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Abstract: Biological paths of tumor progression are difficult to predict without time-series data. Using
median shift and abacus transformation in the analysis of RNA sequencing data sets, natural patient
stratifications were found based on their transcriptomic burden (TcB). Using gene-behavior analysis,
TcB groups were evaluated further to discover biological courses of tumor progression. We found
that solid tumors and hematological malignancies (n = 4179) share conserved biological patterns, and
biological network complexity decreases at increasing TcB levels. An analysis of gene expression
datasets including pediatric leukemia patients revealed TcB patterns with biological directionality
and survival implications. A prospective interventional study with PI3K targeted therapy in canine
lymphomas proved that directional biological responses are dynamic. To conclude, TcB-enriched
biological mechanisms detected the existence of biological trajectories within tumors. Using this
prognostic informative novel informatics method, which can be applied to tumor transcriptomes and
progressive diseases inspires the design of progression-specific therapeutic approaches.

Keywords: tumor progression; transcriptomics; biological trajectory; lymphoma; leukemia; solid tumors

1. Introduction

Precision medicine guided by genomics is emerging as a realizable, though limited,
approach to improve survival of cancer patients. Currently, most precision medicine
strategies focus on targeting select mutational abnormalities with notable successes such as
EGFR, c-met [1,2]. The effectiveness of precision medicine can be limited due to a lack of
actionable targets, high mutation rates and the dynamically evolving signaling circuitry
associated with oncogenic disease progression [3]. These lessons were reported from
several genomics guided precision medicine based clinical trials, which includes, SHIVA,
Molecular Screening for Cancer Treatment Optimization (MOSCATO-01), Copenhagen
Prospective Personalized Oncology (CoPPO), MAST, PERMED 01, and PREDICT [4–9].
Despite improvement in progression free survival observed in a minority of patients,
representing only 10% of the total patient population eligible to receive targeted therapies
based on drug availability and drug-target matching criteria, a large number of cancer
patients remain unable to benefit from precision medicine guided therapy [10–13].

A challenge in advancing precision oncology is the lack of knowledge about the
chronological order of biological progression paths taken by tumors [3]. An imperative
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aspect of translational science is the generation of knowledge for precision medicine appli-
cations through the pooling and analysis of databases on the omics level. This information
is available from academic and industrial entities funded by public and private funds [14].
Transcriptomics can provide a real-time overview of genome-wide RNA expression activity
within a cell, essentially highlighting the principal biological activities dominating at a
particular interval of time. Transcriptomics (microarray or RNA sequencing based) have
provided tremendous biological insight into physiological states, drug effects in vitro and
in vivo [15,16]. In contrast, tumor transcriptomes have been described as being quite noisy
and less suitable for constructing meaningful systems level summaries of biology [17].
Despite several advancements in technology and sophisticated computational methods,
charting the meaningful biological trajectory of tumor has not been well defined at the
system-level [18].

Transcriptomic datasets obtained from heterogeneous mixtures of cells consisting
of stochastic patterns of gene expression and variable mRNA abundance present a huge
challenge for interpreting cancer biology. Physiological and pathological conditions, stress,
drug perturbations, cell type differences and interactivity all affect gene expression pat-
terns [19]. Transcriptomic analysis by gene regulatory networks, mathematical algorithms,
neighborhood analysis, and artificial intelligence have all been used to determine a biologi-
cal roadmap of tumor growth, but mostly resulted in identifying few clusters of biological
classifiers among cancer patients [20,21]. The lack of longitudinal gene expression surveil-
lance from the same patient is described as a significant limitation in reconstructing the
biological path of tumor progression [20,21]. However, these analytical strategies suffered
from setbacks due to their gene-centric nature and the lack of unbiased nonparametric
techniques for defining a biological order among patient population.

A similar problem of determining cell cycle progression trajectory from asynchronous
cell population of different sizes and DNA contents existed before [22]. By applying the
ergodic principle, flow cytometry finally resolved single cell snapshots obtained from asyn-
chronous cell population into linearly arranged phases of the cell cycle [23]. An ergodic
assumption states that the fraction of cells in a phase is equal to the proportion of time a
single cell spends in that phase relative to the total cell cycle duration [23]. By applying a
similar concept we rationalized that the transcriptome of an individual patient at a given
interval represents proportion of time spent by tumor in that phase in relation to entire
stages of tumor progression. Therefore, we developed a method providing an independent
positional assignment for each patient through weighing their individual transcriptome
and integrated gene behavior function across all disease phases. Essentially, these metrics
constitute an abacus-like frame for the gene expression datasets in which patients are
ordered by their overall increases in transcriptomic activity and their gene functions into
progressive trajectory of biological complexity. The following partitioning of data and
bioinformatic analysis defined the biological nature of tumor progression on a global level.
Our analysis of 21 different tumor types composed of 4179 cancer patients provides a
blueprint for predicting the causal path of disease progression and potential therapeutic
targets. Finally, we provide evidence that this directional biological trajectory is present
in malignancy through a prospective drug interventional study involving lymphoma in
companion dogs. As part of this study, we leverage our prior comparative oncology inves-
tigational experience with canine lymphoma to facilitate human translational studies [24].
Such comparative oncology investigational approach is increasingly regarded as a valuable
strategy for bridging the gap between basic and clinical research [25].

2. Materials and Methods
2.1. Tumor Transcriptomic Datasets

Meta-analyses of malignant tumors were performed with median normalized log2
transformed transcriptomic data sets retrieved from publications or public repositories as
defined further. Cornell DLBCL dataset available for n = 75, downloaded from [26], inter-
sample comparability of TPM counts was validated by comparing the stable expression
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of 12 housekeeping genes. Remaining dataset were retrieved as harmonized median
normalized log2 transformed, this included, NCI DLBCL available from [27] was used in
this analysis, original data matrix consisted n = 562 from multiple sources, of which n = 481
from NCI was used for this analysis. Other datasets were downloaded from C-Bioportal
repository; as harmonized median normalized log2 transformed includes, Target-2018
Phase II, expression levels for 26,136 genes in 203 all cases (RNA-Seq RPKM), [28], AML
aml_ohsu_2018, mRNA expression n = 451, mRNA expression (RNA Seq RPKM) [29];
Breast cancer-2012 (n = 1904) METABRIC, University of Cambridge mRNA expression
(Illumina Human HT-3 v3 microarray) [30] and TCGA-2017 bladder cancer (n = 408) mRNA
gene expression (RNA Seq V2 RSEM) [31]. Pediatric extracranial solid tumors (n = 657) and
normal (n = 147) (RNA Seq, Illumina, TMM normalized, FPKM transformed available from
Oncogenomics Expression Database (https://omics-oncogenomics.ccr.cancer.gov/cgi-bin/
JK, accessed date on 12 November 2021) [32].

2.2. TcB Analysis Pipeline

Gene expression values were log2 transformed, sum of gene expression values by
sample were first calculated, followed by calculation of median shift by each sample was
performed and these values were designated as TcB. Then, gene median shift by individual
gene was calculated. Median shift = (value-range minimum)/range. Data frame was then
rearranged in increasing order of TcB or gene median shift, grouped by TcB as lowTcB
(0–0.25), midTcB (0.375–0.625) and highTcB (0.75–1). Differential gene expression between
groups by pairwise (edgeR or Dseq2) or within group by pairwise comparing against group
median was performed using R and initial analysis was performed using Network analyst
version 3.0 [33]. Significant genes (p < 0.0005), FDR 0.05 were used for pathway enrichment
analysis by reactome, and gprofiler. GSEA enrichment option for analysis by multiple
databases are included in R code.

2.3. Availability of Computer Code and Algorithm

TcB calculations, transcriptomic ordering, grouping, significant genes and pathway
enrichment analysis were written as R code and provided as Appendix A.

2.4. Network and Heatmap Analysis

Network analysis of reactome enriched pathways were performed using Enrich-
mentMap tool [34] available from Cytoscape version 3.8.2 [35]. Heatmap analysis repre-
sented as row variances, hierarchical clustering based on one minus Pearson’s correlation
by predefined groups, heatmap collapsing was performed based on group medians were
performed using Morpheus available from https://software.broadinstitute.org/morpheus/
accessed on 12 November 2021.

2.5. Statistical Analysis

Significant genes by fold change > 1.25 (log2), or 0.25 fold for median shift transformed
datasets, FDR and p < 0.005. Reactome enrichment FDR 0.05 and q-value cutoffs p < 0.0001.
Quantitative rendering represented as box plots, ribbon plots, lollipop plots, density plots
and parallel index plots were generated using OriginPro 2021 (OriginLab Corporation,
Northampton, MA, USA).

2.6. Canine Lymphoma Study

Canine B cell lymphoma subjects (n = 10) were enrolled and treated with BKM120 in an
IRB and IACUC approved veterinary clinical study, performed at Tufts Cummings School
of Veterinary Medicine, Grafton, MA. All experiments pertaining to canine clinical study
were performed in accordance with relevant guidelines and regulations. Canine subjects
received BKM120 2.25 mg/kg orally for 28 consecutive days. BKM120 provided as gift
from Novartis. Analysis for tumor response were performed by direct tumor measurement
or through the use of CT imaging. Furthermore, fine needle aspirations of the lymphoma
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nodes were collected on Days 0, 7 and 21 and utilized for RNA isolation and gene expression
analysis. Routine blood and urine analysis were performed for toxicity evaluation and as
part of standard clinical assessment. RNA isolation was performed using RNeasy mini
kit (Qiagen, Germantown, MD, USA) and transcriptomic analysis with canine array. We
performed unbiased assessment to determine pertinent biological pathways associated
with treatment response as has been shown before [16,36].

2.7. DNA, RNA and Protein Synthesis Assay

DNA synthesis by EZClick EdU cell proliferation kit (#K946), RNA synthesis by
EZClick Global RNA synthesis assay kit (#K718), Protein synthesis by EZClick Global
Protein synthesis assay kit (#K459) were purchased from Biovision (Milpitas, CA, USA),
assays were performed following the instructions supplied by the manufacturer, and
analyzed by flow cytometry as described before [36].

2.8. Cell Cycle Analysis

Fluorescent cell cycle reporter, cell cycle green/red lentiviral EF1a, Puromycin (Sar-
torius, Bohemia, NY, USA) was transduced in SUDHL-4 cells, as described before [37].
Following puromycin selection, transfected SUDHL-4 cells were plated at 50,000 cells per
well in 96 black clear bottom well plate, pre-coated with retronectin and continuously
imaged every 2 hours following the release from BKM120, using Incucyte Zoom (Sartorius,
Bohemia, NY, USA).

3. Results
3.1. Ordering Gene Expression Signatures by TcB

Approximately 22,000 protein coding genes are expressed at varying levels in the
transcriptome of individual cell or patient at any given time. Considering that malignancy is
a progressive disease, collection of transcriptomic signatures of various patients represents
a biologically disordered dataset. Moreover, malignancies are well known to progress in
a manner marked by unrestrained proliferation, which is accompanied by increases in
DNA activity, which can be directly linked to increased global transcription [38]. Following
these established biological principles, we developed a strategy for rearranging biologically
disordered transcriptomes into increasing levels of transcriptional activity, henceforth
termed transcriptomic burden (TcB). Evaluating patients with different TcB proved fruitful
in identifying biological trajectories associated with tumor progression.

In the first step, we initially re-organize patients based on the median gene expression
levels across all patients. In essence, this stratifies patients based on their overall RNA
activity (which we refer to a subject’s TcB) relative to the total population under study. In
practice, we first calculate the sum of normalized RNA expression values for every tran-
scribed gene by each patient, (represented in each column) (Figure 1A). Then, standardized
TcB values were calculated (using sum of gene expression value series, as numerical shift, a
directional measure that assigns positional identities to each patient as numbers between 0
and 1 (Figure 1A).

Once data was re-ordered around patient TcB, a second informatic process was per-
formed to then evaluate individual genes within the different TcB groups. Again, we
used median shift for each gene across all patients to clarify the direction of individual
gene function in the disease, as “gene shift” (Figure 1A). This step reordered the tran-
scriptomic data-frame by increasing order of TcB and gene shift, using these metrics as
abacus like frames, resulting in a linearly aligned dataset as summarized in Figure 1A.
Because 0.5 represents the midpoint on this scale, patients whose TcB shift is between 0 and
1 collectively represent the order of patients based on the progression of their transcriptome
from low to high TcB, as shown in Figure 1A,B. Further through systematic comparison of
transcriptomic data segmented based on low, mid, and high TcB it is possible to determine
progressive biological changes occurring in tumors based on differential gene expression
analysis, as shown in Figure 1B.
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Figure 1. Deconvolution of stochastically ordered bulk RNAseq reads from transcriptomic
datasets by abacus ordering strategy. (A) Schematic illustration of sequential steps involved in
the calculation of transcriptomic burden (TcB) and the transformation of stochastically ordered gene
expression data into linearly ordered dataset. (B) Theoretical distribution of gene expression and
resolution by TcB with data partitioning criteria for patient grouping for downstream biological
pathway enrichment analysis for discovering progressive patterns in gene expression.

This TcB analysis method was applied to a previously published diffuse large B cell
lymphoma (DLBCL) transcriptomic data as training set consisting of n = 75 patients [26].
The original data set consisted normalized RNA counts reported as TPM (transcript per
million) was analyzed as an unordered transcriptome of patients by heat map (Figure 2A).
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This dataset, transformed as a scatter plot by gene function, illustrated a randomly dis-
tributed gene activity across the entire spectrum of the disease (Figure 2A). TcB analysis
was then performed on the transcriptomic datasets of 75 DLBCL patients represented by
19,734 genes. Patients were stratified by median shift cutoffs (0–0.25, 0.375–0.625 and 0.75–1,
(n = 49), respectively, as low, mid and high TcB) with patients remaining outside of these
cutoffs were excluded. TcB analysis showed that the original dataset became resolvable into
different populations as shown in scatter and density plot (Figure 2B). With increasing TcB,
we noticed that gene activity spread (measured as gene shift) gradually began to condense,
shown in the scatter plot (Figure 2B).

Figure 2. DLBCL transcriptome analysis for biological progression. (A) Heatmap of Cornell DLBCL
gene expression original matrix (patients and transcripts) and scatter plot of TPM (transcript per million)
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counts (n = 75) vs. gene shift. (B) A scatter plot shows consolidation of ergodically distributed gene
expression patterns vs. gene shift occurring as TcB increases, and resolution by density plot showing
average TPM counts by ascending TcB series and delineated DLBCL patients into distinct subgroups.
(C) Heatmap of DLBCL gene expression matrix sorted by TcB subgroups. Network representations of
enriched biological pathways based on significant differences in gene expression between TcB groups
indicate a reduction in biological complexity occurs with TcB increase in DLBCL patients.

These TcB groups were then used for statistical comparison for differential gene ex-
pression across and within groups. There were 1,136 genes that showed significant up or
downregulation between TcB groups (p < 0.0005, FDR 0.05), shown as heatmap (Figure 2C)
(see Supplemental Table S1). By using Gprofiler and reactome pathway enrichment anal-
ysis tools, we identified and grouped significant genes by their corresponding biological
functions (see Supplemental Table S1). We then organized these pathways into interac-
tive biological networks using cytoscape. In a surprising finding, DLBCL patients with
low TcB had the most complex network of interconnected pathways as opposed to their
mid or high TcB counterparts (Figure 2D–F). Biological enrichment in low TcB included
signaling, translation, and metabolic functions (Figure 2D and Figure S1). In contrast, a
predominance of transcriptional regulation (gene expression) and chromatin modification,
with no apparent enrichment for signaling, translational, or metabolic pathways were
observed in high TcB groups. Mid TcB groups also showed transcriptional regulation and
chromatin modification too, along with cell cycle pathways, transcription regulation, and
receptor tyrosine kinase signaling (Figure 2E,F and Figure S1). Considering that DLBCL is
classified by B lymphocyte subtypes (germinal center subtype or activated B cell subtype)
or molecular subtypes (myc-bcl-2 double expresser), we assessed if the enriched biological
processes were specific to disease subtypes. However, our results indicate that biological
enrichments identified through TcB ordering showed considerable homogeneity across
DLBCLs, irrespective of cell of origin or molecular subtypes (Figure S2). Together, these
results, based on the comparison of transcriptomic changes across the full spectrum of
DLBCL, suggest that tumor progression can be predictably described as gradual changes
in biological functions.

3.2. TcB Stratification Identifies Conserved Biological Patterns across Tumors

TcB stratification was applied to multiple tumor transcriptomic datasets to further
verify the approach. Previously published log2 transformed datasets representing DLBCL
(from National Cancer Institute-NCI, n = 481), [27], acute myeloid leukemia (AML from
Oregon Health & Sciences University, n = 451) [29], acute lymphoblastic leukemia (ALL
from NCI Target-2018, n = 203) [28], breast cancer (METABRIC, n = 1904) [30] and bladder
cancer (TCGA, n = 408) [31] were analyzed. The biological pathways identified for all
tumors were then collapsed to reveal higher order processes that drive cellular function, as
shown in Figure S2 and Table S1, and the pattern of changes categorized by TcB groups
are shown in heatmaps represented in Figure 3A. When tracking the overall behavior of
these higher-order functions by averaging expression of genes representing each pathway,
we found that every single pathway followed a uniform pattern of changes in all tumors,
except in AMLs that originates from hematopoietic stem cells (Figure 3B). These results
clearly revealed that protein translation, electron transport chain and citric acid cycle,
transcription, the cell cycle and ECM are enriched higher-order biological functions that
were consistently resolved by TcB. Due to our cutoff rule, the analysis was performed on
fractions of the original populations (Figure 3C) though still considered notable sample
sizes with significance was stringently determined at the genomic level. These results
suggested conservation of these processes across various tumor types could be illuminated
by TcB enrichment and analysis.
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Figure 3. Homogeneous biological patterns in malignancies identified by TcB analysis. (A) The
heat map represents higher order biological processes derived from collapsing reactome-enriched
biological pathways determined from TcB subgroup analysis of independently analyzed tumor
transcriptomes. A blue-to-red gradient indicates row variance. (B) Ribbon graphs of average log2

values of gene expression values for genes represented in higher-order processes shown in (A).
(C) Summary of the numbers of patients/genes in the original tumor transcriptomic datasets and the
TcB partitioned groups.
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3.3. Correlating Gene Functions and TcBs in Pediatric Solid Tumor Progression

Datasets analyzed thus far represented unique cancer types and did not include normal
tissue controls. TcB changes may be a physiological function irrespective of pathological
status; therefore, we evaluated higher order processes revealed by TcB analysis with normal
controls to see if the data contained artefacts. For this study, we analyzed a recently published
transcriptomic dataset consisting of 657 pediatric extracranial tumors with 14 cancer diagnosis
types matched to 147 normal tissues [32]. Using TcB analysis, the entire panel was first
examined, and datasets representing each tumor type were evaluated separately. Results
from the full panel analysis showed that normal tissues had lower TcB values when compared
to 14 different types of tumors (Figure 4A). These results suggested that global transcriptomic
activity generally increases in tumors. Unlike other tumors, the higher order biological
enrichment detected in this panel was restricted to cytokine activity and ECM genes that
increased as TcB increased (Figure 4B and Table S2). Transcription regulation genes decreased
in normal tissue as TcB increased (Figure 4B and Table S3). Further examining the log2 mean of
combined gene expression of the detected higher order processes compared to normal tissue
as a baseline, it became evident that cytokine genes are highly expressed in desmoplastic
round cell tumors, melanoma, hepatoblastoma, osteosarcoma, alvelolar soft part sarcoma,
and teratoma (Figure 4C). Most tumors, except yolk sac tumors, neuroblastomas, and Ewings
sarcomas, expressed higher levels of ECM genes than normal tissue (Figure 4C). Similarly,
with the exception of yolk sac and Wilms tumors, the expression of genes associated with
transcription was reduced in most tumors (Figure 4C).

Datasets containing n > 75 from this transcriptomic panel consisting of 14 different
tumors and normal were then selected and analyzed individually. The transcriptomic
dataset used for individual TcB calculations and biological analysis included Ewings
sarcoma (n = 98), neuroblastoma (n = 227), normal (n = 104), osteosarcoma (n = 94) and
rhabdomyosarcoma (n = 122). As shown by the heatmap of higher order enrichment
analysis, gene expression of cell cycle, transcription and translation was decreasing with
TcB increases only in tumors, but not in normal tissues (Figure 4D and Table S2). The results
from individual TcB analysis of pediatric tumors and normal tissues indicates that the
patterns of changes represented by cell cycle, transcription and translation identified from
previous analyses of solid tumors and hematological malignancies (Figure 3) as higher
order enrichments and are unlikely to be an artifact.

We consistently observed declining patterns of cell cycle gene expression along with
TcB increases in our analysis, but this is a counterintuitive biological phenomenon for
tumor progression. Therefore, we sort to resolve this conundrum through identifying the
biological nature of genes that became reduced with higher TcB. We therefore, compared
correlation between TcBs and expression values of each gene across the entire dataset as
a next step in our assessment. We identified the top 50 significant genes (p < 0.0001), by
positive (r > 0.75) and negative (r < −0.75), by Spearman’s rank correlation from individual
and entire panel analysis of Ewings sarcoma, neuroblastoma, normal, osteosarcoma and
rhabdomyosarcoma. TcB clustering analysis of these top 50 genes identified two clusters,
with immune function (represented by C1QA, C1QB, C1QC, CD14, CD68, CD74, FCER1G,
IFI30, LGALS9, TYROBP, and HLA-DMA) as upregulated (Figure S4). Furthermore, these
tumors also showed significant decreases (log2 FC, −10 to −5, highTcB versus lowTcB)
in the expression of genes that encode for histone proteins (Figure 4D and Figure S4).
This unusual feature of histone complex gene expression declining from lowTcB (log2,
4.5–7.56) with higher TcB falling below normal tissues were observed in these tumors
(Figure 4D). In non-transformed human cells, histone gene expression and biosynthesis
of 400 million histone proteins are tightly coupled with DNA replication and cell cycle,
and essential for cell survival [39]. However, histone levels and expression are reported as
inversely correlated with overall transcriptional rate in Drosophila [40]. Taken together,
this observation of diminished histone gene expression via TcB correlation provides novel
dimension into pathological basis of disease biology in these tumors, and warrants further
proteome-level validations. Overall, by comparing the transcriptomes of tumor and normal
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we conclude that TcB-based biological predictions are not arbitrary, but as aligned with the
nature of malignancy.
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Figure 4. Biological progression patterns in pediatric extracranial solid tumor and normal tissue
panel. (A) Bar graph represents values calculated from a transcriptomic dataset consisting of multiple
pediatric solid tumors (y-axis) show that median TcB values (x-axis) of tumors are higher than
normal tissues. (B) Bar graph illustrates median log2 expression levels (y-axis) of genes representing
higher order processes (x-axis) determined from a pan pediatric solid tumor and normal tissue panel.
(C) Summary of gene-expression differences between tumors and normal tissues (median log2),
representing changes in higher-order processes. (D) Heatmap of higher-order biological processes
enriched by independent TcB calculations based on the tumor or normal tissue type indicates unique
biological properties are observable in tumors. An arrow points to the heatmap (right), which reveals
that declines in histone complex gene expression as correlating feature in changes observed with cell
cycle gene expression with TcB increases.
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3.4. Charting the Biological Roadmap of Malignant Progression in Pediatric ALL

Our next goal was to determine whether TcB shifts and biological patterns uncovered
by this method were associated with progressive steps in malignancy. To this end, we
required a study where 2 samples were taken from the same patient over disease progres-
sion. The Target 2018 ALL study fit this paired patient and time-varying sample collection
criteria. This ALL study analyzed transcriptomic data from patients with initial and relapse
diagnoses [28]. TcB analysis was performed among these patients with clinically defined
relapse. Of the 41 patients analyzed, 24 developed a shift in TcB (from low to mid or
higher) and 17 showed no such shift (remained at the same level) between diagnoses. In
our analysis of this group for higher order biological pathway behaviors, we found that
log2 expression profiles of genes involved in mitochondrial translation, TCA/ETC, cell
cycle and transcription declined as TcB increased (Figure 5A). In contrast, ECM genes
increased along with TcB (Figure 5A). Analysis of correlations by TcB shifts from repeated
ALL samples collected from same patient at different intervals showed that patterns of TcB
shifting from low to mid, and mid to high TcB shift values naturally occur with disease
progression (Figure 5B). Results from these findings suggested that an increase in TcB alone
could be an independent characteristic feature of ALL disease progression (Figure 5B).

3.5. Dynamics of TcB Ordered Biological Functions

Understanding the dynamics of TcB enriched higher order processes in the context
of tumor progression is crucial notably because it is know that increases in ribosomal
biogenesis and translation in G1, transcription in G2, reduction in transcription at M phase
are related with cellular progression through cell cycle [41]. Cancer is characterized by
disordered proliferation, and the biological features found within different subsets of
TcB tumors as well as the features found in all tumor categories are likely to suggest a
stepwise dysregulation of the cell cycle involving higher-order processes as the tumor
progresses. Therefore, we attempted to determine the dynamics of these properties in
cell culture models. Our analysis of the Broad Institute CCLE panel, which consists of
1527 cells lines, and other tumor panels did not resolve using the TcB method. TcBs were
found to be skewed towards left, suggesting that most cell lines show greater levels of
transcriptional activity than natural tumors, and perhaps reached a stable state during cell
culture (Figure S5). As a result, evaluation of biological trajectory of tumor progression
using cell culture models may prove challenging for validating our observations derived
from the analysis of tumor transcriptomes.

Given limitations of cell line analysis, we investigated the directional features of these
higher order biological functions by adopting a natural disease, canine lymphoma. A
longitudinal in vivo study of the tumor transcriptome at three time points was conducted
using a phosphoinositide-3 kinase (PI3K) inhibitor, BKM120, as targeted drug (Figure 6A).
BKM120 blocks the oncogenic PI3K signaling mechanism that plays an important role in
metabolism and ribosomal biogenesis [42]. Additionally, we and others have previously
reported that PI3K signaling is dysregulated in canine lymphoma [24,43]. With PI3K
targeting, we rationalized that blocking higher-order functionality associated with low TcB
would allow TcB and the properties of higher order biological functions to be reset. A total
of ten dogs with B cell lymphoma were enrolled in this trial, and six of them completed
the evaluation of BKM120, a PI3K targeted inhibitory therapy that was administered orally
in cycles of 28 consecutive days, as summarized in Figure 6A. This evaluation, while
lacking power for population-level outcomes, followed Simon’s “minimax” design due
to the smaller sample size and lower subject enrollment in this large animal study [44].
The data gathered was therefore deemed adequate to gather reliable biological insights.
Only 6 of the 10 dogs with lymphoma in this study completed at least one treatment
cycle. Clinical characteristics, including breed, age, diagnosis, stage, treatment history,
toxicity, and outcome, are summarized in Figure 6B. Based on peripherally measurable
lesions as determined by consensus criteria defined by veterinary cooperative oncology
group [45], 2/6 dogs treated with BKM120 showed partial response with more than 30%
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decrease in tumor volume; 1 dog with progressive disease, and 3 dogs remained with stable
disease. Two of the six dogs that showed partial response had persistent blood glucose
levels and were withdrawn before completing five cycles of BKM120 treatment in 28 days;
the remaining four were removed because of lack of improvement or because the physician
determined they had reached the end of their lives.
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Figure 5. Biological trajectory of cancer progression in pediatric ALL. (A) The box plot represents
log2 expression values (y-axis) of genes representing higher-order biological processes (x-axis) en-
riched by TcB groups. (B,C) Correlation graph by Spearman rank showing r values of TcB values
comparing leukemic relapse with and without TcB shifts indicates a positive correlation in the order
of increasing TcB shifts. (D) Lollipop plot comparing log2 fold changes in gene expression (in x-axis)
associated with higher-order processes (y-axis) between relapse and the initial diagnosis is shown with
and without TcB shift. (E) Schematics illustrating the predicted biological progression path in ALL.
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To further explore the biological directionality of this disease, we examined gene
expression changes related to higher order processes in ALL, comparing initial versus
relapse samples. The groups were again parsed into subsets that had a TcB shift between
sample time and ones that did not. In quantitative directional analysis by lollipop plot,
log2 FC genes (initial vs. relapse) associated with ECM progressive increase and appear
between mid-to-high TcB or low-to-high TcB shifts (Figure 5C). Conversely, log2 FC of genes
representing transcription, cell cycle, TCA/ETC, and mitochondrial translation (relapse
vs. initial) was negatively regulated with TcB shifts, but not in ALL without TcB shifts
(Figure 5C). Since these biological changes and patterns were consistent observed in most
tumors and seem to exhibit directional activity in ALL, we conclude that genes constituted
within higher order biological functions are likely to dictate disease progression in ALL.
Together, these findings suggest TcBs and higher-order biological functions are indicators
of directional properties in tumor progression (summarized (Figure 5D) and can have
prognostic insight.

The transcriptomic assessments were performed on tumor biopsy samples collected
at the time of diagnosis, 1 week and 3 weeks after treatment, and TcB estimation was
performed using the dataset (n = 18). Results show that the TcB values of canine lymphoma
subjects CL#1, CL#6 remained unchanged, while CL#2, CL#5 showed significant decreases
over the course of 3 weeks with BKM120 (Figure 6C). By applying the median shift trans-
formation, the entire canine transcriptome (represented by n = 30,311 genes) is scaled
uniformly, so that global changes in gene function may be directly compared between
different time intervals. The kernel density plot of these results clearly indicates that TcB
declines gradually after 3 weeks of BKM120 treatment. The declining TcB effect was modest
in CL#1, 2 & 6, which had stable or progressive disease (Figure 6B,C). Of 6 dogs, 2 had
partial response showed rapid decline in gene expression within the first week after being
treated with BKM120 (Figure 6B,C). Furthermore, CL#5, the subject with the most elevated
gene expression levels, also had more dramatic reduction in gene activity by week 3, though
with advanced stage and relapsed disease, this subject also died by week 3 (Figure 6B,C).
As TcBs and gene shifts are compared, both net transcriptional activity (as measured by
TcB) and gene function (as measured by gene shift) responded to therapy through down-
ward shift (Figure 6D). Drug treatment affected expression of genes associated with TCA,
ribosome/translation, and cell cycle which became gradually upregulated, while genes
representing ECM became gradually downregulated over 3 weeks of treatment (for entire
population) with BKM120, as shown by lollipop plot mimicking low TcB state in Figure 6E.
By comparing the observed biological pattern reversal and TcB decreases in BKM120 treated
canine lymphoma (Figure 6E), it becomes clear that biological functions associated with
disease progression follow reversible chronological patterns. Based on the expression
profile changes of genes representing higher-order biological processes, each canine subject
shows progressive upregulation of genes involved in TCA, ribosome/translation, and cell
cycle functions in all of them, with the exception of CL#5 with terminal disease pretreat-
ment and post week 1. CL#5 showed an entirely dominance of genes involved in ECM
that reflected a fully developed disease state (Figure 6F), as supported from the predicted
progression pattern of human ALL patients (Figure 5E). By comparing these canine results
to the generalized patterns observed in human DLBCL tumors, we conclude that these
higher order biological functions both exhibit orderly responses and are reversible features.
The findings were further confirmed by in vitro measurements of replication, transcription,
and translation activities using SUDHL-4 (DLBCL cells) and BKM120 treatment (Figure 7A).
The results indicate that translational activity, measured as global protein synthesis, is
decreased with BKM120 treatment, which recovers by day 1 after drug release in SUDHL4
cells (Figure 7). Following the initial lag in protein synthesis in SUDHL4 cells, show a
delayed global DNA and RNA synthesis (days 1–2) coinciding with delayed G2 recovery,
following BKM120 treatment release (Figure 7A,B). We conclude based on our observations
of BKM120 treatment in canine lymphoma and experiments using SUDHL4, as well as
our predictions based on TcB analysis of human tumors, that the progression of malignant
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tumours can be characterized by a sequence of transcriptomic changes relating to protein
transcription, replication, and translation.
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Figure 6. Targeted therapy impacts the biological trajectory of canine lymphoma. (A) Schematic
illustration of BKM120 canine lymphoma clinical trial design. (B) Clinical characteristics of canine
lymphoma trial subjects including clinical stage, diagnosis, prior therapies (CHOP-cyclophosphamide,
hydroxydaunorubcin, oncovin/vincristine, and prednisone; MOPP-mechlorethamine hydrochloride,
oncovin, adriamycin/doxorubicin, vincristine, L-asparginase), and treatment durations. (C Lollipop
plot displaying TcB change by pre-treatment and BKM120 treatment intervals on x-axis with canine
lymphoma subjects on y-axis. (D) Kernel density plot of global genes (n = 30,311) transformed
by median shift for overall gene behavior between pre-treatment and treatment intervals in x-axis
indicated by each canine subject treated with BKM120 (E) Lollipop plot representing fold change in
log2 expression of individual genes representing higher-order biological processes (y-axis) comparing
BKM120 treatment intervals vs. pre-treatment and in x-axis averaged by canine lymphoma subjects is
represented in x-axis. (F) Heatmap represents the average log2 expression of genes representing higher-
order biological processes by individual canines at pre-treatment and BKM120 treatment intervals.
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Figure 7. SUDHL4 cells treated with BKM120 recapitulate the predicted biological sequence of
responses. (A) Histograms represent global transcriptional, replication, and translational activity
measured in SUDHL4 cells pre-treated and released from BKM120 (1 µM) and quantified as intensity
(x-axis) on indicated days using fluorescently labeled Click-IT substrates. (B) Line graph shows
changes in cell cycle pattern in SUDHL-4 cells transfected with fluorescently labelled cell cycle
indicator, represented as percentage of cells in G1, S-G2-M cells and time, following BKM120 release.

4. Discussion

Cancer is defined as an uncontrolled growth of body cells that spreads to other parts
of the body (source NCI/Cancer.gov) 12 November 2021. Although cancers arise from
many different types of cells, the biological principles governing malignant progression
seemingly may have common paths. Clinical observations indicate that malignancies, of
the same type such as in lymphomas, can be indolent, turn aggressive, show progressive
features or undergo cycles of dormant and active states [46]. Presently, there is no direct
biological explanation for how these uncontrollable cells manifest an uneven proliferation
rate [46]. Although mutation drifts and progressive genomic alterations at the molecular
level are recognized in evolving tumors [47,48], the longitudinal biology behind tumor
progression is still largely enigmatic. Transcriptome datasets are conventionally analyzed
for significant genes or pathways using many different methods for computing differential
gene expression have provided interesting seminal findings regarding genetic mutations
and ex vivo drug sensitivity [26–31]. Yet, these studies did not attempt to generate global
biological summaries because there existed no methodologies for linearizing the datasets
for unbiased exploitation of all the available information.
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Several studies have attempted to unravel the biological progression roadmaps in
cancer. Based on the evolution of genetic changes, Fearon and Vogelstein initially pro-
posed a linear tumor progression sequence [49]. Many studies followed this approach
by aligning gene expression datasets with mutational events in order to estimate tempo-
ral biological patterns in tumor progression [48,50,51]. Nevertheless, genomic datasets
from cross-sectional tumor collection can include samples from unknown disease states,
treatment status, environmental exposures, etc., which exhibit tremendous mutation het-
erogeneity and varying loads of mutational burdens. Therefore, aligning mutations with
temporal biological order is considered a weak strategy [52]. Despite mutation assess-
ments being considered sufficient guides for determining and administering effective cures,
Vogelstein asserts that a crucial need in basic cancer research is a better understanding
of the biological pathway trajectories [52]. There have been further models using prob-
abilistic or Bayesian networks. In these models, genes in one pathway become parents
of all genes in the next, and parental genes tied by mutation were integrated into the
probability model [53,54]. Lastly, progression at the pathway level was inferred from a
priori gene assignment, but only when the pathway had many gene sets. However, none
of these approaches were successful in identifying homogenous biological trajectories
among cancers, which led to the conclusion that cancer progression is non-linear. Major
drawbacks of these approaches include the inability to analyze transcriptomic patterns
unbiasedly and the lack of biologically appropriate hypotheses for identifying biological
trajectories. Our strategy assumes that transcriptional complexity will continue to increase
with tumor progression and the transcriptomic burden will increase. DNA levels in a cell
remain relatively constant and can be synthesized in a short period of time. However, RNA
levels are higher, so cells need longer periods of time to synthesize enough RNA to divide.
Malignant cells may proliferate more rapidly when this constraint is removed, and their
RNA content must gradually increase. Our results illustrate this generalized concept with
several lines of evidence, including TcB shift from low to high-TCB in ALL, reversibility in
canine lymphoma, and transcriptional lag in SUDHL4 cells with BKM120 treatment, all
indicative of cancer progression.

Transcriptomic analysis through a TcB strategy of linearizing tumor transcriptomes
uncovered progressive biological features in tumors, laying the groundwork for more
comprehensive analyses. Overall, the results from TcB based analysis support a homo-
geneity in tumors in terms of higher-order biological choreographers of malignant cell
proliferation, whereas the signaling pathways involved in promoting such growth show
heterogeneity. Interestingly, the translation (ribogenesis), replication, and transcription
that were identified from our TcB analysis also correspond to central dogmatic principles
which intersect progression fates of cell cycle. In this respect, our identification of these
central dogmas being progressive aligned by TcB as in the same order of the cell cycle
path defines biological mechanisms for tumor progression. Our findings also support the
theory of embryonic reversal-based definition of malignant progression [55–57] in that
changes observed in translation (ribogenesis), replication, transcription, and ECM in pri-
mary human tumors followed the opposite directions of higher-order processes occurring
in human embryonic development [58]. TcB rendering of progressive network features of
DLBCL, ALL, and pediatric solid tumors, as well as BKM120 treatment responses in canine
lymphomas (see Figures S6 and S7), suggests that biological networks in tumors show
continuous changes that are impressive and with predictable pattern. As TcB increases,
biological networks that include signaling pathways, ribosomal biogenesis, translation,
transcription, and cell cycle remain interconnected across low and mid TcB in DLBCL and
ALL (Figure S7). In contrast, when the tumor transcriptome is enriched with high TcB,
biological networks exhibit predominantly ECM reorganization, demonstrating that fully
progressed tumors exhibit a biologically distinct state (Figure S7). Additionally, we found
that, when the transcriptomic data was combined with the mutation profiles available for
each patient in bladder cancer, a linear alignment by TcB also predicted that the mutations
exhibited predictable evolutionary patterns (Figure S8). Mutation rates increased from low
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to mid-TcB from 300 to 420/patient but declined at high TcB (Figure S8A). The number
of genes mutated at low TcB (2000) dramatically increased to >8000 from mid to high
TcB, which is another indication of tumor progression (Figure S8B). A word cloud-based
analysis of genes frequently altered in bladder cancers revealed that the TTN gene is most
frequently altered, with RB1 and CST5 highly altered in low-TcBs but absent at higher-TcBs,
p53 and RP11 alterations evident between middle and high-TcBs (Figure S8C). In contrast,
MUC16 and KMT2D steadily increased from low-TcB and became dominant at high-TcB
(Figure S8C). Furthermore, the number and frequency of gene modifications increase with
a TcB trajectory, further validating the TcB methodology.

Our TcB transformation and biological learning strategy has limitations, including a
stringent cutoff that eliminated portions of patient for gene-centric analysis. The method
must be further developed to accommodate samples representing continuous gradients in
transcriptomics. Additionally, samples that do not represent the entire spectrum of tumor
progression could skew the results. As an example, our analysis of transcriptomic datasets
for head and neck cancers, lung adenocarcinomas, and colon carcinomas detected TcB
shifts in either low or high levels, suggesting these samples could represent either early
or advanced biological conditions, meaning biological trajectory extraction is not possible.
Our analysis pipeline included curation of data that eliminated ambiguous biological
processes, such as “disease” or “development”, since our intent was to illustrate and
collapse enrichments based on biochemical activities directly related to cell proliferation.
Several bioinformatic tools are required in order to render biological trajectory data, which
is limited to the annotations and interactions defined within the databases. Future directions
for improving this methodological strategy include procuring appropriate datasets through
large prospective trials, integration of clinical outcome and multi-omic datasets, along with
a diagnostic or drug-controlled decision making based on the information of TcB analyses
to further solidify its use in actionable cancer care.

5. Conclusions

Precision medicine requires high resolution biological insights to be able to predict
tumor attitude and prescribe multifaceted targeted therapeutic strategies for effective cancer
treatment [10]. Clinical failures frequently observed with precision oncology suggests
progressive changes in biological network evolution as potential “Charlotte Web” factors
that could facilitate evading and impeding the therapeutic efficacies of targeted drugs. To
acquire further high-resolution biological perspectives into tumor progression, it would be
necessary to integrate TcB analysis with transcriptomic data (such as bulk sequencing, single
cell transcriptomics, etc.), multi-omics (such as metabolomics and proteomics) to generate
a dynamic and multi-dimensional biological roadmap of tumor progression corresponding
to each tumor type over time. Detailed rendering of TcB derived network dynamics as
outlined in this study and defining combination therapies with integrated prediction of
future biological states will have promising potential in precision oncology.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10112720/s1, Figure S1. Network analysis of enriched
pathways by cytoscape within TcB groups of Cornell DLBCL. Figure S2. Heatmap represents gene
expression patterns consolidated by TcB enriched higher order biological processes across Cornell
DLBCL varying by cell of origin (Germinal Center or Activated B cell lymphoma) or molecular
subtypes (Myc/Bcl-2 double expresser or not double expresser). Figure S3. Comparison of pathway
enrichments by reactome from all TcB groups by hierarchical method and flattening by higher order
process. Figure S4. (A) Heatmap representation from TcB–gene correlation analysis from pan pediatric
extracranial solid tumor panel show genes that are highly correlated by low or highTcB. (B) Scatter
plot of gene represented in clusters 1 & 2 marked in A, show average log fold change tumor vs. normal
tissues. Figure S5. Plot of kernel density shows equal distribution of TcB values (x-axis) across 6 tumor
datasets (n = 3522) and skewed distribution in CCLE cell line panel (n = 1527). Figure S6. Canine
lymphoma BKM120 trial and gene expression analysis. (A) Heatmap represents overall changes in
significant gene expression patterns across canine lymphoma specimens obtained from pretreatment
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and during one and three weeks treatment with BKM120. (B) Network representation from geneset
enrichment analysis using reactome database show up or down regulated processes and interactions
from overall impact of BKM120 treatment in canine lymphomas. Figure S7. Biological progression
network in (A) DLBCL, (B) ALL and (C) Pediatric solid tumors. Cytoscape representation of biological
progression networks enriched from TcB analysis, with nodes representing biological process from
lowTcB (blue), midTcB (green) and highTcB (red), with edges indicating interactions among enriched
biological process. Figure S8. Gene alterations and TcB trajectory. Gene alterations associated with
each bladder cancer patient’s transcriptome were aligned by TcB for projection of gene alteration
evolution. Graphs show (A) average number of genes altered per patient; and (B) total number of gene
alterations across all TcB subgroups. (C) Word cloud analysis for genes frequently altered, together
with progression of higher order biological processes associated with increasing TcB trajectory.
Tables S1–S3. TcB analyzed solid and hematological tumors, pediatric solid tumor panel and canine
lymphoma dataset.
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genes and pathway enrichment analysis to use with open source R programming, an
application available through Bioconductor.org is available through https://doi.org/10.5
281/zenodo.7145711, accessed on 10 May 2022.
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