
Citation: Kawahara, N.; Kawaguchi,

R.; Maehana, T.; Yamanaka, S.;

Yamada, Y.; Kobayashi, H.; Kimura, F.

The Endometriotic Neoplasm

Algorithm for Risk Assessment

(e-NARA) Index Sheds Light on the

Discrimination of Endometriosis-

Associated Ovarian Cancer from

Ovarian Endometrioma. Biomedicines

2022, 10, 2683. https://doi.org/

10.3390/biomedicines10112683

Academic Editors: Hideshi Ishii and

Takaaki Hirotsu

Received: 26 August 2022

Accepted: 21 October 2022

Published: 24 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

The Endometriotic Neoplasm Algorithm for Risk Assessment
(e-NARA) Index Sheds Light on the Discrimination of
Endometriosis-Associated Ovarian Cancer from
Ovarian Endometrioma
Naoki Kawahara * , Ryuji Kawaguchi, Tomoka Maehana, Shoichiro Yamanaka, Yuki Yamada, Hiroshi Kobayashi
and Fuminori Kimura

Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
* Correspondence: naoki35@naramed-u.ac.jp; Tel.: +81-744-29-8877

Abstract: Background: Magnetic resonance (MR) relaxometry provides a noninvasive tool to dis-
criminate endometriosis-associated ovarian cancer (EAOC) from ovarian endometrioma (OE) with
high accuracy. However, this method has a limitation in discriminating malignancy in clinical use
because the R2 value depends on the device manufacturer and repeated imaging is unrealistic. The
current study aimed to reassess the diagnostic accuracy of MR relaxometry and investigate a more
powerful tool to distinguish EAOC from OE. Methods: This retrospective study was conducted at
our institution from December, 2012, to May, 2022. A total of 150 patients were included in this
study. Patients with benign ovarian tumors (n = 108) mainly received laparoscopic surgery, and
cases with suspected malignancy (n = 42) underwent laparotomy. Information from a chart review
of the patients’ medical records was collected. Results: A multiple regression analysis revealed that
the age, the tumor diameter, and the R2 value were independent malignant predicting factors. The
endometriotic neoplasm algorithm for risk assessment (e-NARA) index provided high accuracy
(sensitivity, 85.7%; specificity, 87.0%) to discriminate EAOC from OE. Conclusions: The e-NARA
index is a reliable tool to assess the probability of malignant transformation of endometrioma.

Keywords: ovarian endometrioma; endometriosis-associated ovarian cancer; magnetic resonance
imaging; MR relaxometry; the R2 value; the endometriotic neoplasm algorithm for risk assessment
(e-NARA) index

1. Introduction

Ovarian cancer is the fifth leading cause of cancer-related death in women [1]. This
disease cannot be diagnosed in the early stages and is called the silent killer [2–4]. As such,
most ovarian cancer cases are diagnosed at advanced stages [5–7], and over 185,000 deaths
due to this disease are reported annually worldwide [8,9]. Ovarian cancer is divided into
epithelial, germ cell, and sex cord-stromal tumors, and, of these, epithelial ovarian cancer
has the highest rate [10,11]. Epithelial ovarian cancer can be divided into two categories,
designated as types 1 and 2 [12–14], by molecular genetics and morphologic characteristics.
Type 1 tumors show a stepwise progression (adenoma–carcinoma sequence), which com-
prises endometriosis-associated ovarian cancer (EAOC), such as clear cell carcinoma (CCC)
and low-grade endometrioid carcinoma, as well as mucinous carcinoma and low-grade
serous carcinoma [15,16]. Type 2 tumors range from the normal epithelium to precursor
lesions, and, finally, to high-grade serous and endometrioid carcinoma, malignant mixed
mesodermal tumors (carcinosarcomas), and undifferentiated carcinoma [15,17]. The former
shows slow, and the latter fast, progression to advanced stages [18,19].

Ovarian endometriosis is defined as the presence of endometrial glands and stroma
outside of the uterus, and it is most often detected in the pelvic peritoneum and ovaries [20–22].
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Repeated hemorrhages in the peritoneum or ovaries may contribute to several symptoms of
dysmenorrhea [23–25], chronic pelvic pain [26–29], and infertility [30–33], which negatively
affect the patient’s quality of life [34–36]. Epidemiologically, endometriosis has been
reported to increase the risk of EAOC, such as EC, CCC, low-grade serous carcinoma, and
seromucinous neoplasms [37–39]. CCC and EC of the ovary are the two most common
types of ovarian cancer, which arise from endometriosis [38,39].

In general, the presence of mural nodules and papillary projections is considered to
constitute evidence of malignancy [40]. These can be seen in either OE or EAOC, which
can pose a challenging diagnostic dilemma to clinicians [41,42]. Therefore, we investigated
how to discriminate EAOC from OE, and showed that total iron levels of cyst fluid can
discriminate EAOC from ovarian endometrioma (OE), with a cut-off point of 64.8 mg/L
(sensitivity, 85%; specificity, 98%) [43]. Magnetic resonance (MR) relaxometry, which can
noninvasively measure cyst fluid iron concentration, can discriminate with a cut-off point
of 12.1 (sensitivity, 86%; specificity, 94%) [44]. Moreover, we showed a novel predictive
tool in the R2 predictive index, which requires tumor diameter and serum CEA level.
This model had good efficacy to detect the malignant transformation of endometrioma
(i.e., EAOC) without MRI, with good accuracy (sensitivity, 82%; specificity, 68%), and is
useful in following up outpatients [45,46]. MR relaxometry has exhibited a limitation in
discriminating malignancy for preoperative assessment [i.e., false positive (FP) or false
negative (FN)].

The current study aimed to reassess the diagnostic accuracy of MR relaxometry and
investigate both a more powerful and non-invasive tool to discriminate EAOC from OE.

2. Materials and Methods
2.1. Patients

A list of patients with primary, previously untreated, histologically-confirmed ovarian
tumors, who were treated at Nara Medical University Hospital between December, 2012,
and May, 2022, was generated from our institutional registry. We retrospectively included
in this study the following cases of OE as benign ovarian tumors and EAOC cases as
malignant tumors. Patients who were over 20 years old at the time of surgery and who
consented to, and received, magnetic resonance imaging (MR imaging) after hospitalization
were included in the current cohort. Patients who were under 20 years old, contraindicated
for MR imaging, prone to claustrophobia, or who refused to undergo MR imaging after
hospitalization were excluded. All of the OE and EAOC cases were histologically confirmed.
Written consent for the use of the patients’ clinical data for research was obtained at the
first hospitalization, and, after approval by the Ethics Review Committee of the Nara
Medical Hospital, the opt-out form was provided through our institutional homepage.
A total of 150 patients were included in the current cohort. One hundred and eight
patients were benign OE cases and forty-two patients were malignant cases. No patients
had undergone chemotherapy or radiotherapy for the ovarian tumors prior to treatment.
Patients with OE mainly received laparoscopic surgery, and the patients suspected of
harboring malignant tumors underwent laparotomy. The following factors were collected
through a chart review of the patients’ medical records: age, body mass index (BMI), parity,
postoperative diagnosis, including FIGO (The International Federation of Gynecology and
Obstetrics) stage, tumor diameter, menopausal status, and pre-treatment blood test results,
including carbohydrate antigen125 (CA125), carbohydrate antigen 19-9 (CA 19-9), and
carcinoembryonic antigen (CEA) as a tumor marker.

2.2. Tumor Imaging and Diagnoses

All patients first visited the outpatient clinic and underwent internal examination,
including ultrasound, followed by routine MR imaging using T1W and T2W sequences.
Tumor diameter was recorded as the largest diameter among axial, sagittal, and coro-
nal imaging. Patients were largely diagnosed with OE or EAOC by MRI, and this was
confirmed by histological examination, using surgically removed tissue, by at least two
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pathologists who were blinded to the study. The R2 values were obtained by a 3T system
(Magnetom Verio or Skyla, Siemens Healthcare, Erlangen, Germany). After the routine
clinical MR imaging, the registered patients underwent MR relaxometry using the single-
voxel acquisition mode sequence at multiple echo times and by fitting an exponential decay
to the echo amplitude at different multiple echo times [47]. A parameter R2 value (s-1)
was calculated using a high-speed T2 *-corrected multi-echo MR sequence (HISTO) by
the 3T–MR system in vivo and ex vivo, which has been previously described [48,49]. The
HISTO sequence was based on the single voxel steam sequences that could be used for
relative fat quantification in the liver [50]. This sequence allows estimation of liver iron
deposition, since the T2 of water changes with iron concentration. The pulse sequence
design and programming were done with an imaging platform (Siemens Medical Systems,
Erlangen, Germany) and applied to the 3T system. The sequence had a fixed number of
five measurements with different TEs, which were as follows: 12, 24, 36, 48, and 72 ms.
The typical protocol was performed in breath-hold, with a total acquisition time of 15 sec.
The repetition time (TR) was fixed to 3000 ms, which proved to be enough to compensate
for the effects of signal saturation, while maintaining an acceptable acquisition time. A
15 × 15 × 15-mm spectroscopy voxel (VOI) was placed to select a region encompassing
the liquid portion, but not the solid portion, of the cyst lumen. The fluid from the largest
cyst was measured if there were any patients who had more than one cyst. The VOI was
located in the center of the OE or EAOC cyst by a radiologist who specializes in female
pelvic MR imaging.

2.3. Statistical Analysis

Analyses were performed using SPSS version 25.0 (IBM SPSS, Armonk, NY, USA).
The differences of each factor, including the CPH index, the ROMA index, and the R2
predictive index, among groups were compared using a Mann–Whitney U test or Kruskal–
Wallis one-way ANOVA test. A receiver operating characteristic (ROC) curve analysis was
performed to determine the cut-off value for predicting malignant ovarian tumors. The
cut-off value was based on the highest Youden index (i.e., sensitivity + specificity − 1).
We next used a logistic regression analysis to assess the risk factors for malignant ovarian
tumors (i.e., EAOC). A two-sided p < 0.05 was considered as indicating a statistically
significant difference.

3. Results
3.1. Patients

From December, 2012, to May, 2022, a total of 150 patients were included in this study.
The benign and malignant cases were 108 and 42 in number, respectively. The demographic
and clinical characteristics of the combined cohort are outlined in Table 1.

Table 1. Demographic and clinical characteristics of the current cohort.

Benign Tumor Malignant Tumor p-Value

Number n = 108 n = 42

Age (years)
Median (range) 38.00 (20–62) 50.00 (31–78)

Mean ± SD 37.04 ± 8.22 51.14 ± 12.39 <0.001

BMI
Median (range) 21.43 (14.88–38.03) 21.78 (17.01–39.48)

Mean ± SD 21.66 ± 3.69 23.10 ± 5.08 0.238

Parity
0 58 20
≥1 50 22 0.586
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Table 1. Cont.

Benign Tumor Malignant Tumor p-Value

FIGO stage - I (n = 35), II (n = 6), III (n = 1)
Subtype Endometriosis (n = 108) CCC (n = 18)

Endometrioid carcinoma (n = 13)
Seromucinous (n = 8)

With atypical cells (n = 2)
CCC + Endomtrioid (n = 1)

Cyst size (mm)
Median (range) 66.14 (23.53–193.00) 110.00 (38.99–231.92)

Mean ± SD 66.72 ± 28.06 121.05 ± 50.76 <0.001

Menopause
Yes 4 18
No 104 24 <0.001

BMI body mass index, FIGO The International Federation of Gynecology and Obstetrics, CCC clear cell carcinoma.

Cases diagnosed as borderline or harboring atypical cells in the cystic epithelial tissue
were included in malignant cases. In this cohort, there was significant differentiation in
age, maximum tumor diameter, and menopausal status. Table 2 shows the distribution of
peripheral blood cells. The platelet counts, lymphocyte (% and counts), and monocyte (%)
reached significant differentiation between a benign tumor and a malignant tumor.

Table 2. Distributions of peripheral blood cells and serum inflammatory values in the current cohort.

Benign Tumor Malignant Tumor p-Value

Number n = 108 n = 42

Hb (g/mL)
Median (range) 12.70 (7.50–14.80) 12.55 (7.20–15.20)

Mean ± SD 12.47 ± 1.27 12.26 ± 1.68 0.652

Platelet (×104/µL)
Median (range) 25.90 (10.10–42.20) 28.70 (16.20–57.80)

Mean ± SD 26.36 ± 5.80 30.01 ± 8.74 0.011

WBC (×102/µL)
Median (range) 61.00 (27.00–182.00) 70.00 (28.00–149.00)

Mean ± SD 64.84 ± 22.71 69.04± 25.00 0.267

Neutrophils (%)
Median (range) 61.80 (41.00–91.50) 67.70 (41.10–94.10)

Mean ± SD 63.08 ± 10.01 66.07 ± 12.19 0.134
Neutrophils (×102/µL)

Median (range) 37.57 (13.12–156.46) 44.41 (12.29–122.33)
Mean ± SD 42.90 ± 23.18 45.09 ± 23.43 0.517

Lymphocytes (%)
Median (range) 29.20 (7.00–43.00) 21.80 (2.70–45.60)

Mean ± SD 27.44 ± 8.59 23.95 ± 10.05 0.035
Lymphocytes (×102/µL)

Median (range) 16.41 (6.30–28.22) 13.67 (3.51–29.18)
Mean ± SD 16.62± 4.59 13.88 ± 4.48 0.002

Monocytes (%)
Median (range) 5.90 (1.40–12.20) 6.50 (1.40–11.70)

Mean ± SD 6.10 ± 1.65 6.96 ± 2.15 0.016
monocytes (×102/µL)

Median (range) 3.66 (1.34–9.28) 3.96 (1.82–8.10)
Mean ± SD 3.87± 1.39 4.24 ± 1.42 0.200

Hb hemoglobin, WBC white blood cells.
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Table 3 shows the distribution of serum markers and blood coagulation examination
in peripheral blood cells and the R2 value obtained by MR relaxometry. The carcinoem-
bryonic antigen (CEA), C-reactive protein (CRP), albumin, D-dimer, activated partial
thromboplastin time (APTT), and R2 showed significant differentiation between benign
and malignant tumors.

Table 3. Serum markers and blood coagulation examination in peripheral blood cells and R2 value
obtained by MR relaxometry.

Benign Tumor Malignant Tumor p-Value

Number n = 108 n = 42

CEA (ng/mL)
Median (range) 0.90 (0.30–4.20) 1.40 (0.40–67.6)

Mean ± SD 1.12 ± 0.81 3.68 ± 10.39 <0.001

CA125 (U/mL)
Median (range) 63.50 (9.00–15.04 × 102) 46.00 (8.00–10.59 × 103)

Mean ± SD 103.90 ± 164.71 640.92 ± 1764.63 0.496

CA 19-9 (U/mL)
Median (range) 24.00 (1.00–4.74 × 102) 26.00 (1.00–19.94 × 104)

Mean ± SD 40.47 ± 61.32 5229.70 ± 31,108.10 0.164

CRP (mg/dL)
Median (range) 0.02 (0.00–12.00) 0.10 (0.00–13.40)

Mean ± SD 0.35 ± 1.32 0.88 ± 2.43 0.008

Albumin (g/dL)
Median (range) 4.50 (3.60–5.20) 4.40 (3.50–5.20)

Mean ± SD 4.47 ± 0.25 4.34 ± 0.31 0.025

D-dimer (µg/mL)
Median (range) 0.60 (0.40–4.50) 0.80 (0.40–17.30)

Mean ± SD 0.77± 0.54 2.39 ± 3.77 0.009

APTT (second)
Median (range) 28.30 (23.00–48.30) 27.30 (24.20–36.30)

Mean ± SD 28.79 ± 3.44 27.59 ± 2.68 0.023

R2 (s−1)
Median (range) 22.30 (4.53–59.42) 8.38 (4.80–31.22)

Mean ± SD 23.68 ± 11.19 10.12 ± 5.58 <0.001

CEA carcinoembryonic antigen, CA125 carbohydrate antigen125, CA 19-9 carbohydrate antigen 19-9, CRP
C-reactive protein, APTT activated partial thromboplastin time.

3.2. The Efficacy of Each Factor in Discriminating between OE and EAOC

The results of the ROC curve analysis, based on the detection of malignant tumors, are
shown in Table 4. The optimal cut-off value was determined by analyzing the ROC curve
among malignant ovarian tumors and OEs. The ROC analysis showed the same result
as peripheral blood cell distribution, serum markers, and blood coagulation examination
results (Tables 2 and 3). The R2 value showed the best sensitivity, and age and cyst size
showed the top two specificities (Table 4, Figure 1).

Table 4. The cut-off values discriminating EAOC from benign OE in the current cohort.

AUC p-Value Cut-Off Value Sensitivity Specificity PPV NPV

Age (years) 0.825 <0.001 47.50 0.595 0.935 78.12 85.59

Cyst size (mm) 0.833 <0.001 85.74 0.786 0.843 66.00 91.00

CEA (ng/mL) 0.711 <0.001 0.950 0.756 0.583 50.82 80.76

Lymphocytes (%) 0.622 0.035 22.50 0.571 0.759 48.78 81.48
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Table 4. Cont.

AUC p-Value Cut-Off Value Sensitivity Specificity PPV NPV

Lymphocytes (×102/µL) 0.680 0.002 16.06 0.800 0.540 40.58 86.79

Monocytes (%) 0.640 0.016 7.65 0.371 0.862 52.00 77.32

Platelet (×104/µL) 0.635 0.011 29.25 0.500 0.743 43.75 78.78

CRP (mg/dL) 0.638 0.009 0.14 0.476 0.757 44.44 78.00

Albumin (g/dL) 0.619 0.026 4.25 0.381 0.825 48.48 75.47

D-dimer (µg/mL) 0.648 0.010 0.75 0.556 0.735 47.61 79.22

APTT (second) 0.622 0.023 27.75 0.619 0.611 41.27 78.37

R2 (s−1) 0.875 <0.001 13.76 0.857 0.806 63.15 93.54

CEA carcinoembryonic antigen, CRP C-reactive protein, APTT activated partial thromboplastin time, PPV positive
predictive value, NPV negative predictive value, AUC area under curve. The R2 value was calculated as a fraction.
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Figure 1. The ROC curves of the factors showing the top three specificities in the current cohort. The
R2 value showed a high AUC.

3.3. The Independent Factors in Discriminating OE and EAOC

A multivariate analysis confirmed that age, cyst size, and the R2 value were extracted
as independent factors for predicting malignant tumors (hazard ratio (HR): 14.35, 95%
confidence interval (CI): 2.89–71.04, p < 0.001; HR: 14.40, 95% CI: 3.26–63.51, p < 0.001; HR:
10.23, 95% CI: 2.60–40.20, p = 0.001, respectively) (Table 5).

Table 5. Univariate and Multivariate analysis of the predictive factors of EAOC in the current cohort.

Univariate Analysis Multivariate Analysis

Risk Ratio (95% CI) p-Value Risk Ratio (95% CI) p-Value

Age ≤47.50 1.00 (referent) 1.00 (referent)
(years) >47.50 21.21 (7.93–56.71) <0.001 14.35 (2.89–71.04) 0.001

Cyst size ≤85.74 1.00 (referent) 1.00 (referent)
(mm) >85.74 19.62 (7.97–48.31) <0.001 14.40 (3.26–63.51) <0.001

CEA ≤0.95 1.00 (referent)
(ng/mL) >0.95 4.34 (1.84–10.18) 0.001

Lymphocytes >22.50 1.00 (referent)
(%) ≤22.50 4.19 (1.82–9.61) 0.001

Lymphocytes >16.05 1.00 (referent)
(×102/µL) ≤16.05 4.48 (1.77–11.36) 0.002

Monocytes ≤7.65 1.00 (referent)
(%) >7.65 3.69 (1.47–9.24) 0.005
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Table 5. Cont.

Univariate Analysis Multivariate Analysis

Risk Ratio (95% CI) p-Value Risk Ratio (95% CI) p-Value

Platelet ≤29.25 1.00 (referent)
(×104/µL) >29.25 2.88 (1.36–6.09) 0.005

CRP ≤0.14 1.00 (referent)
(mg/dL) >0.14 2.83 (1.33–6.03) 0.007

Albumin >4.25 1.00 (referent)
(g/dL) ≤4.25 2.89 (1.28–6.53) 0.010

D-dimer ≤0.75 1.00 (referent)
(µg/mL) >0.75 3.46 (1.52–7.85) 0.003

APTT >27.75 1.00 (referent)
(second) ≤27.75 2.54 (1.20–5.37) 0.014

R2 >13.76 1.00 (referent) 1.00 (referent)
(s−1) ≤13.76 24.85 (9.26–66.69) <0.001 10.23 (2.60–40.20) 0.001

CEA carcinoembryonic antigen, CRP C-reactive protein, APTT activated partial thromboplastin time. The R2
value was calculated as a fraction.

3.4. The Efficacy of Endometriotic Neoplasm Algorithm for Risk Assessment (e-NARA) Index in
Discriminating OE and EAOC

We created the endometriotic neoplasm algorithm for risk assessment (e-NARA) index,
which was calculated using the following Equation (1):

e-NARA index = −3.836 + 2.664 × [age(year)/10] + 2.667 × LN [Tumor diameter(mm)] + 2.326 × [10/R2] (1)

LN = natural log function.
We next assessed the efficacy of the e-NARA Index in discriminating between OE and

EAOC. The result of the ROC curve analysis, based on discriminating EAOC from OE, is
shown in Figure 2A. The cut-off value from the above formula was 21.36 (sensitivity, 85.7%;
specificity, 87.0%; AUC = 0.928, p < 0.001) (Figure 2A,B). When setting the cut-off value as
17.97, sensitivity and specificity were 100.0% and 48.1%, respectively, and when the cut-off
value was set as 25.91, sensitivity and specificity were 38.1% and 100.0%, respectively
(Figure 2B).
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3.5. The Sub-Group Analysis of Malignant Tumor Showed the E-NARA Index Increased Stepwise

When the malignant tumors were divided into those with atypia/borderline tumor
and those with advanced malignant tumor, age, tumor diameter, and R2 value changed
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stepwise. Notably, age and R2 could distinguish atypia/borderline tumor from benign OE
and from atypia/borderline tumor with significant differentiation (p = 0.029 and p = 0.046,
respectively) (Figure 3A,C). The e-NARA index, which consisted of the above factors,
showed significant differentiation in discriminating atypia/borderline tumor from be-
nign OE, and advanced malignant tumor from benign OE, with optimal cut-off values
of 19.89 and 21.36, respectively (Table 6, Figure 3D). When comparing benign OE and
atypia/borderline tumor, under 19.89 corresponded to benign tumor (Figure 3(D-a)). The
cut-off value discriminating advanced malignant tumor from benign OE was the same
value, as shown in Figures 2(B-a) and 3(D-b).
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Table 6. The cut-off values among benign OE, atypia or borderline tumor, and advanced malignant
tumor in the current cohort.

AUC p-Value Cut-Off Value Sensitivity Specificity PPV NPV

Benign OE vs. Atypia or
borderline tumor 0.846 0.001 19.89 0.889 0.713 20.51 98.71

Benign OE vs. Advanced
malignant tumor 0.951 <0.001 21.36 0.909 0.870 68.18 96.90

OE ovarian endometrioma.

4. Discussion

We previously reported that MR relaxometry could be a noninvasive preoperative
prediction tool and showed a favorable predictive accuracy for malignant transformations,
with sensitivity and specificity of 86% and 94%, respectively [44]. In the current study, MR
relaxometry showed a similar sensitivity to (85.7%), but lower specificity (80.6%) than, the
previous reports. This result could have been influenced by the accumulative effect of the
cases. MR relaxometry has diagnostic limitations in clinical use in the case of FP or FN. The
e-NARA index improved the specificity (87.0%).
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Ovarian tumors are diagnosed mainly as benign or malignant by transvaginal ultra-
sound because of its low cost and easily operable characteristics. However, this device has
yielded to enhanced MR imaging, because of its poor subjectivity. To improve its weak
point, the International Ovarian Tumor Analysis (IOTA) Group developed a system of
standardization in the characterization of adnexal masses [51]. Lee Cohen Ben-Meir et al.
investigated this method in OE, or its associated malignant tumor, EAOC, and reported
that this method could discriminate malignant tumors with high sensitivity [52]. Since
our study showed relatively high specificity, the IOTA system is recommended to evaluate
ovarian tumors for screening, and the e-NARA to validate.

Among previously reported indexes, the risk of ovarian malignancy algorithm (ROMA)
index and the Copenhagen (CPH) index were the two major predictive tools that use serum
markers and age, or menopausal status, in discriminating malignant ovarian tumor from
benign [53,54]. Our reports also showed tumor diameter and serum CEA level could dis-
criminate EAOC from OE without MRI [45,46]. Similar to these indexes, the e-NARA index
included one of these factors, such as age, and tumor diameter improved the diagnostic
accuracy. In discriminating malignant from benign tumors, relying on only one indicator
(i.e., MR relaxometry) could be inadequate, and indexes using multilateral indicators, as
above, should be required.

CEA is reported as an independent predictor for identifying epithelial ovarian cancer
and ovarian metastases [55]. Further studies found that the cut-off value of CEA in
the differential diagnosis of primary ovarian tumors and metastatic ovarian cancer was
2.33 µg/L [56]. In this cohort, CEA showed good diagnostic efficacy in univariate analysis.
However, it did not achieve significant differentiation in multivariate analysis. The serum
CEA level could exert its ability in predicting the R2 value, rather than in discriminating
EAOC from OE with the real R2 value.

In recent years, inflammatory reactions in the tumor microenvironment have been
shown to play an important role in tumor development and progression [57,58]. Peripheral
leukocytes, neutrophils, lymphocytes, platelets, and acute-phase proteins contribute to the
inflammatory response and can be detected easily. A number of studies have demonstrated
that inflammatory response factors are related to the survival of patients with cancer who
have been surgically treated [59–63]. In the current study, inflammatory factors, such as
elevated monocytes, platelets, and CRP, and decreased lymphocytes and albumin, showed
good diagnostic efficacy at univariate analysis, which was comparable to previous re-
ports [64–69]. Similar to the above malignant tumors, OE also induces severe inflammatory
responses [70–72]. The inflammatory response between OE and EAOC should be different.

Finally, the current study supports a scenario of the 2-step malignant transforma-
tion model which Hiroshi Kobayashi et al. hypothesized [73]. In the first step, excess
hemoglobin and iron species, produced by autoxidation and the Fenton reaction cause
oxidative damage, which results in DNA damage and mutations. In the second step,
reduced iron content and increased antioxidant protection could help in cell survival and
the tumorigenic effect of endometriotic cells. In the current study, the sub-group analysis
showed that the R2 value, which reflects the iron concentration of the cyst fluid, reduced
stepwise in the order of benign OE to malignant tumor. The iron species could play a key
role in causing malignant transformation of OE, and further investigation into the balance
of iron species and antioxidant protection is required.

This study had some limitations. The first limitation was possible selection bias, due to
the nature of retrospective study. To overcome this bias, a multi-center prospective cohort
study is now proceeding (UMIN000034969). Second, the newly reported tumor marker
of tissue factor pathway inhibitor 2 (TFPI2) was not assessed [74,75]. Finally, we did not
compare diagnostic efficacy among the IOTA classification, ROMA index, the CPH index,
and the e-NARA index. To assess the efficacy of the above tumor marker and these indexes,
a prospective study is needed.
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5. Conclusions

In conclusion, the e-NARA index improved diagnostic efficacy in discriminating
EAOC from OE and could provide clinicians with reliable evidence to diagnose EAOC.
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