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Supplementary Methods 

 

Human samples and measurements of episodic memory 

Berlin Aging Study II (BASE-II) and GendAge Study: The BASE-II dataset used in this study 

consists of older residents (60-85 years of age) from the greater metropolitan area of Berlin, 

Germany. Cognitive assessments at baseline were performed as part of the BASE-II study 

[1,2] and follow-up assessments were part of the GendAge study [3]. EM performance in each 

participant was evaluated with four tests: 1. The Verbal Learning and Memory Test (VLMT) 

[4] assesses auditory verbal learning of 15 words including five learning trials, early recall, an 

interference list after five learning trials, free recall tests directly after an interference list as 

well as 30 min later (late recall). The sum of items recalled across trials 1 to 5 provides a 

measure of overall learning performance which was used here. 2. The Face–Profession Task 

[5] assesses associative binding on the basis of recognition of incidentally encoded face–

profession pairs. The participants are asked to decide whether they had seen a given face–

profession combination before or not and to rate the confidence of their decision on a three-

point scale ranging from 1 = not sure to 3 = very sure. The accuracy of the corrected hit rates 

of the rearranged pairs was used here. 3. For the Scene Encoding Task [6], participants 

performed an incidental encoding task with 88 complex, gray-scaled images (44 indoor and 

44 outdoor scenes; mean grey value 127, SD = 75) half of which are presented together with 

distractor images at the retrieval phase. The accuracy of an indoor/outdoor judgement (0-

100%) of the corrected hit rates (hits minus false alarms) were used as scores here. 4. Finally, 

in the Object Location Task [7] sequences of 12 colored photographs of real-world objects are 

displayed at different locations in a 6-by-6 grid. After presentation, objects appear on the side 

of the screen and have to be moved to the correct locations by clicking on the objects and the 

locations with the computer mouse. The sum of all correct placed objects in two test trials 



were used in the analyses. Overall, there were up to n=800 samples (buccal [n=678] and 

blood [n=800]) from BASE-II with test results for episodic memory performance available for 

DNAm profiling, of which 656 individuals had both buccal and blood samples available 

(Table 1; NB: buccal samples were processed in two separate laboratory batches: buccal-1 

and buccal-2). The BASE-II/GendAge studies were conducted in accordance with the 

Declaration of Helsinki and approved by the ethics committee of the Charité – 

Universitätsmedizin Berlin (approval numbers: EA2/144/16, EA2/029/09) and the Max 

Planck Institute for Human Development, Berlin (approval numbers: LIP-2012-04). All 

participants gave written informed consent before participating. 

 

Barcelona Brain Health Initiative (BBHI): The Barcelona Brain Health Initiative (BBHI) is an 

ongoing, longitudinal study with the focus on evaluating factors determining brain health [8]. 

EM performance was evaluated with the Face-Name Associative Memory Exam (S-FNAME, 

[9]), which includes scores of cued and delayed learning of names and occupations. Further, 

the Rey Auditory Verbal Learning Test (RAVLT, [10]) was also taken into account to 

compute a score of EM and included total learning and delayed recall of words.  

Overall, there were 341 samples (buccal) from BBHI with test results for episodic memory 

performance available for DNAm profiling (Table 1). The BBHI project was conducted in 

accordance with the Declaration of Helsinki and following the recommendations of the “Unió 

Catalana d’Hospitals” with written informed consent from all subjects. The protocol was 

approved by the Unió Catalana d’Hospitals (approval number: CEIC 17/06). 

 

Episodic memory phenotypes 

Prior to processing, samples were excluded from the analysis if they represented outliers with 

4 standard deviations (SDs) from the mean for any of the individual test performance results, 

or the final phenotype variable. For the cross-sectional EM phenotype, the first principal 

component (PC) of memory test performances (see above) was calculated with a principal 

component analysis (PCA) using the PCA function in the R package FactoMineR [11]. This 

variable (PC1) was corrected for age at time of the assessment used for the cross-sectional 

phenotype using a linear regression model performed with the lm function in R. The residuals 

of this regression were used as outcome phenotypes in the cross-sectional EM EWAS 

analyses. If episodic memory performance test results were available for more than one 

timepoint, the timepoint closest to the sampling of DNA sampling was chosen for the cross-

sectional analysis. 



For the longitudinal change in the EM phenotype, the annual percentage change (APC) was 

calculated for each memory test separately using the following formula (2): 

(1)  APC = 
𝑉𝑎𝑟𝑙𝑎𝑠𝑡−𝑉𝑎𝑟𝑓𝑖𝑟𝑠𝑡

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑥
𝑉𝑎𝑟𝑓𝑖𝑟𝑠𝑡+𝑉𝑎𝑟𝑙𝑎𝑠𝑡

2

 * 100 

Varfirst represents the test performance for the memory test at the first time point, Varlast 

represents the test performance for the memory test at the last time point, and interval is the 

time interval (in years) between first and last time point. 

From these APC variables, the first PC was calculated and corrected for age at baseline, as 

described for the cross-sectional EM performance phenotype above. Overall, we observed a 

decrease in the test performance over the time interval of on average six years between 

baseline measurement and follow-up in the BASE-II dataset (Supplementary Figure 1). 

 

DNA extraction and processing 

Blood: Genomic DNA was extracted from EDTA whole blood samples at the LGC facility in 

Berlin, Germany, using the LGC “Plus XL manual kit”, LGC, United Kingdom. Samples 

were subsequently stored at −20°C. 

Buccal: DNA extraction from the buccal swabs was performed in the LIGA laboratory using 

the Buccal-Prep Plus DNA Isolation Kit (Isohelix, UK). All steps in the extraction procedure 

were conducted according to manufacturer’s instructions. To assess concentration and purity 

of obtained DNA, we used a NanoDrop ONE spectrophotometer (Thermo Fisher Scientific, 

USA). 

 

DNA methylation profiling 

DNAm profiling was performed at IKMB at UKSH campus Kiel using the “Infinium 

MethylationEPIC” array (Illumina, Inc.), as described previously [12]. In brief, DNAm 

profiling was performed on aliquots of DNA extracts diluted to ~50 ng/µl concentration. 

Bisulfite conversion of DNA samples was performed using the EZ DNA Methylation kit 

(Zymo Research), following the alternative incubation conditions for the Illumina Infinium 

MethylationEPIC Array from the supplier. After hybridization to the EPIC array, scanning 

was performed on an iScan instrument (Illumina, Inc.) according to the manufacturer’s 

instructions (Document#1000000077299v0). To minimize the potential for batch effects, 

DNA samples were processed in consecutive laboratory experiments. After calling the raw 

DNAm intensities with the iScan control software (v2.3.0.0; Illumina, Inc.), they were 

exported in idat format for downstream processing and analysis. 



 

DNA methylation data processing and quality control 

DNAm data processing and quality control (QC) was performed using the same procedures as 

described previously [12] unless noted otherwise. This entailed using the R (v. 3.6.1) package 

bigmelon with default settings, unless otherwise noted [13]. Idat files were loaded into R and 

β-values were calculated according to the following formula, with Imet being the intensity of 

the methylated signal, and Iume being the intensity of the unmethylated signal. 

 

(1) β = Imet / (Imet + Iume + 100) 

Samples were excluded from the analysis if (a) the bisulfite conversion efficiency was below 

80% according to the bscon function in the bigmelon package, (b) the sample had a beadcount 

< 3 in more than 5% of all probes, (c) the sample had a detection p-value below 0.05 in more 

than 1% of all probes, (d) the sample was identified as an outlier according to the outlyx 

function in the bigmelon package using a threshold of 0.15, (e) the sample showed a large 

change in β-values after normalization according to the qual function in the bigmelon package 

with a threshold of  0.1, (f) the sample showed a discrepancy between predicted sex according 

to the Horvath multi-tissue epigenetic age predictor [14] and reported sex, or (g) there was a 

greater than 70% discrepancy between genotypes of 42 SNPs determined concurrently from 

the EPIC and GSA SNP genotyping array (see below). All samples were normalized with the 

dasen function of bigmelon. 

 

Cell-type composition estimates were calculated with the R-package EpiDISH [15], followed 

by correction of the DNAm values for cell-type composition with the removeBatchEffect 

function in the R package limma [16]. For all statistical analyses, the DNAm β-values were 

used. For the BASE-II blood samples, cell-type composition data was also available, as 

measured using laboratory procedures (i.e. for eosinophiles, lymphocytes, monocytes, and 

neutrophiles). In general, these molecular data correlated very highly with the EpiDISH 

estimates (r coefficients ranging from 0.46 to 0.96, Supplementary Figure 4), underscoring 

the validity of the in silico cell-type composition procedure used here. 

 

Epigenome-wide association analyses to identify differentially methylated probes 

Statistical analyses to identify differentially methylated probes (DMPs) were performed in 

each dataset separately using linear regression models performed by the lm function in R and 



the EM phenotype (residuals of the first PC regressed on age, see above) as a continuous 

outcome variable: 

(2) EM ~ DNAm + sex + DNAm PCs + genetic PCs 

To account for differences in the DNAm profiles due to technical (e.g. laboratory batch, 

microarray) and other factors we performed a PCA on a subset of uncorrelated CpGs in the 

cell-type corrected data as described previously [12] and included these DNAm PCs as 

covariates in the regression model. To account for differences in genetic ancestry we 

performed a PCA (using PLINK v1.9 “--pca”) on an LD-pruned set of SNP markers (--indep-

pairwise 1""500 150 0.2) derived from genome-wide SNP genotyping data generated in 

parallel on the same DNA samples in each individual using the Global Screening Array 

(GSA; Illumina, Inc) and included the resulting genetic PCs as covariates in the regression 

model. More details on the general genotyping and QC procedures can be found in ref [17]. 

The number of DNAm and genetic PCs included in the EWAS analyses was estimated using 

scree plots and differed slightly per dataset; more details can be found in Table 1. To increase 

power, sample-specific EWAS results were meta-analysed across all available buccal datasets 

utilizing a fixed-effect inverse-variance weighting approach using the function metagen in the 

R package “meta” [18]. Annotation of CpGs to specific gene regions was based on the 

Illumina manifest (v1.0 B5) for the EPIC array and the GREAT annotation tool [19]. 

 

Calculation of poly-epigenetic scores (PES) for general cognitive abilities and AD 

PES were calculated for each individual based on the test statistics from a published blood-

based EWAS on cognitive abilities [20], on all phenotypes that were evaluated in that 

publication: general cognitive ability (g), general fluid cognitive ability (gf), vocabulary, digit 

symbol test score (digit), logical memory (LM), and verbal fluency (verbal). As the authors of 

ref. (30) did not provide p-values for their results, we calculated p-values using the effect 

sizes (β) and standard errors (SE) provided in the respective publication [20] to estimate 

phenotypic variance explained at different significance thresholds (i.e. p<1 × 10-4, p<1 × 10-5, 

p<1 × 10-6, p<1 × 10-7) we calculated p-values for the published test statistics [20] using the 

effect sizes (β) and standard errors (SE) with the following formula: 

(3) 𝑝 = 𝑒
−0.717∗𝛽

𝑆𝐸
−0.416∗(

𝛽

𝑆𝐸
)
2

 

For each p-value threshold, we created a set of uncorrelated CpGs by dividing the genome 

into 100kb bins followed by the selection of the CpG with the most extreme effect size per 

bin, a procedure analogous to SNP clumping for polygenic score (PGS) estimation in GWAS 



[21]. Then, the effect sizes of the previous study [20] (β) and the normalized, scaled DNAm 

values (CpG) for each of the n uncorrelated CpGs for each p-value threshold were combined 

as follows: 

(4) ∑ 𝛽𝑖𝐶𝑝𝐺𝑖
𝑛
𝑖=1  

The same procedure was followed for AD-based EWAS results, here using test statistics from 

an EWAS on AD performed in entorhinal cortex (EC) brain samples recently completed by 

our group [12]. 

In addition, we performed linear regression analyses of cross-sectional and longitudinal 

change in EM on PES, adjusting for the same covariates as in the primary EWAS. All PES 

calculations were repeated using all available CpG-probes and not filtering for p-values. The 

two batches of BASE-II buccal samples were combined in one linear regression model, using 

the batch as a dummy variable. 

 

Epigenetic age estimation 

To estimate the “epigenetic age” (i.e. DNAm age) we applied the “Horvath multi-tissue 

predictor” (HMTP) using the R script provided in the primary publication [14]. This script 

utilizes the DNAm raw data after prior removal of probes failing QC. DNAm age acceleration 

was defined as the residual of a linear regression of epigenetic age on chronological age.  

This estimate of epigenetic age acceleration was then used as independent variable to predict 

EM performance using the same linear models as for the primary EWAS analyses, but also 

including cell-type composition estimates according to the R-package EpiDISH [15] as a 

covariate. Furthermore, these analyses used the EM performance measures without age 

adjustment, as age is already included in the HMTP algorithm.  

 

Look-up of EM-associated CpGs in independent EWAS on AD-related phenotypes in human 

EC 

To further characterize the CpGs with suggestive evidence of association with EM, we used 

test statistics from our recent AD EWAS of DNAm in EC [12]. Briefly, in that study, a meta-

analysis of three different DNAm-based EWAS in EC of AD cases and controls for both AD 

Braak stage (n=320) and case-control status (n=337) was performed. The three EWAS 

datasets comprised newly generated EC DNAm data [12] and two previously published EC 

datasets (GEO accession numbers GSE59685 and GSE105109) [22,23]. Results for EM-

associated CpGs identified in this study were obtained for the Braak stage and AD case-



control analyses generated in our previous study [12]. Additional association results were 

retrieved from EWAS on AD Braak stage [23–26] and cognition [20].   

 

DNAm-mRNA correlation analyses 

To estimate whether the DNAm patterns of CpGs showing suggestive association with EM in 

this study correlated with gene expression in human brain samples, we correlated DNAm 

status with RNA sequencing results generated in EC samples from healthy controls from ref. 

[12]. For more details on RNA sequencing procedures and data processing in these samples 

see [27]. Briefly, the analyses performed here entailed computing Spearman rank correlations 

using R’s cor.test function between DNAm of a CpG and normalized RNA-seq data of the 

annotated gene(s). Multiple testing was accounted for by computing thresholds using the 

false-discovery rate (FDR) applying the Benjamini-Hochberg method. See ref. [12] for more 

details on data pre-processing and the Spearman rank correlations for CpG vs. mRNA levels. 

 

  



Supplementary Figures 

Supplementary Figure S1: Flowchart summarizing the workflow of this study.  

 

 
 

Supplementary Figure S1 legend: For the Berlin Aging Study II (BASE-II) datasets, both 

cross-sectional and longitudinal episodic memory performance (EM) data, and blood and 

buccal samples were available. The BASE-II buccal dataset was processed in two batches, 

which were subsequently meta-analysed (see Table 1 and Methods for more details). For the 

Barcelona Brain Health Initiative (BBHI) dataset, only the cross-sectional EM phenotype was 

available. In addition to the epigenome-wide as-sociation study (EWAS), the association of 

EM performance with Horvath epigenetic age and poly-epigenetic scores (PES) calculated 

according to summary statistics from McCartney et al. was estimated for each dataset.  



 

Supplementary Figure S2: Trajectories of a random set of 100 individuals for test 

performance scores at TP0 and TP1 and boxplots of the test performance scores in all BASE-

II individuals at baseline (TP0) and follow-up (TP1).  

 

 

 



 
Supplementary Figure S2 Legend: Panels A-B: Face Profession Task; Panels C-D: Scene 

Encoding Task; Panels E-F: Object Location Task; Panels G-H: VLMT;  

According to a paired t-test, the change of test scores between TP0 and TP1 was significantly 

different from 0 for the Face Profession Task (p=1.90E-03), the Scene Encoding Task 

(p=1.54E-08), and the Object Location Task (p=7.78E-06). The test performance for the 

VLMT did not differ significantly (p=0.40). 

  



Supplementary Figure S3: Scatterplot of chronological age and HMTP DNAm age 

estimates for the BASE-II blood dataset (A, R=0.49) and the BASE-II buccal datasets (B, 

R=0.31) using individuals where both blood and buccal samples (n=656) were available. 

 
Supplementary Figure S3 Legend: Scatterplots of chronological age (x-axis) and HMTP 

DNAm age estimates (y-axis). The black line indicates perfect concordance between 

chronological and DNAm age; Panel A: BASE-II blood; Panel B: BASE-II buccal batch 1 

and batch 2 

  



Supplementary Figure S4: HMTP age acceleration and cross-sectional (left) and 

longitudinal change in (right) EM performance. A-B: BASE-II blood; C-D: BASE-II buccal-

1; E-F: BASE-II buccal-2; G: BBHI. 

 

  

 



  



Supplementary Figure S5: Comparison of cell-type compositions for eosinophiles (A), 

lymphocytes (B), monocytes (C), and neutrophiles (D) reported by a laboratory and estimated 

by the R-package EpiDISH [15] for the BASE-II blood samples 
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