plaques in a proportion of the population
and immediately reduced CHD mortality.
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