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Abstract: Hearing loss is a major public problem with a heritability of up to 70%. Catechol-O-
methyltransferase (COMT) encodes an enzyme that is highly expressed in sensory hair cells of the
inner ear. The association between COMT and hearing loss has not been reported previously in
nationally representative population-based studies. A regression linear model was used to estimate
associations between the allele/genotype of COMT and self-reported hearing loss based on 13,403 in-
dividuals from Wave IV of the Add Health study, a nationally representative sample of multiethnic
U.S. young adults. The inverse variance-weighted effect magnitude was estimated using a genetic
meta-analysis model. The “A” allele frequency of rs6480 (a missense variant in COMT) was 0.44. The
prevalence of hearing loss was 7.9% for individuals with the “A” allele and 6.5% for those with the
“G” allele. The “A” allele was significantly associated with increased hearing loss (p = 0.01). The
prevalence of hearing loss was 6.0%, 7.2%, and 8.7% for individuals with GG, AG, and AA genotypes,
respectively, which was consistent with a genetic additive model. The genotypic association model
showed that rs4680 was significantly associated with increased hearing loss (p = 0.006). A missense
variant of rs4680 in COMT was significantly associated with increased hearing loss among young
adults in a multi-racial/ethnic U.S. population-based cohort.

Keywords: add health; catechol-O-methyltransferase (COMT); hearing loss

1. Introduction

Hearing loss is a major public health problem with an estimated 1.57 billion people
worldwide with hearing loss in 2019, accounting for one in five people. It was the third
largest cause of global years lived with disabilities (YLD) and the leading cause of global
YLDs for adults older than 70 years [1]. Hearing loss does not only impact communication,
it is also associated with social isolation, loneliness, depression, cognitive decline, dementia,
falls, and other health conditions [2–6]. The total global economic costs of hearing loss
exceed $981 billion [7].

The etiology of hearing loss is multifactorial and includes genetic factors, environmen-
tal factors, and their interaction. Many genetic variants are associated with hearing loss [8,9].
The heritability of adult-onset hearing loss has been estimated to be 36–70% [9–14].

We examine the association of hearing loss with selected allelic haplotypes. For
example, catechol-O-methyltransferase (COMT) encodes an enzyme that is involved in
the inactivation of catecholamine neurotransmitters and is highly expressed in sensory
hair cells of the inner ear [15]. COMT has been reported as being essential for auditory
function [15]. The rs4680 (COMT) allele is nonsynonymous with a guanine (G) to adenine
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(A) substitution in the DNA nucleotide sequence resulting in a valine (Val) to methionine
(Met) amino acid substitution. rs4680 G > A influences COMT enzyme activity (AA with
low, AG with medium, GG with higher enzyme activity), which catalyzes the transfer
of a methyl group from S-adenosylmethionine to catecholamines that play a key role in
auditory function [15]. A genetic, intronic variant (rs9332377) in COMT has been associated
with cisplatin-induced hearing loss in children [16,17]. Both SNPs rs4680 and rs9332377
(~4 kb) are in linkage disequilibrium with a D-prime score of 0.84 in the 1000 genomes
project (www.internationalgenome.org). The association between rs4680 and hearing loss
has not been reported previously in population-based studies.

The self-reported hearing loss questions in the Add Health Study provide a useful
measure for genetic studies [9,11,18]. In Wave IV of the Add Heath study, three single nu-
cleotide polymorphisms (SNPs) of rs12945042 (serotonin transporter), rs1800497 (dopamine
D2 receptor, DRD2), and rs4680 (COMT) were ascertained along with self-reported hearing
loss information. Prior studies have shown that the serotonin transporter (SERT) is an
important marker of the status of serotonergic neurons, is expressed in the central auditory
pathway, and plays a role in the auditory process [19]. Dopamine is present in the first
synaptic complex of the auditory pathway. Additionally, it has been shown that sulpiride,
an antagonist of the D2 dopamine receptor, can lead to an attenuation of tinnitus percep-
tion [20]. In this report, we evaluate associations between genetic factors and hearing loss
in the multi-racial/ethnic U.S. population.

2. Materials and Methods
2.1. Participants and Hearing Loss

This study was based on data collected from Add Health, an ongoing, nationally repre-
sentative longitudinal study, which covered the social, behavioral, and biological linkages
in health and developmental trajectories from early adolescence into adulthood [21]. The
adolescents of the Add Health cohort have been followed for more than 20 years since
Wave I in 1995 when the adolescents were in grades 7–12, followed by Wave II in 1996,
Wave III in 2001-02 when the participants were aged 18–26, Wave IV in 2008 when they
were aged 24–32, and most recently Wave V in 2016–2018 when they were aged 32–42. The
data from Wave IV are used in this report. All participants gave informed consent, and the
study was approved by the Institutional Review Board of the University of North Carolina
at Chapel Hill.

The question was, “Which statement best describes your hearing without a hearing
aid or other assistive devices? Response options: 1. Excellent; 2. Good; 3. A little trouble;
4. Moderate hearing trouble; 5. A lot of trouble; 6. Deaf.” Hearing loss was defined by any
of the following four responses: “a little trouble”, “moderate hearing trouble”, “a lot of
trouble”, and “deaf”.

2.2. DNA Sample

Biological specimens (saliva) in Wave IV of the Add Health study were collected
from a large, nationally representative sample of young adults by trained and certified
field interviewers. Salivary buccal cell lysis and DNA stabilization were performed in
the field and shipped to a central lab for DNA extraction, genotyping, and archiving [22].
The collection of capillary whole blood was also processed [23]. Three single nucleotide
polymorphisms (SNPs), rs1800497 (Dopamine D2 receptor TaqIA (DRD2), 11:113270828),
rs4680 (a missense variant in COMT, 22:19951271), and rs12945042 (near SLC6A4, Serotonin
Transporter, 17:28571928) [24], were genotyped. The rationale, equipment, protocol, geno-
typing, data cleaning, quality, and other measures were based on additional genotyping of
salivary buccal cell DNA. A description of the assay of dried capillary whole blood spots
can be found at https://addhealth.cpc.unc.edu/documentation/user-guides/ (accessed
on 19 October 2022).

www.internationalgenome.org
https://addhealth.cpc.unc.edu/documentation/user-guides/
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2.3. Genotype

All SNP assays were conducted on either an Applied Biosystems TaqMan® OpenArray®

or Illumina BeadXperss® GoldenGate® platform. The Hardy Weinberg equilibrium (HWE)
was evaluated for each allele genotype in race/ethnicity-specific strata. HWE p value < 0.05
and Minor Allele frequency (MAF) < 0.01 were used for QC.

2.4. Association Testing

To evaluate the association between hearing loss and the SNP allele/genotype, a
logistic regression model was performed, adjusting for sex, age, family income, smoking
status, and education levels. Three genetic models (dominant, recessive, and additive)
were used to evaluate the genotypic association, respectively. The association testing was
performed by racial/ethnic groups. Before the logistic regression, we examined the data for
influential observations and the presence of variance inflation. No influential observations
or multicollinearity was found. The R package of meta was used for meta-analysis with an
inverse variance-weighed fixed effects method [25] in combined cohorts.

2.5. Protein Structure and Function Predictions

From a paradigm of protein sequence-to-structure-to-function, we uploaded translated
sequences (amino acid sequences) to the I-TASSER online server (https://zhanggroup.org/
/I-TASSER/, accessed on 19 October 2022) [26–28] to predict the three-dimensional (3D)
protein structure. We used the protein 3D structure to find matches in a protein function
database in order to predict protein functions [29]. PyMol [30] was used to view and
analyze the protein structure.

3. Results
3.1. Characteristics of Participants

A total of 13,403 (non-Hispanic White 57.8%, non-Hispanic Black 20.6%, Hispanic
16.1, and non-Hispanic Asian 5.6%) adults were included in the study (Table 1). The
prevalence of reported hearing loss in the non-Hispanic White group (9%) was significantly
higher than in other racial/ethnic groups (p < 0.001). The prevalence of hearing loss in
males was significantly higher than in females. Participants with a higher education had
a significantly lower prevalence of hearing loss (p < 0.001), and, concomitantly, those
with a lower household income had a significantly higher prevalence of hearing loss
(p < 0.001, Table 1). In addition, participants who had ever smoked regularly had a higher
prevalence of hearing loss (~10%, p < 0.0001).

3.2. Allele Frequency and Association with Hearing Loss

Minor allele frequencies (MAF) were 0.45 (“A”), 0.26 (“A”), and 0.29 (“T”) for rs4680,
rs1800497, and rs12945042, respectively. The prevalence of hearing loss for individuals who
carried minor alleles was higher than for individuals who carried major alleles (Table 2) for
rs4680 and rs12945042. For rs1800497, the prevalence of hearing loss for individuals who
carried the G allele (0.74) was higher.

The rs4680 (missense in COMT) was significantly associated with a higher prevalence
of hearing loss (β (95% CI) = 0.13 (0.04, 0.23), p = 0.010, Table 3). The results adjusted
for racial/ethnic-specific groups showed a stronger effect—higher β estimates—for non-
Hispanic Asians compared to the other three groups, albeit the number of non-Hispanic
Asians in the population sampled was smaller, which constrained the influence on the
combined (meta-analysis) for both the allele (A vs. G) and genotype/additive models. No
associations were identified for rs1800497 and rs12945042 (Table S1).

https://zhanggroup.org//I-TASSER/
https://zhanggroup.org//I-TASSER/


Biomedicines 2022, 10, 2756 4 of 9

Table 1. Prevalence of hearing loss by socio-demographic characteristics and smoking status.

N (%) Hearing Loss (%) p Value

All 13,403 7.2
Age (years) 0.3223

<29 4969 (37.1) 6.9
≥29 8434 (62.9) 7.3

Sex <0.0001
Male 6226 (46.5) 8.5

Female 7177 (53.5) 6.1
Race/Ethnicity <0.0001

Non-Hispanic White 7742 (57.8) 9.0
Non-Hispanic Black 2757 (20.6) 4.8

Hispanic 2156 (16.1) 4.5
Non-Hispanic Asian 748 (5.6) 4.8

Education <0.0001
≤high school 3278 (24.5) 8.6
≤college 6004 (44.8) 8.0

More than college 4120 (30.7) 4.8
Household income <0.0001

<$25,000 2106 (16.7) 8.8
$25,000–<$50,000 3545 (28.1) 8.1
$50,000–<$75,000 3076 (24.4) 6.8
$75,000–$100,000 1901 (15.1) 5.8

≥$100,000 1976 (15.7) 5.3
Ever smoked regularly <0.0001

Yes 5612 (48.9) 10.1
No 6986 (51.1) 5.7

Table 2. Frequencies of allele and genotype in rs4680, re800497, and rs12945042 and prevalence of
hearing loss.

rs4680
(COMT)

rs800497
(DRD2)

rs12945042
(near

SLC6A4)

Allele/Genotype N (%) Hearing
loss (%) Allele/Genotype N (%) Hearing

loss (%) Allele/Genotype N (%) Hearing
loss (%)

Allele
All A 11,962 (44.6) 7.9 A 6963 (26.2) 6.4 C 18,589 (71.9) 7.1

G 14,844 (55.4) 6.5 G 19,561
(73.78) 7.4 T 7255 (29.1) 7.5

Non-Hispanic White A 7773 (50.2) 9.5 A 3361 (21.9) 8.7 C 10,322 (69.1) 9.2
G 7711 (49.8) 8.5 G 11,961 (78.1) 9.0 T 4622 (30.9) 8.8

Non-Hispanic Black A 1864 (33.8) 5.0 A 1792 (32.9) 4.6 C 4133 (78.1) 4.7
G 3650 (66.2) 4.7 G 3662 (67.1) 4.9 T 1157 (21.9) 5.4

Hispanic A 1867 (43.3) 4.8 A 1311 (30.7) 4.0 C 2999 (72.1) 4.3
G 2445 (56.7) 4.3 G 2959 (69.3) 4.7 T 1159 (27.9) 5.2

Non-Hispanic Asian A 458 (30.6) 6.8 A 499 (33.8) 4.4 C 1135 (78.1) 4.2
G 1038 (69.4) 4.8 G 979 (66.2) 5.1 T 317 (21.8) 6.3

Genotype
All AA 2761 (25.1) 8.7 AA 1013 (7.3) 5.9 CC 6788 (51.8) 6.9

AG 6440 (48.6) 7.2 AG 5260 (37.8) 6.5 CT 5264 (40.1) 7.6
GG 4202 (26.3) 6.0 GG 7634 (54.9) 7.6 TT 1050 (8.0) 7.3

Non-Hispanic White AA 1944 (25.1) 9.9 AA 387 (4.8) 8.5 CC 3622 (47.8) 9.2
AG 3885 (50.2) 9.0 AG 2716 (34.1) 8.6 CT 3224 (42.5) 9.0
GG 1913 (24.7) 8.0 GG 4869 (61.1) 9.2 TT 733 (9.7) 8.0

Non-Hispanic Black AA 321 (11.6) 5.6 AA 300 (10.3) 4.3 CC 1622 (60.5) 4.6
AG 1222 (44.3) 4.7 AG 1296 (44.6) 4.5 CT 942 (35.2) 5.2
GG 1214 (44.0) 4.6 GG 1309 (45.1) 4.9 TT 115 (4.30 5.4

Hispanic AA 421 (19.5) 6.2 AA 233 (10.4) 4.3 CC 1090 (51.7) 3.8
AG 1025 (47.5) 3.6 AG 903 (40.2) 3.5 CT 857 (40.6) 5.5
GG 710 (32.9 4.8 GG 1112 (49.5) 4.9 TT 163 (7.7) 4.3

Non-Hispanic Asian AA 75 (10.0) 6.7 AA 93 (11.9) 4.3 CC 454 (61.8) 4.2
AG 308 (41.2) 6.8 AG 345 (44.1) 5.2 CT 241 (5.3) 5.4
GG 365 (48.8) 2.7 GG 344 (44.0) 5.2 TT 734 (5.3) 10.3
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Table 3. Associations between hearing loss and allele and genotype of rs4680.

SNP Model * β Estimates (95% CI) Weight

rs4680 Allele (A vs. G)
— Non-Hispanic White 0.11 (−0.01–0.22) 72.9%

Non-Hispanic Black 0.11 (−0.16–0.39) 12.9%
Hispanic 0.11 (−0.20–0.42) 10.2%

Non-Hispanic Asian 0.61 (0.11–1.10) 4.0%

Meta-analysis 0.13 (0.04–0.23)
p value 0.0101

Genotype (additive model)
(reference: GG)

Non-Hispanic White 0.12 (0.01–0.24) 72.9%
Non-Hispanic Black 0.10 (−0.17–0.38) 12.8%

Hispanic 0.11 (−0.20–0.41) 10.4%
Non-Hispanic Asian 0.62 (0.12–1.12) 3.9%

Meta-analysis 0.14 (0.04–0.24)
p value 0.0061

* The allelic and genotypic association models were evaluated using regression (additive model) adjusted for age,
sex, education level, smoking status, and household income by racial/ethnic groups.

3.3. Frequency of Genotype and Genotypic Association with Hearing Loss

The prevalence of hearing loss by allele and genotype is presented in Figure 1a,b for
rs4680, Figure S1 for rs1800497 and Figure S2 for rs12945042. The prevalence of hearing
loss for individuals who carried “GG”, “GA”, and “AA” genotypes in rs4680 was 6.0%,
7.3%, and 8.7%, respectively, which conforms with a genetic additive model. The rs4680
(effective allele A) is significantly associated with a higher prevalence of hearing loss
(p = 0.0061, Table 3). No genotypic associations for rs1800497 and rs12945042 were identi-
fied (Table S1). Additionally, no gene-gene or gene-environment interactions were observed.
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Figure 1. Prevalence of hearing loss by allele and genotype of rs4680 (a missense variant in catechol-
O-methyltransferase): (a) allele; (b) genotype.

3.4. COMT Protein Structure

The variant rs4680 (COMT) is a missense variant from a guanine (G) to adenine (A)
substitution in the DNA nucleotide sequence resulting in a valine (Val) to methionine
(Met) amino acid substitution at the position 158. I-TASSER predicted the possible protein
structure based on an amino acid sequence with V158M. The predicted protein structure was
different from the wild type (Figure 2a–c) with a moderate change in the protein structure.
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Val: valine.

4. Discussion

Add Health is an ongoing, nationally representative longitudinal study of social,
behavioral, and biological factors in health and developmental trajectories from early
adolescence into adulthood. The participants in Wave IV were 24–32 years old. We analyzed
associations between hearing loss and three measured single nucleotide polymorphisms
(SNPs) in three candidate genes. We found that rs4680 (catechol-O-methyltransferase,
COMT, Gene ID: 1312) is associated with an increased prevalence of hearing loss.

COMT encodes an enzyme that is involved in the inactivation of catecholamine neuro-
transmitters and is highly expressed in sensory hair cells of the inner ear [15]. In addition,
rs4680 (COMT) is nonsynonymous with a guanine (G) to adenine (A) substitution in the
DNA nucleotide sequence resulting in a valine (Val) to methionine (Met) amino acid substi-
tution. rs4680 G > A influences COMT enzyme activity (AA with low, AG with medium, GG
with higher enzyme activity) [31,32]. A major function of COMT is to regulate dopamine
levels that influence the processing of auditory signals within the mammalian cochlea,
which is therefore directly linked to the function of sensory hair cells [15]. An enzyme,
LRTOMT2, has a 60% similarity with COMT (212 conserved amino acids including the
substrate-binding region) and functions as a catechol-O-methyltransferase, which has been
shown to be essential for auditory function in mice and humans [15]. Two intron variants
(rs4646316, rs9332377) and their haplotypes are associated with cisplatin-induced hearing
loss [17]. The haplotypes rs4646316 G and rs9332377 A carry a low-activity synonymous
COMT variant, rs4818, which has an association with cisplatin-induced hearing loss and
confers an 11-to-18-fold reduction in COMT protein levels due to alterations in the mRNA
secondary structure [33]. The missense variant of rs4680 is in 62 base pairs with rs4818
(synonymous variant), and both are in a strong LD with r2~0.70 [34]. This suggests that the
hearing loss may be related to increased S-adenosylmethionine through a reduced COMT
activity [17].

Following the discovery of genetic association, function studies are a critical next step.
Based on the sequence-to-structure-to-function paradigm, I-TASSER was developed as an
online platform for protein structure and function prediction [28]. The identified genetic
variant in this study was missense. Amino acid sequences of both wild and mutation
types in V158M were uploaded onto the I-TASSER server to predict protein structures
and were aligned in PyMOL to compare wild-mutation protein structures. The different
protein structures between wild and mutation in V158M (rs4680, COMT) led to predicted
changes in the protein function, which could result in an altered COMT activity. To verify
this hypothesis, eQTL analysis was performed in 268 liver biopsy samples and 16 SNPs in
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COMT, which showed that rs4680 G > A had the strongest association, explaining 20.2% of
the variance in the level of activity [35].

One potential limitation of this study is that self-reported hearing loss was used to
estimate the association with a missense variant in COMT. Importantly, the self-reported
hearing loss question used in the Add Health study is identical to the phrasing of the
question on reported hearing loss that is used and analyzed in other major U.S. population-
based health surveys [4]. In population-based studies, self-reported hearing loss is much
more commonly available than audiometric threshold measures. The use of self-reported
hearing loss as an appropriate phenotypic measure has been demonstrated [9]. Investiga-
tions based on audiometric thresholds of hearing loss may be conducted in the future to
replicate the findings in this report.

In summary, we analyzed data from Wave IV of Add Health, a population-based
longitudinal cohort study, and identified a missense variant, rs4680 G > A, which was
significantly associated with an increased prevalence of hearing loss. Compared to the
wild type, this missense variant led to a protein structure change that may cause hear-
ing loss through an increase in S-adenosylmethionine levels resulting from a reduced
COMT activity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10112756/s1, Table S1: Associations between hearing
loss and allele and genotype of rs1800497 and rs1800497; Figure S1: Prevalence of hearing loss
by allele and genotype of rs1800497; Figure S2: Prevalence of hearing loss by allele and genotype
of rs12945042.
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