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Abstract: Objective: Several studies showed the substantial use of antibiotics and increased risk
of antimicrobial resistant infections in patients with COVID-19. The impact of COVID-19-related
treatments and antibiotics on gut dysbiosis has not been clarified. Design: The prospective cohort
study included hospitalized COVID-19 patients (April–December 2020). The gut microbiome com-
position was analysed by 16S sequencing. The gut diversity and changes in opportunistic bacteria
(OBs) or symbionts were analysed according to clinical parameters, laboratory markers of disease
progression, type of non-antibiotic COVID-19 treatments (NACT) and type, WHO AWaRe group,
and duration of antibiotic therapy (AT). Results: A total of 82 patients (mean age 66 ± 13 years,
70% males) were enrolled. The relative abundance of Enterococcus was significantly correlated with
duration of hospitalization, intensive care unit stay, O2 needs, and D-dimer, ferritin, and IL-6 blood
levels. The presence of Enterococcus showed the highest number of correlations with NACT, AT, and
AT + NACT (e.g., hydroxychloroquine ± lopinavir/ritonavir) and increased relative abundance with
AWaRe Watch/Reserve antibiotics, AT duration, and combinations. Abundance of Dorea, Agathobacter,
Roseburia, and Barnesiella was negatively correlated with AT and corticosteroids use. Patients with
increased IL-6, D-dimer, and ferritin levels receiving AT were more likely to show dysbiosis with
increased abundance of Enterococcus and Bilophila bacteria and decreased abundance of Roseburia
compared with those not receiving AT. Conclusion: Microbiome diversity is affected by COVID-19
severity. In this context, antibiotic treatment may shift the gut microbiome composition towards OBs,
particularly Enterococcus. The impact of treatment-driven dysbiosis on OBs infections and long-term
consequences needs further study to define the role of gut homeostasis in COVID-19 recovery and
inform targeted interventions.
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1. Introduction

COVID-19 has been associated with gut microbiome dysbiosis, causing an increase
in the rate of opportunistic bacteria (OBs) to the detriment of beneficial symbionts [1–3].
Frequently reported OBs in association with SARS-CoV-2 infection include, but are not limited
to, species of Enterococcus, Bilophila, and Rothia, and various species of Enterobacterales [1,3–8].
On the other hand, bacteria usually involved in the prevention of intestinal inflammation
and homeostasis regulation such as species of Roseburia or in the Ruminococcaceae family
exhibited significant changes in the gut of infected patients, resulting in overall decreased
abundance [1,6,9,10]. Changes in beta diversity were also reported, showing significant
differences in Bray–Curtis index among SARS-CoV-2 infected vs. noninfected patients [1,9].

Most studies have focused on intestinal dysbiosis and disease severity or compared
gut microbiome profiles between COVID-19 and other viral diseases [9,10], while reports
investigating the impact of antibiotics or COVID-19 treatments are lacking. The majority of
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those hospitalized with COVID-19 receive antivirals, antibiotics, and/or inflammatory drugs
that may affect the gut composition while treating the disease or other associated infections.
Moreover, empirical antibiotic therapy has been reported in up to 75% of hospitalized patients
and far exceeds the estimated rate of bacterial coinfection that is set around 9% [11]. Since the
beginning of the pandemic, the potential overuse of antibiotics has been concerning due to
its potential in the selection of OBs and antibiotic resistance that may complicate the course
of the disease and limit treatment options [12]. Antibiotics are often used in association with
oxygen (O2) therapy as well as exploratory treatments that have now been discontinued (e.g.,
hydroxychloroquine, lopinavir/ritonavir) or more recently established COVID-19 treatments
(e.g., tocilizumab, remdesivir, corticosteroids, etc.) [13].

We have analysed the gut microbiome changes in a cohort of COVID-19 hospitalized
patients exploring the correlations between abundance of symbiont or opportunistic genera
with clinical, laboratory, and therapy data.

2. Methods
2.1. Study Population

Inclusion criteria were 1. a documented SARS-CoV-2 infection requiring hospitaliza-
tion and 2. age ≥ 18 years. Stool and plasma samples were collected at the same time
and within the first 2 weeks of hospitalization (median hospitalization day 4, Q1–Q3 2–9).
If more than one sample was collected for each included patient, only the first one was
considered in the analysis.

Data included at the time of the sample’s collection included age, comorbidities, SARS-
CoV-2 serology, laboratory parameters, need and level of oxygen (O2) support, and type
of treatment. Age was used as a continuous variable and reported according to three age
groups, considering as cut-off points 50 and 65 years of age due to an increased COVID-19
severity according to age reported in the literature [14]. The type of O2 support during
hospitalization was reported as no O2 needed (room air), low O2 support (e.g., nasal can-
nulae, face masks, or reservoir masks), or high O2 support (either non-invasive ventilation
or mechanical ventilation). The fraction of inspired oxygen (FiO2), indicating the need for
supplemental O2 therapy), was also collected. Regarding treatment, any non-antibiotic
COVID-19-related treatment (NACT) that was available at the time of data collection
(e.g., hydroxychloroquine, lopinavir/ritonavir, remdesivir, tocilizumab, corticosteroids,
heparin) was included in the analysis. Antibiotic treatment (AT) was reported accord-
ing to two factors: 1. The class of AT, including beta-lactams (amoxicillin/clavulanate,
piperacillin/tazobactam, ceftriaxone, and meropenem), anti-intracellular bacteria antibi-
otics (ciprofloxacin, doxycycline, clarithromycin, and azithromycin), or anti-Gram-positive
bacteria (GBP) agents (vancomycin, daptomycin, and linezolid) and 2. The 2021 WHO
AWaRe classification (e.g., Access, Watch, and Reserve antibiotics) that groups AT according
to their resistance potential [15]. Antibiotic combination was defined as the association
of two or more antibiotics. The combinations of AT and NACT were also reported. To
account for the impact of treatment on gut microbiome, we considered in the analysis any
treatment that was administered for at least 24 h and that was started at least 48 h before
stool collection but discontinued no more than 7 days before stool collection.

The study protocol was approved by the institutional review board at Verona Univer-
sity Hospital (CO-BIOME study, IRB number 2906). Informed consent was provided by all
study participants.

2.2. Laboratory Analyses

The SARS-CoV-2 diagnosis was performed by nasopharyngeal swab using real time
multiplex reverse transcription polymerase chain reaction (multiplex RT-PCR) for simulta-
neous detection of three different viral targets (E, N and RdRP genes) from nasopharyngeal
and oropharyngeal swabs using the Allplex 2019-nCoV assay kit (Seegene, Seoul). Labora-
tory parameters that were available at the time of stool collection are reported in the analysis.
The detection of the SARS-CoV-2 antibody response was performed using the Elecsys®



Biomedicines 2022, 10, 2786 3 of 15

Anti-SARS-CoV-2 ECLIA assay (Roche Diagnostics AG, Rotkreuz, Switzerland) measur-
ing anti-S with threshold for positivity of 0.8 WHO binding antibody units (BAU)/mL.
Antibody titers were reported as negative or borderline (≤5 BAU/mL), low to moderate
(5 < BAU/mL < 100), or high (≥100 BAU/mL). Markers of systemic inflammation such
as blood levels of ferritin (ng/mL), D-dimer (ng/mL), C-reactive protein (CRP, mg/L),
and neutrophil/lymphocyte ratio (NLR) [16] were collected. The cytokine EDTA plasma
levels were analysed by using enzyme-linked immunosorbent assay (ELISA) according
to the manufacturer’s instructions (BioLegend, Milan, Italy) and included IL-6 (range
7.8–500 pg/mL), IL-10 (range, 3.9–2500 pg/mL), IL-2 (range 7.8–500 pg/mL), INF-gamma
(INF-g, range 7.8–500 pg/mL), TNF-alpha (TNF-a, range 7.8–500 pg/mL), IL-17A (range,
3.9–250 pg/mL). IL-6 levels, that have been previously associated with severe COVID-19
were stratified as normal range (<15 pg/mL), moderately increased (15–49 pg/mL), and
high (>50 pg/mL) [17].

To perform 16S rRNA sequencing of stool samples, the collected samples were pre-
served at −80 ◦C until nucleic acids extraction. Nucleic acids were isolated with the
Norgen Stool DNA Isolation Kit (Norgen Biotek, Ontario, Canada) following manufac-
turer’s instructions. The DNA samples were subsequently quantified using the Maestrogen
MN-931A MaestroNano Pro spectrophotometer (Maestrogen, Brumath Cedex, France)
and normalized to a concentration of 50 ng/µL, then stored at −80 ◦C. The 16S rRNA
gene V1-V3 region was amplified using previously defined primers and underwent paired-
end sequencing using version 3 (300 × 2) chemistry on the MiSeq instrument (Illumina)
according to manufacturer’s instructions [18].

2.3. Data Analysis

The quality of reads was controlled using FastQC. The pre-processing, trimming, fil-
tering, and merging was carried out with Cutadapt [19]. Reads were subsequently aligned
against the SILVA ARB 16S rRNA v. SSU 138 database [20] with minimap2 [21]. Next,
the taxonomic profiles were computed using MEGAN6 [22] and exported into CVS files
on multiple taxonomic levels in a summarized manner. The downstream analysis and
visualizations were carried out in Python 3.8 with matplotlib v. 3.2.1 [23] and scipy [24].
Computation of the weighted UniFrac [25] was carried out in Python 3.8 using a scikit-
bio [26] and ete3 [27] software packages. Beta diversity metrics and relative abundance of
genera ≥0.1% were reported. Median and ranges were used for continuous variables, count
and percentages for nominal variables. Spearman plots was used to report the correlations
between relative abundance of bacteria (at genus and family levels, shown in alphabetical
order) and clinical, laboratory, and treatment data at the time of sample collection. Only
bacteria detected in at least 20 patients were shown in the plots. Treatment data were
reported as number of days receiving AT and/or NACT (except for tocilizumab, that is
usually administered as single infusion due to its long half-life [28]. Each treatment or
treatment combination that was ongoing at the time of stool collection was considered
independently. The Kruskal–Wallis test was used for comparing bacterial abundance of
independent groups that were reported as bar charts. Only bacteria with significantly
different abundance were reported in the bar charts apart from those in Alistipes and Pseu-
domonas (due the overall high abundance of Alistipes and the potential clinical significance
of Pseudomonas). The association between categorical variables was assessed using Fisher’s
test. To search for potential confounders (age, gender, length of hospital stay, O2 support,
IL-6, ferritin, and D-dimer levels) that may have predicted AT use, a logistic regression
was performed. Stata Version 16.1 (College Station, TX, USA: StataCorp LP) was used,
considering a two-tailed α error of 0.05 in all analyses.

3. Results

A total of 116 consecutive patients hospitalized with COVID-19 between April 1st and
December 31st, 2020, were screened for inclusion at a tertiary referral hospital in Italy. Of
these, 20 with uncomplete data and 14 who did not sign informed consent were excluded,
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leaving 82 patients that were included in the study. Mean age was 66 ± 13 years and 70%
of patients were males. Patient demographic and clinical characteristics are summarized in
Table 1. A third of COVID-19 patients reported no comorbidities while, among those with
comorbidities, 87% suffered from hypertension. Serology was positive in 74% of patients at
the time of stool collection. Most patients (83%) necessitated O2 therapy. Eighteen (22%)
patients required ICU admission and seven (9%) died during hospitalization. Patients with
disease progression requiring ICU admission compared to those not requiring intensive
care more frequently had ferritin > 400 ng/mL (p = 0.02), D-Dimer > 500 ng/mL (p < 0.001),
and IL-6 > 15 pg/mL (p = 0.02). Microbiologically documented concomitant infections were
reported in 15 (18%) patients and are described in Supplementary Table S1.

Table 1. Characteristics of included patients.

Characteristics COVID-19 Hospitalized Patients (n = 82)

Male gender (%) 57 (70)

Median age, years (Q1–Q3) 66 (57–77)

Median hospitalization (H), days (Q1–Q3) 13 (7–22)

Comorbidities (%)
- No comorbidities 27 (33)
- Hypertension 48 (59)
- Diabetes mellitus 13 (16)
- Heart disease 19 (23)
- Two or more comorbidities 21 (26)

O2 Support (%) during H
- None 14 (17)
- Nasal cannulae or face mask 50 (61)
- Non-invasive or mechanical ventilation 18 (22)

ICU admission (%) during H 18 (22)
Length of ICU stay, days (Q1–Q3) 9 (5–12)

Laboratory parameters (mean ± SE)

- Ferritin µg/L 944 ± 71
- D-dimer ng/ml 1994 ± 239
- CRP mg/L 47 ± 6.1
- NLR 7.13 ± 0.71

Laboratory parameters were reported at the time of stool collection. ICU = intensive care unit; CRP = C-reactive
protein; NLR = neutrophil-to-lymphocyte ratio.

3.1. Gut Microbiome and Clinical Markers

Correlations between the relative bacterial abundance and clinical parameters are re-
ported in Figure 1. Age did not show significant correlations with OBs or symbionts. When
grouped by age categories, we did not see differences in the distribution of Bacteroidetes
and Firmicutes, while the Jaccard dissimilarity was significantly different between patients
below 50 years and those aged 65 or older (p = 0.03), but a clear pattern in favouring OBs
according to age was not shown (Supplementary Figure S1). The length of hospitalization
and ICU stay positively correlated with Enterococcaceae and Enterococcus (at family and
genus levels) and negatively correlated with Lachnospiraceae and butyrate-producing
beneficial symbionts such as Agathobacter and Roseburia. No differences in gut microbiome
characteristics were noted according to SARS-CoV-2 serological results (Supplementary
Figure S2). Markers of systemic inflammation and COVID-19 progression showed positive
association with OBs genera and negative correlation with beneficial symbionts. Entero-
coccus showed positive correlation with increased ferritin and D-dimer and Pseudomonas
with CRP levels. Agathobacter was negatively correlated with ferritin and NLR. Regarding
cytokines, at a genus level, negative correlations were observed for Pseudomonas with IL-6,
TNF-a, IL-17A, and INF-g. Positive correlations were shown for OBs such as Coprobacter and
Desulfovibrio and Il-6 and TNF-a, between Enterobacter and IL-10, and between Pseudomonas
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and IL-2 levels. At a family level, proinflammatory cytokines such as IL-6 and TNF-a had
positive correlation with Barnesiellaceae, Sulfovibrionaceae, and Tannerellaceae.
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Figure 1. Correlation of gut microbiome composition with clinical and laboratory data at genus
and family levels. (1) Clinical parameters. Data associated with COVID-19 progression included
age, FiO2, days of hospitalization, and length of ICU stay. A strong positive correlation (>0.35) was
observed between Enterococcus and duration of hospitalization and ICU days. Agathobacter and
Roseburia and, at family level, Lachnospiraceae showed negative correlations with hospitalization
and ICU stay. (2) Laboratory parameters and cytokines. Laboratory data characteristic of COVID-19
progression such as D-dimer and ferritin showed positive correlations with Enterococcus. Positive
correlation was shown between inflammatory cytokines such as IL-6, TNF alpha with Coprobacter,
Desulfovibrio and between IL-2 and Pseudomonas. Bacteria that were detected at least in 20 patients
were shown. Only statistically significant (p < 0.05) correlations are reported and abundance ≥ 0.1% is
shown. The strength of the Rho coefficient is represented by the change in the square colour intensity.
Lab = laboratory; FiO2 = Fraction of inspired oxygen; ICU = intensive care unit; NLR = neutrophil to
lymphocyte ratio; CRP = C-reactive protein. Unit of measurements: D-dimer ng/mL; ferritin ng/mL;
CRP mg/dl; IL-6, TNF-alpha (TNF-a), IL-10, IL-2, IL-17A, INF-gamma (IFN-g): ng/mL.

The distribution of bacterial abundance was tested according to normal, moderately
increased, and high levels of the key cytokine IL-6, showing significantly increased abun-
dance of Firmicutes and Enterococcus in COVID-19 patients with high vs. normal IL-6 levels
(p = 0.05 and p = 0.02) and between high vs. moderate and normal IL-6 levels (p = 0.04),
respectively (Figure 2). No differences in beta diversity were noted.

3.2. Gut Microbiome and O2 Therapy

Figure 1 showed a negative correlation between FiO2 and the abundance of patho-
bionts such as Lachospiraceae and Agathobacter at a family and genus levels, respectively.
Significant differences in the distribution of pathogens’ abundance at a genus level accord-
ing to the level of O2 support are reported in Figure 3. Significantly increased abundance
of Enterococcus and lower relative abundance of Roseburia were observed among patients
receiving high compared to low and no O2 support (p = 0.04 and p < 0.001 Enterococcus;
p = 0.04 and p = 0.01 Roseburia), while higher relative abundance of Paraprevotella and
Haemophilus were reported among patients with no O2 support compared to those with low
O2 support (p = 0.03 and p = 0.05 respectively). The beta diversity of stool samples according
to the maximum level of O2 support received during COVID-19 hospitalization was anal-
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ysed (Figure 3), showing a significant difference in the Jaccard similarity index especially in
patients receiving low vs. with high O2 support (p = 0.01). The general profile composition
of samples at the phylum level, according to O2 support and ordered by relative abundance
of Bacteroidetes is reported in Figure 3. No significant differences were shown among
groups between the two phyla (Supplementary Figure S3A). The distribution of patients by
type of O2 support did not significantly differ according to the gender. Among females,
only four received high O2 support showing increased abundance of Firmicutes compared
to low O2 support (p = 0.03), while no significant associations were noted at the genus level
(Supplementary Figure S3C), while males, similarly to the overall sample results, showed
increased Enterococcus (p = 0.01) and decreased abundance of Roseburia (p < 0.001) for high
compared with low O2 support (Supplementary Figure S3B).
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tion according to IL-6 levels. (A) General profile composition of samples at phylum level was similar
among groups. (B) Relative abundance analysis did not differ at phylum level but showed higher
levels of Enterococcus among patients with high IL-6 levels compared with those with moderately
increased and normal IL-6. (C) PCoA plots of beta diversity between the three groups did not
show significant differences. IL-6 measurement was available in 69 (84%) patients. IL-6 levels were
reported as normal range (<15 pg/mL), moderately increased (15–59 pg/mL), and high (≥60 pg/mL).
Statistical significance reported as * p ≤ 0.05.
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Figure 3. Microbiome profile composition, relative abundance, and bacterial beta diversity according
to O2 therapy. (A) Relative abundance analysis showed higher levels of Enterococcus and lower levels
of Roseburia in patients receiving high compared to low O2 support or no O2 support (room air).
Paraprevotella and Haemophilus were more abundant in patients with no O2 support compared to those
with low O2 support. (B) PCoA plots of beta diversity between the three groups showed a significant
difference in richness (Jaccard similarity index) between low and high O2 support. (C) General profile
composition of samples at phylum level in the three O2 support groups. Statistical significance
reported as * p ≤ 0.05, *** p ≤ 0.001.

3.3. Gut Microbiome and Therapy

Details regarding the type of treatment received at the time of stool collection are sum-
marized in Supplementary Table S2. Overall, 15 (18%) patients did not receive either AT nor
NACT, 9 (11%) only AT, 40 (49%) a combination of AT + NACT, and 18 (22%) only NACT.

3.4. Antibiotic Therapy (AT)

No differences in the relative abundance of bacterial genera (except for higher abun-
dance of Roseburia and Escherichia among patients not receiving AT vs. those receiving AT,
p = 0.01), phyla, and gut microbiome beta diversity were found between patients receiving
AT and those not receiving AT (Supplementary Figure S4). According to the WHO AWaRe
classification, 18 (36%), 29 (59%), and 3 (5%) COVID-19 patients were treated with Access,
Watch, or Reserve antibiotics, respectively. Bacteria in the phylum Proteobacteria showed
increased relative abundance (p < 0.001) in patients receiving Watch/Reserve vs. access AT.
At a genus level, Enterococcus increased relative abundance (p = 0.02) and Blautia decreased
relative abundance (p = 0.01) as were noted in the Watch/Reserve compared with the
Access group (Figure 4). The Jaccard index was significantly different (p = 0.04) between the
two treatment groups (Figure 4). No association was found between clinical and laboratory
parameters that are indicative of COVID-19 progression (age, gender, length of hospital stay,
O2 support, IL-6, ferritin, and D-dimer levels) with the use of AT (Supplementary Table S3).
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Figure 4. Bacterial beta diversity, relative abundance, and profile composition according to the WHO
AWaRe classification for antibiotic use. (A) PCoA plots of beta diversity between the three groups
showed significant differences in similarity (e.g., Jaccard’s Index) between Access and Watch/Reserve
antibiotics. (B). Relative abundance analysis showed higher Proteobacteria relative abundance
(phylum level) and relative abundance of Enterococcus (genus level) for the Watch/Reserve compared
to the access group. (C) General profile composition of samples at a phylum level. Access antibiotics
were compared to pooled Watch and Reserve antibiotics due to the low (n = 3) number of treatments
using reserve class antibiotics. The 2021 WHO AWaRe classification is available at https://www.who.
int/publications/i/item/2021-aware-classification, accessed on 24 September 2022 [15]. Statistical
significance reported as * p ≤ 0.05, ** p ≤ 0.01.

Mean time on AT (at the time of stool collection) was 7 days (Q1–Q3, 4–8 days). A
negative correlation was observed between the days on AT and abundance of beneficial
commensals such as Lachnospiraceae (family level) with a decrease in Agathobacter, Dorea,
and Roseburia (genus level); conversely, Enterococcus showed positive correlations with AT
(in particular, beta-lactams and anti-GPB) duration (Figure 5). The use of combination
of two or more antibiotics was associated with a significant increase in abundance of
Enterococcaceae and Erysipelotrichaceae and a decrease in Lachnospiraceae.

3.5. Non-Antibiotic COVID-19 Treatment (NACT)

Significant correlations shown by bacterial genera and families with NACT and
AT + NACT combinations are reported in Figure 5. Enterococcus showed the highest num-
ber of correlations with AT, NACT, and AT + NACT, particularly with hydroxychloroquine
(HCQ), HCQ and lopinavir/ritonavir (LPV/r), often used in combination in the early
phases of the COVID-19 pandemic and subsequently discontinued, and the combination
of either HCQ or LPV/r with corticosteroids. Conversely, the current standard-of-care for
COVID-19, based on the combination of corticosteroids and heparin, showed a negative
correlation with Enterococcus and Barnesiella and a positive correlation with Pseudomonas.
Among other treatments, remdesivir in association with AT correlated with Pseudomonas
and increase in Pseudomonaceae at genus level and with decrease of bacterial families such
as Barnesiellaceae, Christensenellaceae, and Lachnospiraceae, while association of remde-
sivir with corticosteroids or heparin showed positive correlations with the OB Akkermansia.
Corticosteroids were associated to a significant decrease of beneficial symbionts (Agath-

https://www.who.int/publications/i/item/2021-aware-classification
https://www.who.int/publications/i/item/2021-aware-classification
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obacter, Blautia, Dorea, and Roseburia). Patients receiving tocilizumab showed increased
relative abundance of Desulfovibrio compared with those not treated with tocilizumab
(Supplementary Figure S5).
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Figure 5. Spearman plot showing the correlation between the gut microbiome composition and
treatment duration at the genus and family levels. Lachospiraceae and Barnesiellaceae at family level
and symbionts such as Agathobacter, Dorea, and Roseburia at genus level showed negative correlations
with COVID-19 and antibiotic treatment. Enterococcus showed positive correlations with antibiotic
treatment (in particular with beta-lactams and anti-GPB) and HCQ with or without LPV/r and nega-
tive correlation only with steroids and heparin that is currently the most commonly used treatment
for COVID-19 in hospitalized patients. Families and genera of the bacteria are reported in alphabetical
order. Treatment data are shown according to number of days receiving COVID-19 treatment (HCQ,
LPV/r, remdesivir, heparin, and steroids) or antibiotic class (beta-lactam, intracellular, or anti-GPB an-
tibiotics) and to the use as a single agent or in combination at the time of sample collection. AT = any
antibiotic; GPB = Gram positive bacteria; HCQ = hydroxychloroquine; LPV/r = lopinavir/ritonavir.
Beta-lactams included amoxicillin/clavulanate, piperacillin/tazobactam, ceftriaxone, meropenem;
intracellular antibiotics included ciprofloxacin, clarithromycin, azithromycin, doxycycline; anti-GPB
antibiotics included vancomycin, daptomycin, and linezolid. The strength of the Rho coefficient is
represented by the change in the square colour intensity.

Figure 6 summarizes the genera and families that have been more frequently associated
with AT and/or NACT that are currently used in clinical practice. At the family and genus
levels, only Enterococcaceae and Enterococcus and Pseudomonaceae and Pseudomonas
showed positive correlation with AT and with corticosteroids plus heparin, respectively.
Several negative correlations were observed between beneficial symbionts and both AT and
NACT. Differences in bacterial relative abundance, profile composition and beta-diversity
were investigated according to a composite risk profile, including IL-6 > 15.0 pg/mL,
D-dimer > 500 ng/mL, ferritin > 400 ng/mL (associated to ICU admission in our study)
and use of AT most frequently associated with dysbiosis and that are frequently used
in the hospital setting (e.g., beta-lactams and anti-GPB antibiotics). This high-risk group
showed increased relative abundance of Enterococcus (p < 0.001) and Bilophila (p = 0.03) and
decreased abundance of Roseburia (p = 0.01) compared to patients not showing this profile
(low risk). No differences between groups were detected for profile composition at phylum
level and beta-diversity.
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 Figure 6. Gut microbiome bacteria associated with treatment and high-risk disease profile. (A) Gut
microbiome bacteria showing positive or negative correlations with antibiotic therapy (AT) and
non-antibiotic COVID-19 therapy (NACT) at genus and family levels. At the genus level, OBs such
as Desulfovibrio, Akkermansia and, most frequently, Enterococcus, showed positive correlations with AT
and COVID-19 treatments. Enterococcus and Pseudomonas showed negative and positive correlations
with steroids and heparin combination, respectively. Roseburia, a beneficial symbiont, only showed
negative correlations with treatments. Positive and negative correlations between genus abundance
and days on AT and/or NACT are reported in red and blue colours, respectively. AT = any antibiotic
treatment; GPB = Gram-positive bacteria; HCQ = hydroxychloroquine; LPV/r = lopinavir/r; steroids
= corticosteroids. (B) Differences in bacterial relative abundance according to a composite index
defining patients at high-risk for disease progression (IL-6 > 15.0 pg/mL, D-dimer > 500 ng/mL,
ferritin > 400 ng/mL, and treatment with beta-lactam or anti-GPB antibiotics). The high-risk group
showed increased relative abundance of Enterococcus and Bilophila and decreased abundance of
Roseburia compared to low-risk patients. Statistical significance reported as * p ≤ 0.05, ** p ≤ 0.01.

4. Discussion

Our study confirmed the association of COVID-19-related inflammation and severity
with an increase in OBs abundance and the reduction in beneficial symbionts in the gut
microbiome of hospitalized patients with acute disease. Agathobacter, a beneficial symbiont
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belonging to Clostridiales, showed negative correlation with the fraction of inspired oxygen
(FiO2), which is strictly related to the severity of respiratory insufficiency of COVID-19,
and with NLR, a predictive marker for critical illness in COVID-19 [16]. Conversely,
abundance of Pseudomonas, one of the most known OBs, was associated with the increase
in inflammatory markers such as CRP and IL-2. The acute-phase protein and active
regulator of host innate immunity, CRP, was reported to be predictive of the need for
mechanical ventilation in patients with COVID-19-related uncontrolled inflammation [29].
Key proinflammatory cytokines such as TNF-alpha and IL-6 were associated with increased
abundance of OBs such as Coprobacter and Desulfovibrio. Several other cytokines have
been investigated in COVID-19 to allow early identification or even prediction of disease
progression [30]. Besides IL-16, the anti-inflammatory cytokine IL-10 was found elevated
in severe COVID-19 patients [30], while decreased circulating INF-gamma levels were
associated to lung fibrosis in COVID-19 patients [31]. We observed a positive correlation
between Enterobacter and IL-10 and a negative correlation between Pseudomonas and INF-
gamma levels.

As most hospitalized patients with COVID-19 receive treatment for COVID-19 or
AT (82% in our study), we investigated the potential impact of NACT and AT on gut
dysbiosis. Although one might assume that patients with severe disease more frequently
receive treatment, in particular AT in case of suspected or documented coinfections, we
did not observe a correlation between AT and age, gender, O2 therapy, length of stay, or
inflammation markers. Gut dysbiosis, however, was documented with any type of NACT
and AT.

The abundance of Enterococcus was associated with Watch/Reserve compared to Ac-
cess AT and was the only genus that positively correlated with any AT and AT combinations.
Several beneficial symbionts negatively correlated with AT. Microbiome composition can
be rapidly altered by exposure to AT that can also cause immediate collateral damage,
for instance through the selection of resistant OB leading to acute disease [32]. Several
antibiotic classes, if not all, have been associated with gut dysbiosis. Four-day expo-
sure to beta-lactams and fluoroquinolones showed reduced alpha and beta diversity and
increased serum inflammatory cytokines in murine models; furthermore, OB such as En-
terococcus and Clostridioides were significantly enriched in the treated groups, whereas
the butyrate-producing bacteria Blautia, Lachnoclostridium, and Roseburia were less abun-
dant [33]. Vancomycin has been associated with reduced proportion of Tregs and Th17,
neutrophil-mediated killing, altered expression of bactericidal compounds and with se-
lection of Gram-positive organisms such as vancomycin-resistant enterococci [34,35]. An
increase in OBs such as Desulfovibrio and Enterococcus was significantly correlated with
HCQ and LPV/r that have now been discontinued due to a lack of efficacy and increased
toxicity [36]. LPV/r is a protease inhibitor used for the treatment of HIV/AIDS mainly in
combination with other antiretroviral drugs [37]. Reports on the impact of antiretrovirals
on gut microbiome showed reduced abundance of Ruminococcaceae [38] and failure in
reversing HIV-induced gut microbiome dysbiosis. High-dose HCQ (100 mg/kg/day)
administered for 14 days altered the structure, richness, and the community diversity
of the gut microbiota in a murine model and increased the relative abundance of mem-
bers of the phylum Bacteroidetes while decreasing abundance of members of the phylum
Firmicutes compared to controls [39]. Previous data from patients with rheumatologic
disease receiving long-term HCQ treatment showed dose-dependent intestinal dysbiosis,
and some authors speculated that unfavourable clinical data on HCQ administration in
COVID-19 could have been influenced by its impact on gut dysbiosis [40]. We observed
limited OBs increase with the use of corticosteroids but a decrease in several beneficial sym-
bionts. Dexamethasone use in mice with inflammatory bowel disease showed that phylum
Actinobacteria, and genera Bifidobacterium and Lactobacillus were significantly increased
after treatment. In this study, the potential improvement of inflammation caused by the
corticosteroids appeared mediated by a positive effect on the colonic mucin synthesis [41].
In a recent systematic review not including COVID-19, the impact of corticosteroids on
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the respiratory microbiome was controversial, showing both positive and negative effects
and proving that more studies are needed to define their impact [42]. Akkermansia, usually
found in the mucous layer of the intestine, has been associated with immunomodulatory
responses of the intestinal barrier [43] and correlated with days on remdesivir and cor-
ticosteroids or heparin. Data on other NACT including remdesivir, however, are scarce,
while studies on tocilizumab from patients with active rheumatic arthritis may be biased
by disease-specific confounders or concomitant immunosuppressive treatments.

Enterococcus can actively traverse the intestinal barrier as can other oxygen-tolerant
intestinal pathobionts, such as Enterobacteriaceae, and its abundance has been previously
associated with critical COVID-19 disease and with clinically relevant infections such as
bloodstream infections [3].

A recent systematic review has highlighted the increase in Enterococcus in gut mi-
crobiome composition in the COVID vs. pre-COVID era and the higher abundance in
COVID-19 vs. non-COVID-19 patients [44]. In our study, Enterococcus showed a key role
both in disease progression and treatment-related dysbiosis. Its abundance was correlated
with the highest number of parameters associated with COVID-19 disease progression,
including duration of hospitalization, ICU length of stay, D-dimer, and ferritin blood levels.
Moreover, the relative abundance of Enterococcus was increased in patients with moderate
and high IL-6 levels compared with those with normal IL-6 blood levels and among patients
with increased O2 support compared with those not receiving O2 therapy. We also observed
an increase in abundance of Enterococcus in association with AT, AT combinations, and with
HCQ and LPV/r. The only therapy associated with lower abundance of Enterococcus was
the combination of heparin and corticosteroids, that is now worldwide accepted as the
standard of care for COVID-19 treatment [36]. Finally, when we analysed patients at high
risk for disease progression and gut dysbiosis, Enterococcus was increased in high-risk vs.
low-risk patients.

The main limitations of the study are represented by the lack of post-treatment data,
that would increase the understanding of the impact of COVID-19 treatments over time,
and by the low number of patients per treatment group that limited the possibility to
perform a thorough assessment of each treatment arm.

In conclusion we have showed that, even if the gut microbiome is affected by COVID-
19 irrespective of concomitant treatment, its composition is shifted towards OBs (particu-
larly Enterococcus) in hospitalized patients receiving AT during acute disease. Our study
supports the use of antimicrobial stewardship protocols to limit the overuse of AT in
patients hospitalized with COVID-19.

Restoring the intestinal homeostasis through pharmacologic means, such as probiotic
administration, is currently being explored as a viable treatment option to reshape the gut
microbiome in COVID-19 patients [45].

Further studies, however, are needed to better understand the potential impact of
COVID-19 treatments on gut dysbiosis and the persistence of their effect over time. Specifi-
cally, current standard-of-care and potential novel candidate treatments should be investi-
gated along with the potential implications for long-COVID to better define the implications
for the future management of COVID-19 hospitalized patients while the evolving situation
keeps shaping the guidelines for the management of this disease.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biomedicines10112786/s1. Figure S1: Age groups. No differences
were shown for overall gut microbiome composition at a phylum level, while there was a significant
difference in Jaccard beta-diversity in patients aged <50 and >64 years. Pathogen relative abundance
at a genus level showed no clear directions according to opportunistic pathogens or symbionts
according to the age group. Statistical significance reported as * p ≤ 0.05; Figure S2: Antibody
response. No differences were shown for overall gut microbiome composition at a phylum level and
beta-diversity based on the antibody specific response to SARS-CoV-2. Pathogen relative abundance
at a genus level showed lower Lactobacillus relative abundance in patients with moderate serological
response compared to the other groups. Statistical significance reported as * p ≤ 0.05; Figure S3.
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O2 therapy. (A) Gut microbiome relative abundance at the phylum level according to the levels of
O2 therapy did not show significant differences in the distribution of Bacteroidetes and Firmicutes.
(B) Differential abundance at phylum and genus level in males. (C) Differential abundance at phylum
and genus level in females. Statistical significance reported as * p ≤ 0.05, ** p ≤ 0.01; Figure S4.
Antibiotic treatment. No differences were shown for overall gut microbiome composition at a
phylum level and beta-diversity according to antibiotic treatment. Pathogen relative abundance at a
genus level showed higher Roseburia and Escherichia abundance in patients not receiving antibiotic
therapy compared to those receiving antibiotics during hospitalization for COVID-19. Statistical
significance reported as ** p ≤ 0.01. Figure S5. Tocilizumab. No differences were shown for overall
gut microbiome composition at a phylum level and beta-diversity based on tocilizumab treatment.
Pathogen relative abundance at a genus level showed increased Desulfovibrio relative abundance in
patients receiving tocilizumab compared with those who did not receive it. Statistical significance
reported as * p ≤ 0.05; Table S1: Concomitant infections in COVID-19 patients. Only microbiologically
documented (e.g., fungal or bacterial bloodstream infections, bacterial pneumonia) infections are
reported; Table S2: Type of treatments and treatment combinations; Table S3: Logistic regression
model used to investigate the association between antibiotic use and clinical variables. Clinical and
laboratory parameters were compared between patients receiving therapeutic regimens including
antibiotics (N = 49) and those not receiving antibiotic-based treatments (N = 15).
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