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Abstract: Assessment of treatment response to targeted therapies such as everolimus is difficult,
especially in slow-growing tumors such as NETs. In this retrospective study, 17 patients with
pancreatic neuroendocrine tumors (pNETs) and hepatic metastases (NELMs) (42 target lesions) who
received everolimus were analyzed. Intralesional signal intensities (SI) of non-contrast T1w, T2w and
DCE imaging, and apparent diffusion coefficients (ADCmean and ADCmin) of DWI, were measured
on baseline and first follow-up MRI after everolimus initiation. Response assessment was categorized
according to progression-free survival (PFS), with responders (R) showing a PFS of ≥11 months.
ADCmin of NELMs decreased in Rs whereas it increased in non-responders (NR). Percentual changes
of ADCmin and ADCmean differed significantly between response groups (p < 0.03). By contrast,
ADC of the pNETs tended to increase in Rs, while there was no change in NRs. Tumor-to-liver (T/L)
ratio of T1 SI of NELMs increased in Rs and decreased in NRs, and percentual changes differed
significantly between response groups (p < 0.02). T1 SI of the pNETs tended to decrease in Rs and
increase in Ns. The quotient of pretherapeutic and posttherapeutic ADCmin values (DADCmin) and
length of everolimus treatment showed significant association with PFS in univariable Cox analysis.
In conclusion, quantitative MRI, especially DWI, seems to allow treatment assessment of pNETs with
NELMs under everolimus. Interestingly, the responding NELMs showed decreasing ADC values,
and there might be an opposite effect on ADC and T1 SI between NELMs and pNETs.

Keywords: therapy response; neuroendocrine tumors; DWI; everolimus

1. Introduction

Neuroendocrine tumors of the pancreas (pNETs) represent a very rare tumor entity,
with an incidence of 0.48 per 100.000 population and account for only 1% of all pancreatic
tumors [1–3]. Due to the slow growth and the frequently unspecific symptoms—especially
in the case of non-functional-pNETs—tumor stage is often advanced at the time of diagnosis,
with hepatic metastases in around 64–70% of cases [4] Thus, curative tumor resection is
limited, and therapy concepts are based on symptom control and reduction of tumor
spread [5].

One of the most promising new therapy strategies for advanced NETs is based on the
targeting and inhibition of the mTOR protein [6]. The mTOR pathway plays an important
role in the tumorigenesis of NETs of different origins [1,6]. Due to its antiproliferative
and antiangiogenic effects, everolimus, an oral inhibitor of the mTOR pathway, nowadays
represents an integral option in the second-line therapy for progressive disease under SSAs
or cytotoxic chemotherapy [7,8].
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The RADIANT-3 trial proved the efficacy of everolimus in advanced pancreatic NETs,
prolonging median PFS (11 months vs. 4.6 months for placebo group) and improving
overall survival (OS) by 6.3 months (44 vs. 37 months) [1,9,10]. However, objective tumor
response rates were generally low (5% in the everolimus group), indicating that the positive
effect on PFS was mainly due to stabilization of tumor growth or minor tumor shrinkage,
not reaching the cut-off for partial response as defined by RECIST [9,11]. An increasing
body of evidence suggests that conventional response criteria, which are mainly based
on tumor size change, are suboptimal to evaluate treatment response to antiproliferative
or antiangiogenic effects as mediated by targeted anti-cancer drugs, especially in slow-
growing tumors such as NETs [11–13]. A recently published study showed that the Choi
criteria, which integrate changes in tumor density in addition to size, correlated better
with OS than RECIST in the therapy evaluation of pNETs under sunitinib [14]. Functional
imaging parameters, especially diffusion-weighted imaging (DWI), provide encouraging
capabilities to serve as new imaging biomarkers [15–21]. The European Neuroendocrine
Tumor Society (ENETS) has already discussed ADC as a promising (despite little evidence
so far) predictive parameter for tumor response in its expert consensus guideline and
recommended the more frequent use of ADC in addition to RECIST [22]. Studies evaluating
morphological response criteria of patients with NETs receiving everolimus or sunitinib
are largely missing. However, this would be of fundamental importance, to allow an
early differentiation of responders from non-responders in clinical practice and improve
oncological study design by a more accurate definition of PFS.

Therefore, the purpose of this study was to analyze the diagnostic reliability of quanti-
tative MRI for therapy response assessment in pNETs under everolimus.

2. Materials and Methods
2.1. Patients

Consecutive patients with histologically proven pNETs (resected or advanced) who
received everolimus at our department, with therapy start between December 2011 and
August 2021, were retrospectively included in this study. Further inclusion criteria were
primary or secondary liver metastases and a baseline and follow-up MRI with DWI (Fig-
ure 1). Patient selection for therapy with everolimus was based on a consensus decision
in an interdisciplinary tumor conference certified for NETs (ENETS Center of Excellence).
The local research ethics committee (LMU Munich, project number 20-0847) approved this
retrospective study and the need for written informed patient consent was waived.

2.2. MR Imaging

MR examinations were obtained using a 1.5T and 3T scanner (Magnetom Avanto,
Magnetom Aera, Magnetom Skyra and Magnetom Verio, Siemens Healthcare, Erlangen,
Germany). The imaging protocol consisted of an unenhanced T1w gradient-echo (GRE)
sequence in- and out-of-phase, a single shot T2w sequence T1w 3D GRE sequences with fat
suppression (fs) (non-contrast and 20, 50, 120 s after intravenous contrast media injection
(Gd-EOB-DTPA; Primovist, Eovist, Bayer Schering Pharma, Germany; 25 µmol/kg body
weight) depending on circulation time), a multishot T2w turbo spin echo sequence with fat
saturation, diffusion-weighted sequences (b-values: 50, 400, 800 s/mm2) and a T1w GRE
sequence with fat saturation and a T1w 3D GRE fs sequence after a delay of 15 min. ADC
maps were generated from DW images, including all b-values.
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Figure 1. Flow-chart illustrating retrospective patient selection.

2.3. Image Analysis

All pretherapeutic MRI data were reviewed by two radiologists in consensus (C.S. and
S.K., with 15 and 2 years of experience in abdominal MRI). In consensus, they defined two
hepatic metastases (minimum size > 0.5 cm) per patient as target lesions and assessed if the
pNET was resected. Inclusion criteria for metastases were homogenous appearance and no
artifacts within the lesion in all sequences. Quantitative MRI evaluation was conducted
in two separate sessions by two readers independently: (1) preinterventional MRI and (2)
postinterventional MRI with a 2-week interval between the review sessions. The readers
were blinded for the patients’ clinical or follow-up data. ADC values were calculated by
manually placing a circular region-of-interest (ROI) on the slice with the largest tumor
extent on DWI (excluding structures close to the rim to avoid partial volume effects) and on
non-enhanced T2w and T1w + contrast-enhanced images (arterial, portal-venous, venous,
and hepatobiliary phase), SI values were recorded by drawing ROIs of the lesions as large
as possible. In addition, ADC, T2w and T1w SI values of normal liver, pancreas and spleen
were measured on pre- and posttherapeutic scans, by placing circular ROIs, as large as
possible, in areas of tumor-free tissue. The size (longest diameter) of hepatic lesions was
measured on T1-weighted hepatobiliary phase and on T1w arterial phase for the pNETs.

2.4. Standard of Reference and Response to Treatment

For all patients in the study cohort, diagnosis of pNET was confirmed by histopathol-
ogy, and for most patients Ki-67 labelling index of the primary tumor was obtained. Grading
was performed according to the 2017 WHO Tumor Classification Guideline (G1: Ki-67
Index was <3%, G2: Ki-67 Index was 3–20%, and G3 NET/NEC: Ki-67 Index was >20%) [23].
Treatment response was evaluated as progression-free survival (PFS) and was calculated
in months from the time of everolimus initiation until progression according to the local
interdisciplinary tumor board, including evaluation of all performed imaging studies (CT,
PET/CT, MRI). Responders were defined by PFS ≥ 11 months and non-responders (NRs)
by PFS < 11 months, respectively. This cut-off was based on the reported median PFS of
11 months in the RADIANT-3 phase-III-trial. Additionally, OS was determined in months



Biomedicines 2022, 10, 2618 4 of 13

from treatment start until death from any cause. Patients who were still alive at the time of
last follow-up (May 2022) were censored.

2.5. Statistical Analysis

Statistical analysis was performed utilizing commercially available statistical software
(Graphpad Prism Version 6, San Diego, Calif. and SPSS version 25, Chicago, IL, USA).
Statistical significance level was defined at p ≤ 0.05. All data was expressed as mean or
median values with standard deviation (SD) or interquartile range [IQR], respectively.
Normal distribution of continuous variables was evaluated by visual inspection of the
frequency distribution (histogram). We compared the SI and ADC values of target lesions
before and after therapy using a two-tailed, paired t-test. Two-tailed, unpaired t-tests were
used to compare the SI and ADC values of target lesions between different response groups,
respectively. The Wilcoxon rank-sum test was used in case of a non-normal distribution.
OS and PFS were modeled according to the Kaplan–Meier method. The multivariable Cox
proportional hazards regression model was performed to analyze independent prognostic
clinical and imaging parameters for PFS and OS. Using a stepwise approach, all variables
with p < 0.1 in univariable analysis were entered into the multivariable model.

3. Results
3.1. Patients

Seventeen patients (6 female, 11 male) with a total of 42 target lesions (34 liver metas-
tases, 8 primary tumors) were included in this retrospective study. Due to motion artifacts,
DWI was not evaluated in one patient and two pNETs were not evaluated due to intratu-
moral calcifications and heterogenous appearance, respectively. Baseline MRI was acquired
26 ± 32 d prior to treatment start, and first follow-up MRI was performed 115 ± 44 d after
initiation of everolimus. A total of 7/17 patients underwent primary tumor resection. Most
of the included NET patients had G2 tumors (n = 14), followed by two high-grade tumors
(G3), while no low-grade (G1) tumors were included, and for one patient no grading was
obtained. Detailed patient characteristics are presented in Table 1.

Table 1. Patient characteristics.

Patient Characteristics

Sex

Male 11
Female 6

Median age, years (range) 68 (27–79)

Grading

G1 0
G2 14 (82%) median Ki-67 (range) 10 (4–20)
G3 2 (12%) median Ki-67 (range) 30 (25–40)
n/a 1 (6%)

median CgA (ng/mL) (range) 1079 (94–29,761) elevated CgA *, n 13 (76%)

median NSE (ng/mL) (range) 20 (9–87) elevated NSE *, n 9 (53%)

pNET resected 7 (41%)

prior medical treatment 14 (82%)

prior PRRT 8 (47%)

prior liver-targeted therapy 4 (24%)
* CgA, ULN 94.0 ng/mL; elevated CgA, greater than 2 × ULN; NSE ULN, 16.3 ng/mL; elevated NSE, greater
than 1 × ULN; n, number of patients.
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3.2. Overall Survival and Progression-Free Survival

By the end of the study, 9/17 patients had died (53%), and 15 (88%) had shown pro-
gression on imaging. Overall median PFS was 5 months (95% CI: 3.5–6.6). Median PFS was
31 months (95% CI: 13.8–48.2) in the R group (n = 5), and 3 months in the NR group (95%
CI: 2.5–3.5). Overall median survival was 36 months (95% confidence interval (CI): 5.5–66.5),
with a median follow-up time of 38 months. Median OS in Rs was 38 months (95% CI: 0–87)
compared to 21 months (95% CI: 4.3–37.8) in NRs. Survival and PFS of patients with elevated
vs. non-elevated baseline CgA and NSE levels did not differ significantly (p > 0.67).

3.3. ADC Measurements

There were no significant differences of ADC values of NELMs between Rs and NRs
before treatment. ADCmin in responding NELMs decreased significantly after therapy
(p < 0.02), while ADCmin increased in non-responding NELMs (p < 0.03) (Figures 2A, 3
and 4) Concordantly, percentual changes of ADCmin in NELMs were significantly different
between response groups (p = 0.001) with a median decrease of −40.5% (IQR −48.9—
−4.1) in Rs compared to an increase of 28.7% (IQR −4.6–160.1) in NRs. Additionally, for
ADCmean, there was a significant increase in first FU in NRs (p < 0.02), while there was no
significant change in Rs. Percentual changes of ADCmean differed significantly between
response groups (p = 0.03), with a decrease in Rs (−5.2%, IQR −21.9—5.5) compared to an
increase in NRs (18.7%, IQR −5.6–58.6) (Figure 2B).
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Figure 2. Analysis of ADC changes in NELMs and pNETs. (A) ADCmin of NELMs on baseline
and first FU imaging. (B) Percentual changes of ADCmean of NELMs. (C) ADCmean of pNETs on
baseline and first FU imaging. Asterisks indicate statistical significance (* p ≤ 0.05).
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Figure 3. A 66-year-old male with liver metastases of pNET classified as a responder. (A) The
pre-interventional axial T1w image (hepatobiliary phase) shows hypointense metastasis (circle) in
segment 2. The metastasis (arrow) shows restricted diffusion with high signal on axial DW-MR image
b = 800 s/mm2 (B,D) dark signal (circle) on ADC map (C). The pretherapeutic ADCmin value of the
metastasis was 858 × 10−3 mm2/s. Under everolimus, the metastasis showed no significant change
in size on hepatobiliary phase (D), however there was a loss of signal on DW-MR image b = 800
s/mm2 (E) compared to the pre-interventional image and decreasing signal (circle) on the ADC map
(F). The post-interventional ADCmin values were 476 × 10−3 mm2/s and lower higher compared to
pretherapeutic ADC value.
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Figure 4. An 74-year-old man with hepatic metastasis of pNET classified as a nonresponder. (A,D) Un-
der everolimus, the metastasis (arrow) increased in size from (A) 25 mm to (D) 29 mm on the axial
contrast-enhanced T1W image (liver-specific phase) (B,D). On both (B) pre- and (D) posttherapeu-
tic MRI, the metastasis (arrow) showed restricted diffusion with high signal on DWI image with
high b-value. (C) ADCmin value of the metastasis (circle) on pretherapeutic ADC map (E) was
747 × 10−3 mm2/s and increased to 811 × 10−3 mm2/s on (F) the post-therapeutic scan.

Regarding the primary tumor, statistical analysis was limited due to the small sample
size. In Rs, both ADCmin and ADCmean tended to increase after therapy initiation, while
there was no change in NRs (Figure 2C). For ADCmean, percentual change was 37.1% (IQR
25.6–48.5) in Rs compared to 1.2% (IQR −13.4–25) in NRs.

There were no significant changes between the pre- and posttherapeutic ADCmean of
non-tumorous liver, spleen, and pancreatic tissue.

3.4. T2 Signal

T2w of NELM divided by the T2w background signal of the spleen (T/S ratio) in-
creased significantly in NRs while there was no change in Rs (Figure 5).
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centual changes of T/S ratio of NELMs. Asterisks indicate statistical significance (* p ≤ 0.05,
** p ≤ 0.01).

3.5. Non-Enhanced T1 Signal

The ratio of T1 SI of the target lesion divided by T1 SI of the liver (T/L ratio) showed a
significant increase in the R group after therapy start, while T/L ratio tended to decrease in
the NR group (Figure 6A). Concordantly, percentual changes of non-enhanced T/L ratio
differed significantly between response groups (p = 0.02) with an increase of 38.6% in the R
group (IQR 31.8–76.1), compared to a decrease of −24.2% in the NR group (IQR −50–9.9)
(Figure 6B). Non-enhanced T1 of the pNET tended to decrease in Rs and slightly increase
in NRs; however, statistical analysis was not possible due to the small number of included
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pNETs. Native TI SI of non-tumorous liver and pancreas did not differ significantly between
groups, and after the start of everolimus.
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3.6. DCE

There were no significant differences in the contrast enhancement of NELM between
arterial, pv and venous phases between response groups. However, in accordance with the
results of non-enhanced T1w SI evaluation, background T1 T/L ratio after therapy start
tended to have higher SI ratios in responding lesions than non-responding NELMs. For
arterial phase, T/L ratio was 1.18 in Rs compared to 0.86 in NRs (p < 0.05) (Figure 7).
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3.7. Cox Regression of PFS and OS

In univariable analysis of PFS, length of everolimus treatment and the imaging pa-
rameter DADCmin, which represents the quotient of ADCmin of NELM before and after
therapy start (ADCmin pretherapeutic/ADCmin posttherapeutic = DADCmin), showed a
significant association with PFS. The other clinical parameters, including age, ki-67, grading
and elevated baseline NSE or Chromogranin A levels showed no significant associations
with PFS in the univariable analysis (Table 2). In the multivariable model, neither of both
parameters remained significant; however, the p-value of DADCmin was borderline (0.09),
especially regarding the small cohort for Cox analysis. In the univariable analysis for OS,
none of the parameters showed significant association with patient outcome (Table 3).
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Table 2. Cox regression of PFS.

PFS Univariable Multivariable

HR 95% CI p-Value HR 95% CI p-Value

Age 0.99 0.96–1.02 0.48

ki-67 1.03 0.97–1.09 0.37

Grading 2.25 0.59–8.5 0.23

Prior systemic
treatment 0.95 0.27–3.4 0.94

Duration of
everolimus treatment 0.87 0.74–1.02 0.09 0.88 0.75–1.04 0.14

Elevated CgA * 0.57 0.15–2.2 0.41

Elevated NSE * 0.54 0.14–2.1 0.37

% change ADCmin 1.00 0.99–1 0.19

% change ADCmean 1.01 0.99–1.02 0.19

DADCmin 0.21 0.06–0.8 0.02 0.30 0.07–1.2 0.09

% change T/L ratio T1 0.99 0.98–1.0 0.10

% change S/T ratio T2 1.01 0.99–1.03 0.12
* CgA, ULN 94.0 ng/mL; elevated CgA, greater than 2 × ULN; NSE ULN, 16.3 ng/mL; elevated NSE, greater
than 1 × ULN. Significant p-values are displayed in bold (according to predefined significance levels).

Table 3. Cox regression of OS.

Univariable

HR 95% CI p-Value

Age 1.02 0.97–1.07 0.49

Ki-67 1.00 0.92–1.07 0.87

Grading 0.13 0.13–9.7 0.91

Prior systemic treatment 31.90 0.27–37680 0.34

Duration of everolimus treatment 0.79 0.54–1.16 0.22

Elevated CgA * 1.58 0.19–12.95 0.67

Elevated NSE * 0.77 0.14–4.2 0.76

% change ADCmin 1.00 0.99–1 0.59

% change ADCmean 1.00 0.99–1.01 0.78

DADCmin 0.39 0.07–2.12 0.28

%change T/L ratio T1 0.99 0.97–1.0 0.12

%change S/T ratio T2 1.01 0.99–1.03 0.55
* CgA, ULN 94.0 ng/mL; elevated CgA, greater than 2 × ULN; NSE ULN, 16.3 ng/mL; elevated NSE, greater
than 1 × ULN.

4. Discussion

In this study, we found that quantitative MRI parameters, especially ADC and T1w SI
of NELMs, were useful for response assessment of pNETs treated by the targeted agent
everolismus. We chose PFS as the primary end point, as recommended by the National
Cancer Institute Neuroendocrine Tumor Clinical Trials Planning Meeting consensus report.
The use of OS is especially challenging in NETs due to generally long survival times, and
consequently a wider range of post-progression salvage therapies [4]. Overall median
PFS was rather low in our study cohort, with 5 months compared to a median PFS of
11 months in the RADIANT-3 trial [9]. Overall median survival was also slightly lower
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than reported, with 36 months in our study compared to 44 months in the RADIANT-3
trial [4]. Factors which might cause this difference in our small study cohort in comparison
to the RADIANT-3 trial data might be tumor grading, percentage of patients with high
baseline NSE 1 × ULN or high baseline CgA 2 × ULN, as well as late treatment line with
everolimus. In the RADIANT-3 trial, 82% had well-differentiated tumors and only 17%
moderately differentiated tumors, while in our cohort 82% had moderately differentiated
tumors and 12% low-differentiated tumors. In the RADIANT-3 trial chromogranin, A was
elevated in 46% and NSE was elevated in 26% of all patients, while in our patient group
CgA was elevated in 76% and NSE was elevated in 53% [24–26].

Interestingly, we found that ADCmin values showed a significant decrease after
everolimus initiation in responding NELMs, while ADC in NRs increased. The quotient of
ADCmin pretherapeutic/ADCmin posttherapeutic was the only imaging parameter that
showed a significant association with PFS in univariable Cox analysis (HR 0.21 (95% CI
0.06–0.8; p = 0.02). This underlines that lower ADCmin values in follow-up MRIs were
associated with better treatment response. This finding seems counterintuitive at first sight,
as therapies inducing apoptosis usually show an increase in ADC values due to tumor
necrosis and lysis; however, it depends on the mechanism of treatment. For example, PRRT
in neuroendocrine tumors has been reported to cause increased ADC values in patients
with better OS and PFS [16], and the percentual increase of ADC was found to correlate
with decrease in size [18].

The effect of targeted, cytostatic agents is not immediate cell death as in cytotoxic
regimens. pNETs characteristically contain a high microvascular density, which is expressed
by radiological enhancement [14]. Previous studies investigating targeted therapies with
antiangiogenic effects have shown (a transient) decrease in tumor ADC values, which
might be accompanied by reduced contrast enhancement.

It is likely that antiangiogenic effects reduce vascular permeability, which is accom-
panied by lower perfusion and extravascular–extracellular space, and thus decreasing
ADC. Only larger tumor necrosis mediated by vascular-directed therapies would lead to
an increase of ADC [11,27].

Schraml et al. investigated early changes of DWI in advanced hepatocellular carcinoma
treated with the multikinase inhibitor sorafenib and found an early decrease in ADC,
followed by a later re-increase. The authors suggested that these changes were caused by
hemorrhagic tumor necrosis. Antiangiogenic treatments induce ischemic conditions, which
causes a disruption of the cell membrane and in turn leads to a shift of extracellular ions
and water molecules into the cell while reducing the extracellular volume [11,28,29].

Additionally, for patients who received anti-VEGF drugs in brain tumors, a transient
decrease of ADC was reported [30,31]. Patients with renal cell carcinoma, which is also a
highly vascular tumor, treated with sunitinib showed an early reduction of D (IVIM) of
the primary tumor, with a larger reduction being associated with a better RECIST response
and longer PFS [32]. It was shown that in spite of increased histological necrosis, the
radiological-assessed diffusion restriction increased [33].

Another influencing factor could be related to the immunological effects, as everolimus
is known to increase the rate of regulatory T-cells [34]. Additionally, increased fibrosis due
to replacement of viable tumor cells by collagen was hypothesized as a cause for decreasing
ADC values in responding hepatic metastases indicated by improved OS [35].

For evaluation of T1 SI acquisition parameters are not standardized and studies
evaluating comparability are missing. Native T1 SI of NELM decreased in NR and increased
in R—both for absolute values as well as for the relative ratio of T1 SI of the target lesion
divided by T1 SI of the liver (T/L ratio). NELM in the R group showed an increase of around
39% after everolimus initiation (vs. −24% for NR). Two different studies, both analyzing
HCC, found hyperintense SI of non-enhanced T1w after treatment with sorafenib [28,36],
suggesting that therapy induced intralesional hemorrhage or protein-rich necrosis. Mostly,
no intratumoral (macro-) hemorrhage was detected in T1w images in our study cohort,
but this might be explained by microbleeding, which is not visually noticeable but affects
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T1w SI and DWI, and according to the time-dependent evolution of blood products, the
hemoglobin might be obscured by the fat saturation [28].

Elevated baseline levels of neuron-specific enolase (NSE) and chromogranin A (CgA)
were shown to be prognostic for poor survival in pNETs under everolimus [1,37]. In our
study cohort, DADCmin correlated better with OS than baseline CgA, while there was no
significant correlation with pretherapeutic NSE levels, which might be explained by a small
sample size.

Tumor angiogenesis is supposed to play a crucial role in response assessment of
targeted therapies [12]. Regarding the quantitative DCE measurements, we found no sig-
nificant changes in tumor enhancement. However, the analysis of enhancement is prone to
errors as it depends on the exact timing of contrast-enhanced images, and different models
for tracer kinetics are used by different research groups. In this study, DCE (including
four contrast phases) was used instead of a high-resolution over-time perfusion technique.
In addition, quantitative DCE evaluation, e.g., quantitative EASL (European Association
for the Study of Liver) is still labor- and time-intense, and thus not suitable for clinical
routine [38].

Evaluation of ADC and non-enhanced SI of T1w of the pNETs tended to show opposite
effects compared to the NELM. T1w SI of the pNET tended to decrease in R and slightly
increase in NR, and ADC (min and mean) of the pNETs tended to increase in R, while
there was no change in NR. However, statistical analysis was not possible due to the small
number of included pNETs, as they were either resected (n = 7) or strong intratumoral het-
erogeneities impeded quantitative evaluation. Thus, results of the quantitative evaluation
of pNETs should not be overinterpreted; however, we included the data for possible future
systematic reviews.

One major limitation of this study is the small sample size, especially of pNETs, due
to the low incidence of pNETs and everolimus representing a second-line treatment. As
the study design was retrospective, time intervals were not entirely homogenous and
imaging data were not acquired on a single MRI scanner. Therefore, for T1w and T2w SI
measurement, the ratio of the background liver/spleen was calculated to eliminate scanner-
dependent confounding factors. DWI represents simultaneous information regarding
diffusion and microperfusion, so it can be difficult to attribute the observed changes to one
specific pathomechanism [29]. The use of IVIM, which offers quantitative perfusion and
diffusion evaluation, could potentially be helpful for future studies.

5. Conclusions

Treatment response of targeted therapies such as everolimus might be better depicted
by changes in quantitative MRI parameters than conventional size-based criteria. As
suggested by the low objective response rates achieved in the RADIANT trials, everolimus
only mediates minor tumor shrinkage [4,9]. Our results suggest that the ADC and SI of T1w
represent valuable parameters to monitor changes after everolimus treatment and might be
able to better differentiate responding from non-responding patients. Interestingly, NELMs
of the R group showed a decrease of ADC, which is opposite to the reported changes of
DWI after chemotherapy and radiation. However, smaller studies analyzing hypervascular
tumors (HCC, RCC) treated by targeted agents also reported decreasing ADC values after
therapy. Regarding the major role of imaging response assessment in the development of
new treatment strategies, these observations should be further investigated in prospective
studies, in a larger multi-center setting.
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