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Abstract: Vitiligo is a complex disorder with an important effect on the self-esteem and social life of
patients. It is the commonest acquired depigmentation disorder characterized by the development
of white macules resulting from the selective loss of epidermal melanocytes. The pathophysiology
is complex and involves genetic predisposition, environmental factors, oxidative stress, intrinsic
metabolic dysfunctions, and abnormal inflammatory/immune responses. Although several therapeu-
tic options have been proposed to stabilize the disease by stopping the depigmentation process and
inducing durable repigmentation, no specific cure has yet been defined, and the long-term persistence
of repigmentation is unpredictable. Recently, due to the progressive loss of functional melanocytes
associated with failure to spontaneously recover pigmentation, several different cell-based and cell-
free regenerative approaches have been suggested to treat vitiligo. This review gives an overview of
clinical and preclinical evidence for innovative regenerative approaches for vitiligo patients.
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1. Introduction

Vitiligo is the commonest acquired pigmentary disorder, affecting 0.1–2% of the popu-
lation worldwide [1,2], with no incidence difference between male and female [3]. While
it can affect people of all ages, vitiligo appears more frequently before 20 years of age [4].
It is characterized by the progressive disappearance of skin melanocytes resulting in cos-
metically white patches of skin depigmentation, occasionally associated with premature
whiting, or graying of the hairs, eyelashes, eyebrows, beard, or mucous membranes, usually
without clinical symptoms [1]. However, vitiligo has devastating impacts on the quality
of life in affected individuals. Patients with vitiligo present lowered self-esteem, which,
in turn, affects social life, frequently culminating in the development of depression [5].
Clinically, vitiligo is broadly categorized into segmental vitiligo (characterized by the
unilateral distribution of lesions matching a dermatome) and nonsegmental vitiligo (gen-
eralized, including acrofacial) [6–8], mixed, and unclassified vitiligo (focal/mucosal) [9].
Rare subtypes comprise vitiligo punctata, follicular vitiligo, and hypochromic vitiligo [7].
The distinction between different subtypes of vitiligo is important for the prognosis and for
treatment choice [10]. However, the choice of therapy considers several different parame-
ters including the distribution and extension of the diseases, the patient’s age, the eventual
presence of comorbidities, and patient preference. In vitiligo, treatment is challenging
because of a complex multifactorial disease whose precise etiology is still unclear. The
intricate disease puzzling combines multiple interconnected elements including genetic
predisposition, environmental triggers, oxidative stress, intrinsic metabolic dysfunctions,
and abnormal inflammatory/immune responses [6,11,12] (Figure 1). Several studies re-
ported that over-activation of intracellular stress-related pathways in vitiligo melanocytes
leads to the paracrine release of damage-associated molecular patterns (DAMPs) that lo-
cally stimulate the skin innate immune system that precedes adaptative immune response
against melanocytes [13–15]. Moreover, melanocytes act as a sensor of specific pathogenic
molecules produced by surrounding stressed cells via pattern recognition receptors (PRR)
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and then alert macrophages, neutrophils, fibroblasts, and keratinocytes through the release
of interferon (IFN) type I and a wide range of cytokines and chemokines [16]. Melanocytes
carry TLR 2, TLR4, TLR6, TLR7, TLR9, and TLR10, providing the potential to respond to
pathogen infections and alarmins [17,18]. However, the intrinsic capacity to enhance inflam-
mation makes melanocytes exposed to immune-based destruction [17]. The involvement
of natural immunity in vitiligo is also supported by the more frequent presence of genetic
DNA sequence variants in a critical innate immunity regulator gene, the NOD-like receptor
1 (NALP1), which has been also confirmed by immunohistochemical analysis [19]. Further,
NLRP3 inflammasomes are activated in response to ROS [20] and mitochondrial stress [21],
leading to subsequent processing of proinflammatory cytokine precursors (particularly
IL1β and IL18) into mature forms that are subsequently secreted [22]. Expressions of NLRP3
and downstream cytokine IL1β are significantly increased in perilesional keratinocytes of
patients with vitiligo. Correspondingly, the amount of circulating IL-1β correlates with
disease activity and severity [23]. Macrophages, natural killer (NK) cells, and dendritic
cells (DCs) all infiltrate active vitiligo lesional and to a lesser extent nonlesional skin [24].
In addition, the presence of high levels of the serine protease, granzyme B in the cytoplas-
mic granules of NK cells in vitiligo skin, is evidence of the remarkable cytotoxic capacity
of these cells [24]. DCs present melanocyte-derived peptides to T cells, leading to their
differentiation and production of interferon-γ (IFNγ) [25]. IFNγ is the key mediator that
leads to the activation of the immune effector STAT1 by Janus kinases (JAK) 1 and 2. IFNγ-
dependent genes, such as (C-X-C chemokine ligands) CXCL9 and CXCL10, are responsible
for the recruitment of autoreactive CD8+ T cells, expressing the C-X-C chemokine receptor
3A (CXCR3A) [26]. In vivo studies using vitiligo mouse models also support the critical
role of the IFNγ/CXCR3/CXCL10 signaling [27–29]. Analysis of the transcriptional profile
of lesional vitiligo skin demonstrated an IFNγ-specific signature [28]. Independently of
their roles in regulating the immune system, IFNγ and TNFα induce melanocyte detach-
ment through the increase in keratinocyte-derived MMP9, the activation of JAK/STAT
in melanocytes, E-cadherin cleavage, and consequent melanocytes detachment from the
epidermal basal layer [30]. The process of melanocyte detachment unaccompanied to active
inflammation has been also related to anomalous expression of the melanoma inhibitory ac-
tivity (MIA) protein in achromic vitiligo patches since MIA perturbs the normal attachment
of melanocytes to the basal membrane mediated by integrin α5β1 [31]. In vitro, persistent
exposure to IFNγ stimulation reduces pigment production and induces viability loss and
senescence in healthy melanocytes [32–37]. Conspicuous CD8+ and CD4+ T cells infiltrate,
and their related cytokines have been found at the margins of active lesions [38]. However,
a major role of CD8+ T cells in melanocyte loss has been demonstrated since CD8+ T cells
were found more abundant in patients with active disease compared to patients with stable
disease or healthy controls [39,40]. Further, the frequent melanogenic antigen-positive
CD8+ T cells in the blood of vitiligo patients correlate with disease severity [41,42]. In
addition, suppression of immune tolerance in vitiligo likely implies an altered propor-
tion and/or function of effector and regulatory T cells (Tregs) [43]. In the skin of healthy
subjects, Tregs represent about half of the CD4+ T cell population [44]. In vitiligo, a signifi-
cantly lower percentage of Tregs is repeatedly measured in perilesional skin [45], which
has been connected to reduced levels of Treg growth and differentiation factors TGFβ
and IL10 [46]. The leading hypothesis is that in vitiligo, the organ-specific autoimmunity,
anticipated by innate immunity activation, is caused by persistent endogenous cellular
stress. Oxidative stress is retained one of the most crucial initiators of vitiligo [12,47].
Augmented reactive oxygen species (ROS) could be due to an abnormal intrinsic ROS
generation or impairment of detoxifying apparatus, as well as extrinsic factors, such as
sunburns, trauma, environmental pollutants, and phenolic compounds [47]. Addition-
ally, the activity of the melanogenic biosynthetic pathways augments the risk of oxidative
stress since melanin synthesis (particularly pheomelanin) involves oxidation reactions
and superoxide anion (O2

−) and hydrogen peroxide (H2O2) generation [48,49]. In vitiligo,
oxidative stress is associated with the accumulation of immature/misfolded proteins in the
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endoplasmic reticulum, which lowers the rate of protein synthesis, strengths the autophagic
recycling and other degradative pathways, and activates the unfolded protein response
(UPR) [50–52]. As a consequence of increased intracellular oxidative stress and metabolic
alterations, vitiligo melanocytes from apparently healthy skin display modification of
intracellular signal transduction pathways referable to stress-induced premature senes-
cence [52,53]. The acquisition of the senescent phenotype is characterized by the pro-
duction of many proteins among the senescence-associated secretory phenotypes (IL6,
matrix metalloproteinase 3 (MMP3), cyclooxygenase-2, insulin-like growth factor-binding
protein 3 (IGFPB3 and 7) suggesting a possible premature degenerative process that cul-
minates in melanocytes disappearance [53,54]. Melanocytes in patients with vitiligo have
an overall greater vulnerability to oxidative damage and UV radiation compared to the
normal controls [53,55,56]. Several studies documented high concentrations of H2O2 and
peroxynitrite and reduced levels of the antioxidant enzymes catalase, glutathione reduc-
tase, thioredoxin/thioredoxin reductase, and methionine sulfoxide reductases in vitiligo
skin [57–59]. Correspondingly, melanocytes isolated from nonlesional skin and cultured
in vitro have lower levels of catalase, heme-oxygenase (HO-1), superoxide dismutase 2
(SOD2), and ubiquinone expression [53,60]. Further evidence for the primary role of oxida-
tive stress in vitiligo arises from genetic studies [61]. Particularly, since in vitiligo there are
abnormalities in the location and function of Nrf2 as well as polymorphisms of the corre-
sponding gene that increase the risk of this disease, molecules targeting Nrf2 are currently
under investigation [62,63]. The absence of melanocytes in depigmented areas impacts
skin homeostasis, skin architecture, dermal neural responses, and photoadaptation [64–67].
Keratinocyte cell cultures from involved vitiligo skin have a lower proliferative potential
than uninvolved skin [68] and increased apoptosis propensity [69]. However, the demon-
stration that most of the vitiligo-specific features are already present in normal-appearing
skin [70] suggests that cells other than melanocytes, particularly for keratinocytes and
fibroblasts [71–75], are involved in vitiligo pathogenesis. Nonlesional vitiligo keratinocytes
demonstrated altered differentiation capacity that correlated to deregulated biosynthe-
sis and metabolism of skin barrier lipids in normal-appearing skin [76]. Moreover, vi-
tiligo keratinocytes share with vitiligo melanocytes impaired energy metabolism, cul-
minating in lower production of ATP and compensatory overactivation of glycolysis-
related enzymes [75,76]. Once stimulated by stressful events or inflammatory media-
tors, keratinocytes release CXCL9, CXCL10, and CXCL16, attracting cytotoxic CD8+ T
cells [29,77,78]. Melanocyte function is also deeply influenced by the crosstalk with der-
mal cells [74,79,80]. A marked decline in fibroblast-derived growth factors sustaining
melanocytes’ physiological activities may contribute to the occurrence of vitiligo disorder.
In vitiligo lesions, the levels of bFGF, SCF, ET-1, GM-CSF, and α-melanocyte-stimulating
hormone (α-MSH), released by keratinocytes and fibroblasts, are lower compared to healthy
controls. At the same time, increased MC1R expression on melanocytes membrane in the
nonlesional skin of vitiligo patients matching to controls may represent an attempt to re-
store normal pigmentation [81,82]. Furthermore, plasma levels of α-melanotropin are lower
in vitiligo patients [83], confirming a functional impairment of the main promelanogenic
pathways. Of interest, besides the function of regulating pigmentation, additional functions
for α-MSH have been documented in the skin, including antagonist actions on inflamma-
tory and fibrotic responses [84–86]. Thus, exogenous supplementation of MC1R agonist is
a possible therapeutic strategy for vitiligo. Like vitiligo melanocytes, related nonlesional
fibroblasts showed some senescent-associated features, including enlarged shape, higher
expression of α-smooth muscle actin (α-SMA) and extracellular matrix proteins such as
fibronectin and vimentin [74]. Dermal cells also contribute to immune system stimulation.
IFNγ-responsive fibroblasts alone are sufficient for local recruitment of CD8+ T cells that tar-
get epidermal melanocytes. According to these data, this study proposed that the regional
distribution of highly IFNγ-responsible fibroblasts may explain the pattern distribution
of vitiligo disease [87]. Despite the numerous medical and UV-based therapies available
for vitiligo, no treatment effectively promotes complete and durable repigmentation in
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all patients. Thus, recently, cellular, and acellular strategies in the field of regenerative
medicine have received major attention. This review gives an overview of clinical and
preclinical evidence for innovative regenerative interventions for vitiligo patients.
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Figure 1. Combined factors concurred with vitiligo pathogenesis. Graphic representation of the
different alterations of vitiligo skin. Normal-appearing vitiligo skin is characterized by a thicker
epidermis and a progressive loss of functional melanocyte rate. Oxidative stress in keratinocytes leads
to the production of several inflammatory mediators. Intrinsic metabolic defects increase reactive
oxygen species (ROS) production and decrease ATP content involving dermal and epidermal cells. In
addition, vitiligo cells present reduced antioxidant ability and release senescence-associated proteins.

2. Therapeutic Approaches for Vitiligo Patients

Vitiligo treatments aim to provide good cosmetic outcomes, extend remission periods,
prevent recurrences, and ensure patient satisfaction. Based on the described scenario, cur-
rent medical strategies basically aim to offer antioxidant supplementation, immune system
modulation, and melanocyte precursor mobilization. Recently, due to the progressive loss
of functional melanocytes associated with failure to spontaneously recover pigmentation, it
has been proposed to treat vitiligo as a degenerative disease [53,88]. Accordingly, along
with pharmacological treatment, several cell-based and cell-free regenerative approaches
have been proposed.

2.1. Medical Therapies

Commonly used repigmentation therapies for vitiligo include topical immunosuppres-
sor agents (corticosteroids, calcineurin inhibitors, calcipotriol) and UV light (whole-body
irradiation or UV targeted to lesions). Corticosteroids repress the cellular immune response
and melanocyte destruction while stimulating melanocyte regeneration and melanogen-
esis [89]. Topical corticosteroids are the foremost treatment for localized vitiligo, while
low-dose systemic corticosteroids are used for the stabilization of the rapidly progressive
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disease. Topical calcineurin inhibitors (tacrolimus and pimecrolimus) are preferred to
corticosteroids for patients with involvement of the face or areas at high risk for skin atro-
phy [90]. Oral cyclosporine is employed as it can contract T cell activation due to inhibition
of IL-2 production [91]. Targeting oxidative stress aims to modulate the integrated network
inside the cells deputed to the ROS scavenger. Topical application of Pseudocatalase, a
complex able to produce O2 and H2O from H2O2 at a rate higher than catalase, aims to
recover the deficiency of catalase activity in vitiligo skin [57]. The efficacy of this treatment
consists mostly in stopping disease progression. Regarding the possibility of inducing
pigmentation recovery, however, no large clinical trials have been published. Systemic
vitamin E was demonstrated to improve the NBUVB-induced pigmentation rate, reduc-
ing the UV dosage [92]. Vitiligo can be treated by different modalities of phototherapy.
Phototherapy is used for treatment of extensive vitiligo involving more 20% of the skin
surface for patients with refractory disease. UV acts both as an immunomodulator and as a
stimulator of resident melanocytes precursors. Among noninvasive treatments used for
vitiligo are phototherapy psoralen plus ultraviolet A (PUVA) and narrowband ultraviolet B
(NBUVB). Multiple studies have proven the efficacy and safety of light therapy, such as
308 nm excimer laser and 308 nm excimer lamp, in localized, nonsegmental vitiligo [93].
Excimer therapy offers the advantage of focusing the irradiation on the affected lesions,
thus reducing the total cumulative UV dose, and providing a higher penetration depth
without the requirement of pharmaceutical photosensitization, as in the case of PUVA.
However, the procedure is laborious and expensive. Phototherapy is frequently associated
with medical and surgical treatments for enhanced and accelerated repigmentation. The
synthetic analogue of α-MSH, Afamelanotide (also called Melanotan I), in association
with phototherapy, demonstrated some positive effects due to its capacity to promote
melanocyte proliferation and pigment production [94]. Enhancing the therapeutic effect of
NBUVB, Afamelanotide reduces the cumulative UV dose required [95]. IFNγ-chemokine
axis has been identified as a potential pathway in the initiation and progression of vi-
tiligo [96]. IFNγ activates the JAKs/STAT pathway, increasing the expression of CXCR3
and its ligands CXCL9, CXCL10, and CXCL11, responsible for CD8+ T cell recruitment and
apoptosis in melanocytes. Thus, the use of topical and systemic JAK inhibitors (tofacitinib,
ruxolitinib, and baricitinib) is currently under intense clinical investigation (phase 2 and
phase 3 trials) [97]. JAK/STAT inhibitors stimulate Hedgehog and Wnt signaling in epi-
dermal pigmentation, both involved in the migration, proliferation, and differentiation
of melanocytes [98]. Topical tofacitinib prevents the increase in the size of the patch and
induces repigmentation when applied as a 2% topical solution twice daily, whereas approx-
imately 50% repigmentation was seen in 45–50% of the subjects in a study investigating
1.5% topical ruxolitinib solution applied once and twice daily [99,100]. Even if both to-
facitinib and ruxolitinib have shown better results in photo-exposed sites or associated
with low-level NBUVB therapy [101,102], the impact of phototherapy associated with JAK
inhibitors is still controversial.

2.2. Introduction to Interventional Therapies

From a general point of view in humans, the term “regeneration” is used to describe
the replacement of specialized tissue by proliferation and differentiation of undamaged
cells. However, in the skin and mucosa, normal replacement of individual cells is a
continuous process, even in absence of specific stimuli. In the case of vitiligo, lack of
repigmentation suggests that persistent stress-induced melanocyte damage may demand
a permanent regenerative request leading to an abnormal turnover of melanocyte stem
cells, resulting in the loss of regeneration ability. On the other hand, the lack of sponta-
neous skin color recovery may reflect the persistent loss of physiological skin homeostasis,
suggesting that in white areas the entire microenvironment needs to be treated or re-
programmed to achieve normal pigmentation [103]. Repair is an adaptation to loss of
tissue integrity and leads to production of scar tissue, sometimes without complete re-
covery of the normal structure and function. Thus, considering the endpoint, white skin,
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vitiligo lesions may be considered as a “scar following injury”, where injury is the au-
toimmune attack. Hence, for patients with stable disease pigmentation, recovery may
take advantage of regenerative medicine tools. Further, the demonstration that vitiligo
is a disease not restricted to melanocytes motivates the development of therapies that
can regenerate the whole organ (including dermis, hypodermis, and annexes) and de-
crease reliance on transplantations. One of the challenges is to establish how to target
the disease-specific microenvironment and how to improve cell graft persistence since
a hostile microenvironment could also be improper for cell engraftment. The biological
bases for regenerative therapeutic approaches are mostly two: enhancement of the tissue-
intrinsic regenerative capacity of the receiving tissue and cell replacement by grafting.
Correspondingly, repigmentation of vitiligo requires an increase in the number and migra-
tion of melanocytes to the depigmented epidermis. This could be realized by stimulating
resident melanocyte precursors or by autologous melanocyte transplantation. However, the
intrinsic defect may limit the use of autologous melanocytes and precursor cells in vitiligo
due to the high vulnerability to stressful conditions and consequent reduced ability of
regeneration [104].

3. Grafting Procedures (Skin-to-Skin Graft)

Surgical therapeutic modalities are effective interventions for patients with stable
vitiligo who have experienced failure of medical treatment. Surgical procedures aim to
replace the melanocytes with ones from a normally pigmented autologous donor skin. The
first graft technique used was the transplantation of an epidermal sheet into the vitiliginous
patch [105,106]. Then, grafting for vitiligo evolved in more sophisticated techniques, some-
times supported by laboratory-assisted in vitro culture. However, culturing epidermal
cells is a delicate process due to the delicacy of keratinocytes and melanocytes. Surgical
modalities are weakly recommended interventions due to their invasiveness and the high
requirements in terms of laboratory equipment and professional expertise. A prerequisite
for successful repigmentation is the accurate selection of patients. In principle, however,
it is indicated for all stable forms (disease inactivity ranging from 6 months to 4 years is
recommended) of segmental and focal vitiligo [107] in absence of Koebner phenomenon
history and keloidal tendency if conventional therapies demonstrated unsuccessful [108].
Grafting techniques are usually combined with other medical treatment modalities, includ-
ing phototherapy (PUVA or PUVAsol therapy) [109,110], narrowband UVB (NBUVB) [111],
topical immunosuppressors [112], and even excimer laser treatment [113] to enhance
repigmentation. Surgical transplantation modalities for vitiligo patients are classified
according to the nature of the grafted material (punch graft, split-thickness skin grafts,
smashed skin grafting, blister graft) and cellular grafts (cultured and noncultured cells)
(Figure 2).

3.1. Tissue Graft
3.1.1. Epidermal Sheet Transplantation

Intraoperative epidermal sheet transplantation represents the first surgical method
to treat vitiliginous patches [105,106]. Based on the clinical experience of epidermal cell
cultures for burns and chronic nonhealing wound purposes, layered sheets have been also
used for vitiligo patients obtaining good repigmentation and satisfying color matching
with the surrounding skin [114,115]. The disadvantage of this method resides in the cost
and the requirement of highly qualified labor that limit layered sheet usage.
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3.1.2. Minipunch Graft

A punch graft is one of the most used techniques since it is economical and easy to
perform even with minimal equipment. Epidermal–dermal punches of 1–2 mm sizes are
collected from a donor uninvolved skin to be immediately transplanted into the depig-
mented area. The efficacy of repigmentation is assessed at 90% [116]. The anatomic site
selected for harvesting the punch deeply influences the clinical results [117,118]. Adverse
effects include hypertrophic scarring, halo or complete depigmentation of the graft, and
poor cosmetic outcome due to color mismatch between donor and recipient skin. To test
the individual treatment outcome and the effective disease stability, the transplantation
of a few minigrafts onto the recipient area before the main surgical procedure has been
proposed [115]. The last stage of treatment includes phototherapy, which promotes repig-
mentation [119]. Kato and co-authors reported a significantly greater area of repigmentation
in patients with segmental vitiligo compared to the generalized form [117]. Abdallah et al.
reported the number of cytotoxic T lymphocytes and lymphocyte function-associated
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antigen-1 (LFA-1)-positive cells as a marker of poor outcome, indicating the autoimmune
reaction against grafted melanocytes as major problem impacting procedure outcome [120].
Immunohistochemical analysis of biopsies collected in repigmented skin of vitiligo patients
at different time points after punch graft showed that melanocytes move easily from the
edges of the grafted skin toward the depigmented areas in the case of smaller punches [121].
Thus, the use of large punches is not recommended.

3.1.3. Suction Blistering

Suction blister epidermal grafting is used to obtain very thin skin grafts by causing a
split at the dermo–epidermal junction. This technique creates a subepidermal bulla at the
donor site from which the roof is surgically removed and transplanted onto the recipient
site. Generally, inducing the bulla is usually obtained by applying a cup or syringe under
constant pressure. The blistering process persists from 30 min to 3 h, and it is followed by
the surgical removal of the subepidermal bulla, which is grafted in the recipient area. One
or two days before the transplantation, the recipient area is prepared using liquid nitrogen
freezing, ablative lasers dermabrasion, or suction blisters [122]. This method is simple and
safe and can be successfully used around the sensitive area of the mouth and eyelids [123].
The typical complications are temporary hyperpigmentation or color mismatching. To
accelerate repigmentation, complementary postoperative NBUVB or PUVA phototherapy
can be applied [109].

3.1.4. Split-Thickness Skin Graft

Similarly to other surgical techniques, in split-thickness skin grafts, the site of the
graft collection is most often the area of the thighs, buttocks, back, arms, or forearms [124].
Basing on the thickness of the tissue collected for transplantation, we can distinguish thin
(0.15–0.3 mm), intermediate (0.3–0.45 mm), and thick (0.45–0.75 mm) grafts. Ultrathin
grafts (0.08–0.15 mm) are also used with satisfying results since less hypopigmentation of
the donor site has been observed after healing is complete [124]. Ultrathin skin grafting
is not definitively retained by the recipient site, probably due to the complete absence of
dermal tissue [125], and usually falls off after 2 weeks, leaving uniform repigmentation. It
was reported that the use of thinner skin flaps, compared to thicker grafts, was associated
with fewer side effects [126]. Also in this case, the recipient site is prepared by using a
dermabrader, ablation laser, or cryotherapy, separating the epidermis from the dermis [127].
Despite the fact that the technique concurs to the treatment of a relatively extended region
of hypopigmentation rapidly, a split-thickness skin graft has some disadvantages, as well
as an insufficient color and texture correspondence between the treated and donor area:
disturbance of sensation within the recipient area could develop displacement of the grafts,
milia formation, perigraft depigmentation, and imperfect scarring at recipient or donor
areas [128,129].

3.1.5. Hair Follicle Graft

Skin precursor of the melanocyte lineage are localized in the hair bulge as well as in
the epidermis to pigment the hair and skin, respectively [130–132]. However, since clinical
observation and experimental data concluded that repigmentation of vitiligo skin occurs
primarily from hair follicle melanocytes, either spontaneously or after UV therapy and
punch grafting [133–135], hair follicle grafting has received greater attention. Moreover, in
vitiligo patients, repigmentation develops best in the areas with a higher density of hair folli-
cles (face, arms, forearms, legs, back, and abdomen) compared to depigmented areas where
hair follicles are absent or in low density (palms, soles, genital sites, and mucosal) [136,137].
Follicular melanocyte stem cells are maintained in an immune-privileged location far from
the skin surface [130], suggesting that are naturally less prone to premature exhaustion.
To obtain hair follicles for transplantation, small rectangular or punch fragments of skin
should be collected, usually from the scalp. Then the follicles are separated and finally
transplanted into previously formed wells, located at regular intervals of 3–5 mm in the
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affected area [138]. Adjuvant treatment with calcineurin inhibitors, corticosteroids, or
photochemotherapy with psoralen and natural sun exposure are frequently employed as
adjuvant treatments.

3.2. Cellular Graft

Unlike tissue grafting, cellular grafting permits treatment of a depigmented skin area
significantly larger than the harvesting area. Particularly, in the case of in vitro expansion,
the material can be expanded and long-term cryopreserved to facilitate future grafts.

3.2.1. Noncultured Epidermal Cells Suspension

This technique was firstly proposed by Gauthier and Surleve-Bazeille in 1992 [139].
While several different modifications of the original method have been proposed, the
procedure consists of taking a small fragment of normally pigmented skin, usually from
the occipital area. Then the harvested skin obtained from the donor site is enzymati-
cally digested to separate the epidermis from the dermis, obtaining a melanocytes and
keratinocytes mixed-cell suspension ready to be inoculated into the recipient area [140].
Since growth factors released by keratinocytes deeply influence melanocyte growth, it is
preferred not to separate the two cell lines. At the same time, the advantage is to limit
graft material manipulation. In noncultured cellular transplantation protocols, melanocytes
and keratinocytes are transplanted on the same day (hot trypsinization) or the next day
(cold trypsinization). A study published by Li and collaborators evidenced the beneficial
effect of repeated long-term trypsinization on the proliferation, differentiation capacity,
and purity of melanocyte colonies that could be used for clinical application in patients
with vitiligo [141]. Recently, the use of a single-enzyme solution (trypsin, collagenase, or
dispase) has been replaced by an increased number of commercially available kits that offer
more standardized reagents and protocols requiring less operative expertise [142]. The
main advantage of a noncultured epidermal cell suspension graft consists of the possibility
to treat a large area using a small sized portion of donor skin (1:10 donor–recipient size
ratio) [143]. In fact, the repigmentation outcome is like that of tissue grafts, even if starting
with a smaller donor area [144]. Long-term studies on patients with vitiligo receiving grafts
of noncultivated epidermal cells showed stable repigmentation in 93% of cases after an
average of four years [145]. Similarly, another study demonstrated stable repigmentation
five years after autologous noncultivated cells grafting in all patients (12/12) with segmen-
tal vitiligo, although in some cases, retransplantation was performed [143]. However, the
process itself is more forceful among younger patients [146]. Among the complications oc-
curring with this method were reported incomplete color matching as well as scarring and a
modification in the skin texture. Some authors also observed undesired hypopigmentation
on the donor site [142,145].

3.2.2. Cultured Melanocytes Graft

The improvement of the epidermal cells graft has made it possible to culture
melanocytes in a melanocyte-specific defined medium enriched with various factors. Af-
ter extracting single cells from skin fragments, melanocytes cultured for 3–4 weeks are
transplanted into the recipient’s skin. The procedure requires the support of specialized lab-
oratory equipment and staff with a consequent increase in the overall cost of the treatments.
The culture medium contains chemical mitogen and growth factors [147,148]. However,
some components contained in the culture medium may exert a promutagenic effect [149].
To avoid excessive use of chemicals, the use of keratinocytes and of a mesenchymal stem
cells feeder layer has been proposed [149]. Even if both cell types increase melanocytes
proliferation and migration, mesenchymal stem is preferred due to a lesser differentiation
propensity of melanocytes before grafting [150]. Studies comparing cultured and noncul-
tured melanocyte graft techniques are not conclusive since using different temporal end
points, inferior cosmetic results [151], and better [152] repigmentation have been reported.
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3.2.3. Noncultured Follicular Root Sheath Cells Suspension

Another technique that allows us to obtain melanocytes, melanocytes, and
keratinocytes precursors and hair follicle stem cells is based on the enzymatic extraction
from skin follicle units [153]. The preparation of material for grafting single-cell suspen-
sion in the follicular cell suspension method involves repeated cycles of trypsinization–
neutralization [154]. Excellent repigmentation with noncultured follicular root sheath
suspension has been documented by several studies [154–156]. Comparative trials did not
evidence differences in terms of cosmetic results between noncultured follicular root sheath
and epidermal noncultured cell suspension techniques [157,158]. In particular, the suspen-
sion includes not only pigment cells but also melanocyte stem cells, keratinocyte stem cells,
and hair follicle stem cells [159]. For better results, is indicated to collect hair in the anagen
phase from the occipital area of the scalp, preserving the hair follicles’ integrity. The site
to be treated is usually prepared using a dermabrader and, as a final step, is covered with
collagen [154]. Given the possibility of achieving very good clinical results, including color
match and the absence of scarring, this treatment’s results are attractive [154], although it
requires both high laboratory and high manual skills [156]. The amount of 15–25 follicular
units (about 300,000 to two million cells) in the form of a suspension is considered adequate
to treat about 20 cm2 of achromic skin [155].

3.2.4. Microneedling

The microneedling technique uses very thin needles to create microinjuries on the
skin, inducing reparative/regenerative processes similar to a wound healing response
with concomitant production of cytokines and mitogenic factor, including propigmen-
tary factors [160]. It is mostly used for skin rejuvenation [160]. Further, microneedling
procedures facilitate drug penetration through the stratum corneum [161]. Two differ-
ent studies reported effective repigmentation using microneedling in combination with
5-fluorouracil [162,163]. However, in another study microneedling in combination with
NBUVB phototherapy, tacrolimus, and topical latanoprost failed to confirm therapeutical
advantage [164]. Microchannels created by microneedling are for delivering cells in the
grafting procedure, enhancing their survival and persistence [165,166].

4. Regenerative Therapies Based on Nonmelanocytic Cells

The field of regenerative medicine encompasses numerous strategies to overcome
physiological as well as pathological limited regenerative capacity in adult humans. The
biological basis for regenerative therapeutic approaches is to enhance the intrinsic regen-
erative capacity of pathologic tissue or to replace damaged/missing cells by immature
committed cells or a pluripotent stem precursor cells graft.

4.1. Mesenchymal Stem Cell-Based Therapy
4.1.1. ADSCs

Adult mesenchymal stem cell-based therapy demonstrated effectiveness in some clin-
ical indications for both autologous and allogeneic purposes, thus becoming one of the
most promising therapies in the regenerative medicine field, including the dermatologic
one [167–170]. Blood, bone marrow, and adipose tissue represent important stem cell
resources for cell-based therapies [171]. Because of their accessibility, high cell number
availability, and noninvasive collection, adipose-derived stem cells (ADSCs) recently re-
ceived major attention from researchers and clinicians. In addition, ADSCs are more
resistant to stress-induced senescence than bone marrow-derived stem cells [172]. Their
multipotent differentiation potential toward various cell lineages [173–176] makes these
cells very useful in treating different pathological conditions. In vitro, in the presence of
trophic factors promoting melanocytic differentiation, ADSCs progressively acquire a bipo-
lar shape or a more dendritic morphology, like fully differentiated skin melanocytes, and
express major proteins involved in pigmentation (Microftalmia transcription factor, Mitf, Ty-
rosinase, tyrosinase-related protein 1, Trp1 and tyrosinase-related protein 2, Trp2) [176,177].



Biomedicines 2022, 10, 2744 11 of 21

Nevertheless, it is well documented that the therapeutic potential of the adipose tissue (and
associated mesenchymal stem cells) is largely ascribable to a multitude of bioactive factors
released by adipocytes and associated stromal cells that combines mitogenic and antiapop-
totic factors, cytokines, chemokines, and extracellular matrix components [178,179]. Hence,
the secretome’s ability to modulate multiple targets simultaneously demonstrated preclini-
cal and clinical competence in reversing pathological mechanisms of complex diseases such
as vitiligo [88,180]. Thus, the management of vitiligo might benefit from several properties
of ADSC including immune system modulation and antioxidant capacity. Mesenchymal
stem cells suppress T cell proliferation mediated by IFNγ/STAT1 signaling [181]. Grafting
procedures for vitiligo might benefit from the modulation of the immune response exerted
by ADSCs since the persistence of cytotoxic T cells is retained as the prime cause of disease
maintenance [6,182]. ADSC-based immunomodulation also includes the production of anti-
inflammatory IL10 and the induction of regulatory T cells (Tregs) [183,184]. Furthermore,
since the reduced release and function of growth factors/receptor signaling contributes
to melanocyte loss in vitiligo skin, the ADSC-derived growth factors could compensate
for the well-described impaired dermal-epidermal paracrine activity [180]. Kim et al.
demonstrated that in vitro cocultures with ADSCs increase melanocyte proliferation and
migration due to the secretion of bFGF and melanocyte growth factor (MGF) [150]. In addi-
tion to the possibility to use ADSCs as a feeder layer to prepare cultured melanocytes for
autologous grafting, in an animal model, the use of a mix of ADSC–melanocyte prepared
immediately before its clinical usage improved pigmentation efficiency compared to the
grafting of melanocytes alone [185]. ADSCs possess ROS-scavenging properties due to the
capacity to increase the expression and activity of SODs, GPx, catalase, and HO-1 in target
cells [88,174,186]. Considering chronic oxidative stress as a key player involved in vitiligo
pathogenesis, this ADSC peculiarity could represent a strategy to overcome the detrimental
effect of ROS. Thus, targeting a locally compromised microenvironment with adipose tissue
secretome might be used as a complementary agent to enhance transplantation efficacy in
patients undergoing an autologous melanocyte graft.

4.1.2. MUSE Cells

Alternative stem cells that may be suitable for treating vitiligo are multilineage-
differentiating stress-enduring (MUSE) cells [187]. They can be isolated from human
dermis and adipose tissue using the embryonic antigen-3 marker selectively expressed by
undifferentiated human embryonic stem cells [188]. MUSE cells are normally preserved
in a quiescent state but can be specifically activated by stressful inputs both in vivo and
in vitro [187]. MUSE cells can self-renew and regenerate cells from all three germ layers
while being nontumorigenic. Thus, MUSE cells appear to be a strategic tool for skin regen-
erative purpose due to their successful differentiation into keratinocytes, fibroblasts, and
melanocytes in vitro [189]. Ex vivo studies have identified factors that induce MUSE cells
to differentiate into fully differentiated melanin-producing melanocytes [190] that, when
incorporated into three-dimensional skin culture models, correctly localize at the basal
layers of the epidermis [187,188]. Of interest, a recent study demonstrated the existence
of melanocyte precursor cells residing in human subcutaneous adipose tissue and the
possibility to differentiate these cells into mature, fully differentiated melanocytes [191].

4.2. Cell-Free Approaches
4.2.1. PRP

Platelet-rich plasma (PRP) is a biological product, a portion of a plasma with a platelet
concentration above the baseline containing a great source of cytokines, growth factors, and
other biologically active substances with a regenerative potential [192]. Autologous PRP,
originally designed for wound healing and dermatological cosmetic problems, has recently
received considerable attention for application for several other diseases, especially in the
dermatological field [167,168,193,194]. Side effects of PRP therapy are few, consisting of
irritation, pain at the recipient site, infections, and blood clots [192]. Once activated platelets
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release from their α granules, growth factors with a capital role in tissue hemostasis and
repair such as CTGF (conjunctive tissue growing factor), EGF (epidermal growing factor),
FGF2 (fibroblast growing factor), FGF9, IGF-1 (insulin growing factor), PDGF-αα (platelet-
derived growing factor), PDGF αβ, PDGF ββ, TGFα (transforming growing factor), TGFβ1,
TGFβ2, and VEGF (vascular endothelial growing factor). However, PRP preparation may
as well include undesired factors. For example, contamination with erythrocytes when
collecting PRP produces unwanted inflammatory reactions at the recipient site since they
contain a high amount of ROS [195]. The usage of PRP treatment in vitiligo is motivated
by the concentration of growth factors considered key players in melanocyte biology such
as bFGF, SCF, and TGFβ (Parambath); by the broad immune system modulatory effect;
and by the peculiar presence of extracellular matrix component fibrin, fibronectin, and
vitronectin that serve to achieve cell adhesion between epidermal and dermal cells [196].
Notably, PRP could stimulate stem cells reservoir [197]. A report by Mahajan and colleagues
presented that treatment with intralesional PRP injections, consisting of six injections at
two-week intervals, is effective for chronic localized vitiligo patients who did not respond
to traditional therapies. Kadry et al., collecting clinical and histopathological data, demon-
strated that PRP and PRP combined with combined fractional CO2 laser induced significant
repigmentation of vitiliginous lesions except for some resistant lesions on the hands and
feet [198]. The efficacy of PRP-based combination therapies has been further confirmed
using PRP plus NBUVB [199]. The combined therapies achieved the best results [200].
Similarly, PRP ameliorated the outcome of autologous graft of noncultured epidermal cell
suspension [201]. However, no standard protocols regarding PRP preparation exist, mak-
ing it difficult to compare results from different clinical studies. Recently, a meta-analysis
considered six similar studies comparing PRP plus 308 nm excimer laser therapy to 308 nm
excimer l therapy alone. Authors concluded that combination therapy offers a significant
benefit in terms of repigmentation and recurrence rates compared to monotherapy [202].

4.2.2. Stem Cell Secretome and Extracellular Portion of Lipoaspirate

Acellular therapeutics in regenerative medicine are becoming more attractive, espe-
cially for nonvolumizing purposes, such as most dermatological conditions. Stem cell
secretomes containing a multitude of bioactive peptides possess similar protective and
reparative properties as their cellular counterparts [203]. Because of the high concentration
of growth factors, the extracellular components of whole adipose tissue (lipoaspirate) could
be used as an innovative cell-free therapy [88]. The usage of extracellular elements of
adipose tissue aims to stimulate a self-autonomous, regenerative microenvironment in the
treated area. However, omitting stem cell counterparts for regenerative purposes implies
that dermal and epidermal cells might be locally present, and this is not the case with
missing melanocytes in vitiligo-involved skin. In in vitro vitiligo melanocytes extracted
from normal-appearing, skin is fully competent for mitogenic stimulation by growth factors
contained in adipose tissue secretome [180]. Further investigations are necessary to verify
the efficacy of the melanocyte stem cell reservoir. High levels of Wnt agonist in acellular
fraction of fat tissue are also promising for vitiligo management since a pivotal role of
Wnt/β-catenin signaling has been attributed to NBUVB-induced repigmentation of vitiligo
skin [135]. Moreover, Ragazzetti et al., obtained repigmentation of vitiligo skin in an ex
vivo model by treating with WNT agonists or GSK3β inhibitors that activate resident
melanocyte stem cells [204]. An alternative possibility for vitiligo patients is to employ
stem cell secretome as adjuvant therapy in transplantation treatments and pre- and post-
operative care of the recipient site. The role of tissue microenvironment in graft retention
is particularly important for a multifactorial complex disease such as vitiligo. Several
beneficial features of stem cell secretome might be desirable for vitiligo patients, including
mitogenic and prosurvival molecules [88]. Moreover, the extracellular liquid extracted
by lipoaspirate has a moderate direct scavenger capacity, whereas activates intrinsic cell
defense mechanisms up-modulating antioxidant genes. Additionally, under continuous
exposure of dermal and epidermal cells to adipose tissue secretome, intracellular ROS
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decreases, and mitochondria appear more energized [88], suggesting the possible restora-
tion of normal metabolic functions in vitiligo skin. This suggests a feasible strategy to
exceed the detrimental effect of ROS released during surgical treatments, which may cause
death and dysfunction in melanocytes, once again leading to depigmentation. In line of
principle, adipose tissue secretome represents the autologous correspondent to the mela-
genine (concentrated extract of human placenta) previously studied in proof-of-concept
studies on vitiligo patients [205,206]. In addition to melanocytes, several studies proved
significant biochemical alterations and increased production of ROS in other skin cell types,
particularly keratinocytes and fibroblasts [74,180]. This suggests that cell defects common
to different elements of the epidermal and dermal compartments are involved in loss of
melanocytes and chronic depigmentation. Consequently, the association of cell grafts to
treatments capable of counteracting dysfunctions of the whole skin may be promising to
treat vitiligo.

5. Conclusions

The treatment of vitiligo is one of the most difficult dermatological challenges. Ide-
ally, vitiligo treatments aim to stop the immune destruction of melanocytes, to stimulate
repigmentation, and prevent recurrences, providing good cosmetic outcomes. Regener-
ative medicine offers new therapeutic opportunity intrinsically related to its reparative
character. However, we cannot exclude that in vitiligo, like in other degenerative and
metabolic diseases, a therapeutic success limitation could reside in the use of autologous
cells presenting crucial pathogenic features and consequent minor regenerative capacity
compared to healthy cells. Successful repigmentation of vitiligo skin may be achieved
by three different routes: First, melanocytes, melanocyte precursors, or pluripotent stem
cells graft; second, melanocyte precursor mobilization; thirdly, creating a pro-regeneration
environment. For all these mechanisms, targeting the entire microenvironment seems to be
a requisite. Particularly, the association of surgical techniques with protective biological
factors such as those contained in PRP or adipose tissue secretome may overcome oxidative
disequilibrium and immunological rejection of grafted material.
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