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Abstract: Atherosclerosis manifests by the thickening of artery walls and their narrowed channels
through the accumulation of plaque. It is one of the most important indicators of cardiovascular
disease. It can be caused by various factors, such as smoking, a high cholesterol diet, hypertension,
hyperglycemia, and genetic factors. However, atherosclerosis can also develop due to infection. It has
been reported that some bacteria and viruses can cause the development of atherosclerosis. Examples
of these viruses are influenza viruses, herpes viruses, hepatitis viruses, or papillomaviruses, which
are all prevalent and eminent globally for infecting the population worldwide. Moreover, many
patients with coronavirus disease 2019 (COVID-19) showed symptoms of cardiovascular disease. In
this review paper, the viruses linked to the development of atherosclerosis are introduced, and their
viral characteristics, the mechanisms of the development of atherosclerosis, and the current vaccines
and antiviral treatment methods are summarized.
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1. Introduction

Atherosclerosis is a chronic disease whose prominent features are the thickening of
artery walls and their narrowed channels through the accumulation of plaque, which
mostly consists of fats, cholesterols, mineral crystals, and cellular waste products [1,2]. It
obstructs blood flow to heart and other organs causing coronary heart disease, ischemic
stroke, or peripheral vascular diseases [3]. It has been well studied that atherosclerosis
can develop due to various factors, such as smoking, a high cholesterol diet, hypertension,
hyperglycemia, or genetic factors [4]. Recently, it has also been suggested that inflammation
and infection can trigger the development of atherosclerosis by themselves, in the absence
of other risk factors [5,6]. It has been reported that some bacteria, such as Chlamydia
pneumoniae and Helicobacter pylori, or various viral agents including influenza viruses,
hepatitis viruses, herpes simplex viruses (HSV), human papillomavirus (HPV), human
cytomegalovirus (HCMV), and human immunodeficiency virus (HIV) can provoke the
development of atherosclerosis, where the feasible mechanisms are the overexpression of
various cytokines, chemoattractant molecules, adhesion molecules, and growth factors after
the occurrence of infections, increased oxidation and uptake of low-density lipoprotein
(LDL), and increased resistance against apoptosis [7]. Moreover, according to the Centers
for Disease Control, patients suffering from coronavirus disease 2019 (COVID-19) caused
by the novel severe acute respiratory syndrome (SARS) coronavirus-2 (CoV-2) showed that
cardiovascular disease is one of the most common comorbidity conditions, which strongly
suggests cardiovascular and atherosclerosis manifestations of SARS CoV-2 [8,9]. These
viruses are all prevalent and eminent globally for infecting the population worldwide
and knowledge of the specific viruses provoking the development of atherosclerosis is
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prominent in this pandemic era. This paper is a concise review of the viral agents which
have been reportedly linked to the development of atherosclerosis. This paper covers the
viral characteristics, the mechanisms of atherosclerosis development, and current vaccines
and antivirals altogether, to provide accurate information in a brief review format for
students, scientists, and healthcare professionals who want to rapidly learn about the
viruses linked to atherosclerosis. The general molecular mechanisms and pathways that
are considered to be linked to the pathogenesis of atherosclerosis via the viral infection are
appended in the discussion chapter.

2. Influenza Viruses

Influenza viruses, which infect the respiratory system, generally cause fever, a sore
throat, muscle pain, coughing, fatigue, and a runny nose, but they can cause severe symp-
toms, such as acute lung injury, pulmonary oedema, hypoxemia, acute respiratory distress
syndrome, and even cardiovascular collapse with thrombosis and acute myocardial infec-
tion [10–12]. They cause life-threatening systemic inflammatory syndromes by elevating
adhesion molecules, chemokines, inflammatory mediators, and cytokines, such as tumor
necrosis factor (TNF), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), and by hyperacti-
vating and proliferating immune cells [13,14]. Neutrophils secrete neutrophil extracellular
traps (NETs), which show cytotoxic effects on the lung endothelial cells and eventually
damage the organs [15]. Moreover, the viruses can induce apoptosis of epithelial cells and
remodel the structure of the endothelium to cause endothelial permeability and vascular
leak via hyperactivation of cytokines and chemokines [16,17]. It has been shown at the
diagnostic and practical level that influenza infection and acute myocardial infarction are
highly cross-linked, and it is reported atherosclerosis can be caused by a thrombogenic
environment through the platelet activation and endothelial dysfunction generated by
influenza infections [18,19]. In addition, neuraminidase, a group of enzymes that cleave
sialic acid during viral exit from the host cell, can induce desialylation of lipoproteins,
increase the uptake of LDL, and thus enhance atherosclerosis development by increasing
blood clots [20,21]. Infections by specific strains of influenza viruses can be prevented by
vaccination and treated by antiviral drugs, such as oseltamivir phosphate (Tamiflu®), and
it has been reported that successful influenza vaccination can prevent the development of
cardiac diseases associated with influenza viruses [22,23].

3. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2)

SARS CoV-2 is a single-stranded enveloped RNA virus covered with glycoprotein spikes
causing the virus to have a crown-like shape from which its Latin name corōna, meaning a
crown, derives, and it belongs to the family Coronaviridae where seven human pathogenic
coronaviruses have been recognized and documented: HCoV-229E, HCoV-NL63, HCoV-OC43,
HCoV-HKU1, MERS-CoV, SARS-CoV, and SARS-CoV-2, among which MERS-CoV, SARS-CoV,
and SARS-CoV-2 have been classified as the pandemic strains [24,25]. A global pandemic
outbreak of COVID-19 is caused by the new type of coronavirus, SARS CoV-2, discovered in
Wuhan in China in December 2019, whose viral structure and pathogenicity are similar to the
SARS coronavirus discovered in Foshan, China in 2002 and Middle East respiratory syndrome
(MERS) coronavirus discovered in 2012 [25,26]. Similar to other coronaviruses, SARS-CoV-2
must attach and penetrate host cells via endocytosis to replicate its virions inside the host,
where it releases its viral genome, translates its RNA sequences to make the viral proteins,
replicates its RNA genome, and assembles whole viral particles to mature and complete its
replication [24]. SARS-CoV-2 targets angiotensin-converting enzyme (ACE) 2 receptors on the
surface of epithelial cells of the trachea, bronchi, bronchial serous glands, and the alveoli of
the human respiratory tract [25]. The increased expression of ACE2 receptors can facilitate
and stimulate SARS-CoV-2 and induce more severe symptoms [26].

SARS-CoV-2 infection stimulates secretions of IL-1β, interferon-γ (IFN-γ), IFN-γ-
induced protein 10kDa (IP-10), monocytic chemoattractant protein-1 (MCP-1), interleukin-4
(IL-4), IL-6, and interleukin-10 (IL-10), some of which can trigger a cytokine storm and
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atherosclerosis in a host [9,27]. In addition, SARS-CoV-2 acts as a complement activator
in a host so that C3 and C5 are activated, and ultimately induce acute respiratory distress
syndrome (ARDS) in a host [28]. Moreover, it has been reported that many patients with a
SARS-CoV-2 infection had a ST-segment-elevation on electrocardiography, myocardial in-
farction, and acute myocarditis [29,30]. It is currently understood that COVID-19 may cause
atherosclerosis due to the extremely high levels of proinflammatory cytokine produced
after SARS-CoV-2 infection [8,9,27]. While few vaccines are available, some antivirals,
such as Remdesivir, which is a nucleotide analogue prodrug, Molnupiravir, which is a
ribonucleotide prodrug of beta-D-N4-hydroxycytidine (NHC), and Paxlovid, which is
Ritonavir-Boosted Nirmatrelvir, showed activities against SARS-CoV-2 [31,32]. However,
the Food and Drug Administration (FDA) has approved Remdesivir only for the treatment
of COVID-19, while Molnupiravir and Paxlovid are not authorized for use in patients
who are hospitalized with severe symptoms of COVID-19, but instead those two antivirals
have received emergency-use authorization from the FDA for the treatment of mild to
moderate symptoms of COVID-19, as the use of the antibody treatments reduced the risk
of hospitalization and death [33].

4. Hepatitis Viruses

The hepatitis-causing viruses include Hepatitis A Virus (HAV), Hepatitis B Virus
(HBV), Hepatitis C Virus (HCV), Hepatitis D Virus (HDV), and Hepatitis E Virus (HEV),
among which HBV, HCV, HDV are bloodborne viruses that are commonly transmitted
through inadequate sterilization of medical equipment and injection devices and the transfu-
sion of contaminated blood and unscreened blood, while HAV and HEV are transmitted via
the fecal-oral route after consuming contaminated food and beverages [34,35]. The general
symptoms of hepatitis viruses commonly include fever, fatigue, malaise, vomiting, nausea,
abnormal pain, joint pain, and jaundice, but HAV, HBV, and HCV have been reported
for their linkage to the development of coronary heart disease and atherosclerosis [35–38].
The clinical data clearly showed the increased incidence of coronary heart diseases and
atherosclerosis after infection with HAV, HBV, or HCV, and the data implied that hepatitis
seropositivity is involved in the development of heart disease [36–38]. A clinical study,
which was conducted with 391 patients, showed a higher prevalence of coronary artery
disease in HAV-seropositive patients compared to 74% of HAV-seronegative patients [36].
Similarly, the association between HBV antigen seropositivity and atherosclerosis has been
observed [37]. In addition, it has been reported that carotid atherosclerosis was diagnosed
more prevalently within the chronically HCV-infected patients [38]. Thus, it is certain that
hepatitis virus infections are a risk factor for the occurrence of atherosclerosis and cardiac
disease, but the detailed mechanisms of the enhanced pathogenesis induced by hepatitis
viruses are not sufficiently defined. It is roughly understood that inflammation linked with
the hyperactivation of cytokines, such as IL-1β, IL-6, IL-10, and TNF-α causes pathogenesis
of coronary heart disease and atherosclerosis [39,40]. Specific treatment methods against
each hepatitis virus do not exist yet. Instead, people can be vaccinated to become protected
against HAV and HBV [41,42].

5. Herpes Simplex Virus (Human Herpesvirus 1 and 2)

Herpes simplex virus (HSV)-1 and -2 are members of the human Herpesviridae family
and are known as human herpesvirus-1 and -2, respectively. It is estimated that HSV-1 has
infected 3.7 billion people worldwide, and HSV-2 has infected 400 million people world-
wide [43,44]. Autopsy, biopsy, metadata analysis, and laboratory research data confirmed
that HSV infection can initiate and progress the development of atherosclerosis [45–48].
Higher detection of HSV-1 DNA in the atherosclerosis autopsies and biopsies implies that
the virus is highly linked to the disease [45,46]. The meta-analysis also suggests that HSV
can increase the incidence of atherosclerosis [47]. From human specimens, it was confirmed
that HSV-1 was more significantly detected in atherosclerotic groups compared to non-
atherosclerotic groups [48]. HSV upregulates lectin-like oxidized LDL receptor-1 (LOX-1),
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which is the major receptor protein of oxidized LDL (oxLDL), stimulates the uptake of
oxLDL in endothelial cells, provokes lipid accumulation and its metabolism through the
increased acquisition of saturated cholesteryl esters and triacylglycerols, induces the accu-
mulation of coronary artery calcium, and causes the development of thrombosis, which are
all related to the development of atherosclerosis [49–52]. It is certain that HSV is involved
in the pathogenesis of atherosclerosis. Vaccines and specific treatments against those virus
species are not yet available, but antiviral medications, such as acyclovir, famciclovir, and
valacyclovir are the most popular medications to alleviate symptoms of people infected
with HSV even though those medications cannot completely cure the infection [53,54].

6. Human Papillomavirus

Human papillomavirus (HPV) is known as the most important causal factor of cervical
carcinomas, where 99% of cases are associated with HPV infection [55]. HPV can be
categorized into two types: low-risk and high-risk, among which types 16 and 18 are the
most oncogenic ones responsible for approximately 70% of cases [56,57]. In addition to
cancer, it has been reported that HPV infection is also related to atheromatous arterial
disease and cardiovascular disease; for example, a clinical study showed that 55% of
20 patients having atheromatous coronary arteries had HPV types 16 and 18, and the other
study showed that 65% of 60 female patients diagnosed with coronary artery disease had
HPV [58,59]. It is currently understood that overexpression of HPV E6 and E7 proteins
can progress atherosclerosis by degrading p53 and inducing the proliferation of smooth
muscle cells (SMC) in aortic tissues [60–62]. It has been studied that p53 plays a very
important role in the development of atherosclerosis through its control of cell replication
and proliferation mediating the development of the atherosclerotic lesion [62]. Vaccines
against specific types of HPV are available, such as Cevarix® targeting types 16 and 18,
and Gardasil® targeting types 6, 11, 16, 18, 31, 33, 45, 52, and 58 [63]. However, a universal
vaccine working against all types of HPV has not been developed yet. Specific antivirals
are also currently unavailable.

7. Human Cytomegalovirus (Human Herpesvirus 5)

Human cytomegalovirus (HCMV) belongs to the Herpesviridae family and is known
as human herpesvirus-5 [64]. It is estimated that approximately 83% of the global pop-
ulation have been already exposed to the virus and had antibodies of IgG class in their
serum [65]. Moreover, the fetus can also be infected, and HCMV is never fully cleared
from the infected host and persists during the lifetime [66]. HCMV can be reactivated
from latency and triggers various inflammatory stimuli, and cellular and physiological
stresses [67,68].

HCMV has been linked to atherosclerosis and cardiovascular diseases, and clini-
cal data confirmed the existence of HCMV in the arterial walls of patients having is-
chemic heart disease and its linkage to the development of coronary artery disease and
atherosclerosis [69,70]. Even though the detailed mechanisms are unclear, it is true that
HCMV proteins and genomes are found in atherosclerosis-associated vessels, and HCMV
increases the incidence of atherosclerosis [71]. Atherosclerosis is provoked and aggravated
by HCMV via CD36 expression to promote uptake of OxLDL, US28 expression to stimulate
migration of SMC, which is highly involved in the pathogenesis of vascular diseases, the
suppression of p53 to increase SMC proliferation, UL122 expression to provoke endothelial
cell injury through the translocation of heat shock protein 60 (HSP60), and T-cell expansion
and accumulation [71–76]. In addition, animal model studies confirmed that the transmis-
sion of cytomegalovirus can provoke and aggravate atherosclerosis by hyperactivation
of mitogen-activated protein kinase (MAPK) pathways, increasing levels of IFN-γ and
TNF-α, the upregulation of vascular cell adhesion protein 1, also known as vascular cell
adhesion molecule 1 (VCAM-1), Intercellular Adhesion Molecule 1 (ICAM-1), and MCP-1,
and the expansion of the lesion size [77–79]. No vaccine against HCMV is yet approved
and licensed, and the specific treatments against the virus are not yet developed. Instead,
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antiviral medications, such as acyclovir, ganciclovir, valganciclovir, foscarnet, cidofovir,
and letermovir are available to alleviate the symptoms of people infected with HCMV even
though those medications cannot completely cure the infection [80–82].

8. Human Immunodeficiency Virus

Atherosclerosis is highly linked to human immunodeficiency virus (HIV) infection
in that HIV-positive patients show a higher prevalence of atherosclerosis than the HIV-
negative population [83]. Atherosclerosis can be developed after HIV infection mainly by
the provoked inflammation and hyperactivation of cytokines inducing the recruitment of
immune cells, ER stress, and apoptosis of foam cells. HIV infection can elevate interleukin-
1 (IL-1), IL-6, interleukin-12 (IL-12), interleukin-18 (IL-18), IFN-γ, and MCP-1, which
stimulates TNF-α and -β, and the nuclear factor kappa-light-chain-enhancer of activated B
cells (NFκB) [84–86]. These inflammatory mediators contribute to the recruitment of various
immune cells, such as monocytes differentiating into macrophages, which are responsible
for lipid engulfment to promote transformation to atherosclerotic foam cells [86]. It is
speculated that oxLDL, MCP-1 production, increased calcium levels, and ER stress in
aortic endothelial cells cause apoptosis of the foam cells and plaques in the arteries [87–89].
Antivirals to treat HIV exist, but it has been reported that some drugs, such as ritonavir or
efavirenz, can cause dyslipidemia and atherosclerosis [90,91]. Pre-exposure prophylaxis
(PrEP) treatment was the only option to prevent HIV infection, but the U.S., the FDA
has recently approved the first injection drug Apretude to prevent HIV infection [92–96].
Additionally, it has been reported that various antiretroviral drug treatments including
Ritonavir, Saquinavir, Nelfinavir, Indinavir, Efavirenz, and Tenofovir alafenamide can
increase the levels of human blood lipids and the incidence of atherosclerosis [97]. It is
thought that those antiretroviral drugs induce oxidative stress, change lipid metabolism,
increase proinflammatory cytokines, and express adhesion molecules, which can deteriorate
endothelial function and aggravate atherosclerosis [98].

9. Discussion

Based on autopsy, biopsy, metadata analysis, animal study, and molecular biology
research data, it is certain that specific viral infections are highly linked to the pathogenesis
of atherosclerosis. Nevertheless, the detailed molecular mechanisms that initiate, trigger,
develop, and aggravate atherosclerosis with viral infections are not completely understood
yet. Some viruses, such as HSV-1, HSV-02, HCMV, and HCV show traits that imply their
direct and indirect effects on the development of atherosclerosis, but the involvement of
HPV and influenza viruses is still uncertain or undetermined [99]. Viruses can directly
induce atherosclerosis via their direct interactions by infecting vascular cells, multiplying
in the atherosclerotic plaque to accelerate the infection, while an indirect effect can occur
in the non-vascular sites with increased levels of cytokines and immune proteins which
lead to the development of atherosclerosis; thus, the viral genome can be isolated from the
atherosclerotic plaques if the direct viral effects occur, but their genome cannot be isolated
from the atherosclerotic plaques in the cases caused by indirect viral effects [99,100]. For the
direct effects, the viral infection activates and accelerates the innate immune responses, and
the activated innate immune cells can help to further express various pro-inflammatory
and/or prothrombotic cytokines, such as IL-1β, IL-6, INF-γ, and TNF-α, which can activate
and promote macrophages within the vascular cells; LDLs are also found in the form of
oxLDL, and these oxLDLs in the infected cells and tissues are phagocytized by macrophages,
which will induce the generation of the foam cells and plaque [99,100]. For the indirect
effects, viral infection generally occurs in the non-vascular sites, and activates innate
immune responses inducing the expression of pro-inflammatory and/or prothrombotic
cytokines, such as IL-1β, IL-6, INF-γ, and TNF-α in the non-vascular site; macrophages
circulate and move to vascular cells and become imported to the site to induce phagocytosis
of oxLDLs and the formation of foam cells and plaque [99,100].
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Although viruses can be detected in atherosclerotic sites for the direct effects or non-
vascular sites for the indirect effects, which strongly suggests that viral infection is closely
linked to the development of atherosclerosis, many aspects of their molecular effects are still
presumably attributed to the inflammatory and immunological events which are usually
observed in the infection sites, such as the hyperactivation of cytokines and inflammations
in a host along with some extra features as summarized in Figure 1. High viral replications
in the host can lead to the hyperactivation of proinflammatory cytokines, various immune
components, and modulators. Such increased secretions of the chemokines and interleukins,
overexpression of various immunogenic modulators and receptors, and hyperactivation of
immune cells along with arterial stiffness and dysfunction and disruption of endothelial
tissues can provoke and progress atherosclerosis after viral infections. Thus, it can be
understood that the development atherosclerosis by viral infection is mainly triggered
by the hyperactivation of cytokines with some additional unique mechanisms given by
the specific viruses. Based on these mechanisms, it can also be understood why so many
patients with COVID-19 showed serious symptoms of cardiovascular diseases and why
many people being vaccinated with the COVID-19 vaccine booster shots have suffered
from serious symptoms of cardiovascular disease right after vaccination. It is suggested
that the exaggerated immune reactions caused by COVID-19 vaccine booster shots may
provoke similar mechanisms and reactions as the viral infections linked to the development
of atherosclerosis. Therefore, the need to further investigate the underlying mechanisms of
the development of atherosclerosis by viral infections is truly notable, and safer vaccines
to protect people and novel antivirals to completely cure the infections must be further
investigated in the scope of the pathogenesis of heart disease, including atherosclerosis and
should be ultimately developed to improve the health of people worldwide.
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Figure 1. The Currently Defined Mechanisms of Atherosclerosis Development by virus infection. All
viruses can induce the hyperactivation of cytokines and activate immune cells in a host, while some
viruses exhibit additional unique mechanisms in the development of atherosclerosis. SARS CoV-2,
severe acute respiratory syndrome coronavirus-2; HIV, human immunodeficiency virus; HCMV,
human cytomegalovirus; HPV, Human Papilomavirus; LOX, lectin-like oxidized LDL receptor.

10. Conclusions

In this paper, we reviewed the specific viruses linked to the development of atheroscle-
rosis with the specific purpose of preparing a condensed manuscript in a mini review
format to help students, scientists, and healthcare professionals efficiently and rapidly
learn about the viruses linked to atherosclerosis. Atherosclerosis is a chronic inflammatory
disease, and it manifests with the thickening of artery walls and their narrowed channels
through the accumulation of plaque [1,2]. It is widely known that atherosclerosis can be
developed by smoking, a high cholesterol diet, hypertension, or hyperglycemia [4]; but
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viral infection can also trigger and aggravate atherosclerosis development [5–7]. However,
information related to the underlying mechanisms in atherosclerosis development via viral
infection is still very limited, and the current understanding mainly relies on statistical re-
ports from various clinical studies. Many aspects of their molecular effects are presumably
attributed to the general inflammatory and immunological events depicted in the Figure 1.
For example, many patients with COVID-19 showed symptoms of cardiovascular diseases
clinically, and it has already been proposed by other research groups that SARS CoV-2 is
potentially linked to atherosclerosis and that the virus can be a risk factor for atherosclerosis
development [8,9], but the underlying mechanisms are not completely defined [101–103].
Therefore, the underlying mechanisms in atherosclerosis development by viral infection
should be further investigated and defined to obtain a more precise knowledge of the
relationships between atherosclerosis and viral infection. In addition, safer vaccines to
prevent viral infection and enhanced antivirals to cure viral diseases must be further stud-
ied and developed not only to protect people from viral infection but also to prevent the
development of heart disease, including atherosclerosis, after viral infection.
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