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Abstract: COVID-19 has attracted worldwide attention ever since the first case was identified in 
Wuhan (China) in December 2019 and was classified, at a later time, as a public health emergency 
of international concern in January 2020 and as a pandemic in March 2020. The interstitial 
pneumonia caused by COVID-19 often requires mechanical ventilation, which can lead to 
pulmonary barotrauma. We assessed the relationship between pneumonia severity and the 
development of barotrauma in COVID-19-positive patients mechanically ventilated in an intensive 
care unit; we therefore analyzed the prevalence of iatrogenic barotrauma and its trends over time 
during the pandemic in COVID-19-positive patients undergoing mechanical ventilation compared 
to COVID-19-negative patients, making a distinction between different types of ventilation 
(invasive mechanical ventilation vs. noninvasive mechanical ventilation). We compared CT 
findings of pneumomediastinum and pneumothorax in 104 COVID-19-positive patients 
hospitalized in an intensive care unit and 101 COVID-19-negative patients undergoing mechanical 
ventilation in the period between October 2020 and December 2021. The severity of pneumonia was 
not directly correlated with the development of barotrauma. Furthermore, a higher prevalence of 
complications due to barotrauma was observed in the group of mechanically ventilated COVID-19-
postive patients vs. COVID-19-negative patients. A higher rate of barotrauma was observed in 
subgroups of COVID-19-positive patients undergoing mechanical ventilation compared to those 
treated with invasive mechanical ventilation. The prevalence of barotrauma in COVID 19-positive 
patients showed a decreasing trend over the period under review. CT remains an essential tool in 
the early detection, diagnosis, and monitoring of the clinical course of SARS-CoV2 pneumonia; in 
evaluating the disease severity; and in the assessment of iatrogenic complications such as 
barotrauma pathology. 
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1. Introduction 
COVID-19 has attracted worldwide attention ever since the first case was identified 

in Wuhan (China) in December 2019 and was classified, at a later time, as a public health 
emergency of international concern in January 2020 and as a pandemic in March 2020; it 
quickly spread globally, causing interstitial pneumonia that often required mechanical 
ventilation. The diagnosis of COVID-19 is typically performed on biological samples 
through a PCR test for COVID-19 detection. However, the role of radiology is essential in 
the management of this pathology. HRCT is indeed the most accurate technique in 
identifying most typical findings of COVID-19 disease: focal or multifocal ground-glass 
opacities (GGOs), consolidation, nodules, reticulation, thickening of interlobular septa, 
crazy paving appearance, traction bronchiectasis, bronchovascular thickening in the 
lesion, air space consolidation, and subpleural lines [1].  

CT also allows us to assess the severity of the infection, including its atypical, 
unexpected manifestations, such as lymphadenopathy, pleural effusion or pericardial 
effusion, and multi-organ involvement. It is also essential to monitor disease progression. 
In certain cases, it can confirm diagnosis (sensitivity ≃ 98%) in suspected patients with 
false-negative laboratory results [2]. There have also been some predictive models 
showing the temporal progression of COVID-19 disease through chest CT findings that 
have been identified: in the early stage, COVID-19 lesions are relatively localized and 
limited to the subpleural or peribronchovascular regions, showing patchy or segmental 
pure GGOs (ground-glass opacities). In the progressive phase, CT mainly shows an 
increase in GGOs’ involvement in lobes and consolidations, with thickening of 
interlobular septa and a crazy paving appearance as common CT findings. In the 
advanced stage, CT manifestations mainly include diffuse bilateral parenchymal 
consolidation surrounded by ground-glass opacification with pulmonary parenchymal 
bands and, sporadically, pleural effusion [3]. 

One of the most frequent and significant complications of COVID-19 is ARDS (acute 
respiratory distress syndrome). ARDS is generally defined by the acute onset of 
hypoxaemia and bilateral pulmonary infiltrates: it is classified according to the PaO2 to 
FiO2 ratio (ratio expressed as X in the following brackets) and can be mild (200 mmHg ≤ 
X ≤ 300 mmHg), moderate (100 mmHg ≤ X ≤ 200 mmHg), and severe (X < 100 mmHg) 
[4,5]. 

In patients with COVID-19 and acute hypoxiemic respiratory failure, conventional 
oxygen therapy might be insufficient, and a non-physiological and invasive treatment that 
can be life-saving may be required in severe ARDS. In order to provide enhanced 
respiratory support, available therapies range from high-flow nasal cannula (HFNC) 
oxygen to mechanical ventilation, which can be administered through invasive techniques 
(IMV) such endotracheal tube (ETT) or tracheostomy tube (TT) or non-invasive techniques 
(NIV) such as positive airway pressure through face or nasal mask (CPAP, continuous 
positive airway pressure). According to COVID-19 treatment guidelines, for adults with 
COVID-19 and acute hypoxemic respiratory failure despite conventional oxygen therapy, 
the first line of treatment is HFNC oxygen; if patients fail to respond, NIV or intubation 
should be initiated [6]. Mechanical ventilation is recommended in patients presenting 
moderate to severe ARDS. A higher positive end-expiratory pressure (PEEP) is suggested, 
and in the case of refractory hypoxemia despite optimized ventilation, prone ventilation 
lasting 12 to 16 h per day [7]. Prone positioning could prevent lung injury caused by 
ventilators because it reduces ventral alveolar expansion and dorsal alveolar collapse, 
resulting in more homogeneous ventilation. The difference between dorsal and ventral 
transpulmonary pressure is reduced, allowing minor lung compression and enhanced 
perfusion [8]. ARDS and patients who are severely hypoxemic (Pao2: Fio2 ratio < 150 mm 
Hg, Fio2 ≥ 0.6, PEEP ≥5 cmH2O) can benefit from prone positioning if early intervention 
is performed, and positioning is maintained for relatively long sessions [9]. However, an 
unnecessarily high PEEP can increase the risk of lung overdistension. 
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According to pathophysiology, it has been shown in other studies that there is a 
proportional association between cytokine production, PEEP, and tidal volume [10]. 
These results suggest that higher PEEP and higher tidal volume may further increase the 
cytokine response with the worsening of alveolar damage, predisposing patients to 
barotrauma. Therefore, mechanical ventilation can the increase risk of developing 
pulmonary barotrauma (pneumomediastinum, pneumothorax, and subcutaneous 
emphysema), which occurs due to alveolar rupture caused by high transalveolar pressure. 
The last intervention line for the treatment of refractory respiratory failure and severe 
ARDS is represented by extracorporeal membrane oxygenation (ECMO). It is an invasive 
technique performed in tertiary care centers that allows the oxygenation of the blood 
while removing CO2 at the same time. This approach gives time for the failing lung to 
recover [11,12]. ECMO guidelines for COVID-19-related ARDS were based on pre-
COVID-19 trials, and ECMO was started in patients <71 years old with severe initial 
presentation and a short duration of mechanical ventilation (MV) before ECMO (i.e., <7 
or <11 days) [13,14]. Data on ECMO efficacy in COVID-19 related ARDS are limited and 
mainly come from case reports or from the experiences of single centers. The reported 
mortality rate was 39% (95% CI 34–43) [15,16]. 

Pneumomediastinum refers to a gaseous infiltration of the mid-thoracic cellular 
tissues consequent to the penetration of air into the mediastinal space. This occurs 
according to “Hamman–Macklin mechanism”, where “primum movens” are represented 
by the rupture of the alveoli in contact with the pulmonary vessels, interstitial tissue, small 
bronchi, and bronchioles, where pressure is higher. Air penetrates the interstitium, and 
from here, it runs through the perivasal sheaths and the peri-bronchial fascial planes and 
reaches the pulmonary hilum, resulting in pneumomediastinum. From the hilum, the air 
can distribute itself cranially along the vascular sheaths of the neck (most frequent 
occurrence), causing the formation of subcutaneous emphysema of the supraclavicular, 
axillary, cervical, face, and thoracic regions. In other, less frequent cases, the air can 
distribute itself caudally through the diaphragmatic orifices, causing pneumoperitoneum 
and retropneumoperitoneum. Sometimes, it can peel off the parietal pleura, causing 
pneumothorax, which refers to air collection in the pleural cavity between the visceral and 
parietal pleura: in the case of mediastinal parietal pleura caused by gaseous infiltration 
due to pneumomediastinum, pneumothorax appears as a consequence of 
pneumomediastinum [17,18]. 

A relevant incidence of barotrauma in hospitalized COVID-19-positive patients has 
been reported in several studies [19–20]. In COVID-19-positive patients, the pulmonary 
air space may be more vulnerable to alveolar damage because of the significant increase 
in trans-alveolar pressure over the local stress–strain threshold that guarantees epithelial 
and interstitial integrity; additionally, clinical manifestations such as cough and the 
increased energy expended to inhale and exhale (work of breathing) increase the stress 
applied to the respiratory system, which may even aggravate lung damage by several 
mechanisms gathered under the name “patient self-inflicted lung injury”. Lung 
inflammation associated with the derecruitment of some alveolar segments, which occurs 
in moderate to severe COVID-19 disease, and variation in negative pleural pressure 
caused by improved work of breathing induce locally concentrated stress amid ventilated 
and collapsed alveolar segments. Better expanded lung units recruit partially open alveoli 
with supra-physiological transalveolar pressure, which can lead to heterogeneous 
deformation stress over the alveolar membrane [21,22]. 

According to these studies, interstitial pneumonia caused by COVID-19 predisposes 
mechanically ventilated patients to barotrauma: our aim was to assess the relationship 
between pneumonia severity and the development of barotrauma in COVID-19-positive 
patients who had been mechanically ventilated in an intensive care unit (ICU). Moreover, 
we evaluated the prevalence of iatrogenic barotrauma in COVID-19-positive patients 
compared to COVID-19-negative patients undergoing mechanical ventilation: we have 
also classified COVID-19-positive patients with barotrauma according to types of 
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ventilation (IMV vs. NIV) and analyzed the average time of onset of this complication and 
its trends over time during the period of study. 

2. Materials and Methods 
The study was conducted by the University Hospital “Policlinico of Bari” and the 

“Department for maxi emergencies—Fiera del Levante”, Bari, Italy. 

2.1. Study Sample 
The research involved 205 patients admitted to the ICU from October 2020 to Decem-

ber 2021. Patients were divided into two groups (Figure 1): COVID-19-positive patients (n 
= 104, male: 76, female: 28, mean age: 65) and COVID-19-negative patients (n = 101, male: 
64, female: 37, mean age: 59). COVID-19-positive patients were again divided into two 
subgroups according to the type of mechanical ventilation: ETT (n. 94) and CPAP-mask 
(n. 10), in order to observe differences in barotrauma incidence. 

 
Figure 1. Population mean age and standard deviation (STD). 

Inclusion criteria were (a) patients admitted to ICU undergoing mechanical ventila-
tion; (b) included patients were subsequently divided into two groups “COVID+” and 
“COVID-” according to the result of a PCR test for SARS-CoV-2 infection from biological 
samples; (c) among COVID+ patients, we selected patients with a pneumonia severity 
score >10 based on a semi-quantitative CT score system. 

Exclusion criteria were (a) patients diagnosed with pre-existing barotrauma at ad-
mission; (b) patients who were not on mechanical ventilation; and (c) patients with a pneu-
monia severity score < 10 (Figure 2). 
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Figure 2. Flowchart: inclusion and exclusion criteria. 

Several algorithms were developed by considering the severity of the pulmonary in-
volvement of COVID-19 according to CT imaging in order to properly standardize and 
quantify the radiological examinations. The “chest CT score” is a method developed by Li 
et al. [12]. In this study, the pneumonia CT severity score was assessed, awarding each 
lobe a score (0 to 5) related to lobar involvement expressed as a percentage value: a score 
0 corresponds to an absence of involvement, a score 1 shows involvement of less than 5%, 
a score of 2 shows involvement from 5% to 25%, a score of 3 shows involvement from 26% 
to 49%, a score of 4 shows involvement from 50% to 75%, and a score 5 shows involvement 
greater than 76%. Calculated for each lobe of both lungs, the sum of each score reaches a 
maximum of 25 points [19]. 

Diagnosis of pneumomediastinum/pneumothorax was confirmed by computed to-
mography (CT), while the average time of onset of barotrauma was estimated from the 
beginning of mechanical ventilation in the ICU. 

2.2. Scanning Protocol 
Siemens Somatom Definition DS CT scanner (Erlangen, Germany) was used to per-

form CT exams. Scanning protocols followed the same acquisition parameters: slice thick-
ness 0.75 mm, tube voltage 100 kVp, 38 mAs, rotation time 0.33 s, pitch 1.1. All images 
obtained were elaborated with reconstruction of 1 mm slice thickness. 

2.3. Imaging Assessment 
All CT images obtained were archived through the institutional PACS (Carestream 

Health, Rochester, NY, USA). MPR (multiplanar reformatting) and 3D MIP (3D maximum 
intensity projection) were performed in order to analyze images using both mediastinal 
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and lung windows. Visual analysis of CT images was conducted independently by two 
radiologists (A.A.S.I. and N.M., with 23 and 12 years of experience, respectively), and any 
disagreement was discussed and solved with the consensus of both radiologists. 

2.4. Statistical Analysis 
All statistical analyses were conducted using JMP statistical software. 
We used the T-test to compare the averages of continuous variables such as age and 

to compare the average time of onset of barotrauma in the COVID+ patients, differentiat-
ing the group with PNM and the group with PNX. 

The comparison between the average values of the severity score in the group with 
barotrauma compared to that with no barotrauma was also analyzed through a T-test. 

We used the Chi-square test to compare the prevalence of barotrauma in the group 
of COVID+ patients vs. COVID− patients. 

A contingency table was elaborated to compare the incidence of barotrauma in the 
NIV vs. MIV group: a Pearson Chi-square test was then performed. 

We used weighted least-squares regression to assess the number of cases of ba-
rotrauma over time: an ANOVA was conducted on the data. 

3. Results 
3.1. Prevalence of Barotrauma 
3.1.1. Prevalence of Barotrauma in COVID+ vs. COVID- 

Prevalence of barotrauma was evaluated between the COVID+ group vs. the 
COVID− group during the entire period of study (Figure 3): a higher prevalence of com-
plications due to barotrauma was observed in the group of mechanically ventilated 
COVID+ patients, with an incidence of pneumomediastinum of 15% (16/104) and of iso-
lated pneumothorax of 14% (15/104). In COVID− patients, there was an incidence of pneu-
momediastinum of 3% (3/101) and of isolated pneumothorax of 8% (8/101). A Chi-square 
test was performed to compare percentages between the two groups (p: 0.02). We found 
cases of pneumomediastinum complicated with pneumothorax exclusively in the 
COVID+ group (Figure 4). 

 
Figure 3. Prevalence of barotrauma in COVID+ patients vs. COVID− patients in ICU. 
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Figure 4. Types of barotrauma among groups. 

3.1.2. Relation between the Prevalence of Barotrauma in COVID+ Group and Type of 
Mechanical Ventilation 

In the COVID+ group, the presence of barotrauma was classified according to the 
type of mechanical ventilation in use: NIV through C-PAP mask caused a higher rate of 
barotrauma (60% vs. 27% in the subgroup IMV with ETT). A contingency table was made 
to compare the results: a Pearson Chi-square test was performed (p: 0.02, Figure 5). 

 
Figure 5. Presence of barotrauma according to type of ventilation in COVID+ patients: p-value is 
reported in red. 
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3.2. Relation between Barotrauma and Pneumonia Severity Score in COVID+ 
In the COVID+ group, the mean value of the pneumonia severity score was compared 

in the subgroup “with barotrauma” vs. “no barotrauma”. We did not find any significant 
difference in the pneumonia severity scores in COVID+ with barotrauma vs. no ba-
rotrauma (COVID+ pneumonia severity mean score: 21 vs. 20 in COVID-, Figure 6). A T-
test was performed to compare the average values among the two groups (p: 0.01). 

 
Figure 6. Comparison between barotrauma and pneumonia severity score in COVID+ patients. 

3.3. Average Time of Onset of Pneumothorax and Pneumomediastinum 
In the COVID+ group, pneumomediastinum developed on average within 3 days, 

earlier than pneumothorax, for which the average time was 18 days (Figure 7). A t-test 
was performed to compare average values among the two groups (p: 0.0009). 

 
Figure 7. Average time of onset of barotrauma in COVID+ patients. 
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3.4. Trend of Barotrauma in COVID+ Group vs. COVD- Group 
Cases of barotrauma were monitored during the period of observation. We observed 

a descending trend in the barotrauma rate in COVID+ patients. ANOVA was performed 
(p: 0.017). The incidence of barotrauma in COVID− patients did not differ (Figure 8). 

 
Figure 8. Cases of barotrauma in COVID+ group vs. COVD- group during period of observation. 

4. Discussion 
In most cases, SARS-CoV2 disease leads to severe interstitial pneumonia, which mod-

ifies the normal lung architecture and decreases compliance; in addition, the necessity to 
mechanically ventilate patients with high flows and pressures exposes them to a higher 
risk of barotraumatic pathology (Figure 9) compared to patients who are mechanically 
ventilated for other diseases, probably due to the lower compliance of the affected lungs. 

 
Figure 9. Examples of barotrauma: (A) coronal scans show pneumomediastinum associated with 
subcutaneous emphysema in COVID+ patient with ETT. (B) Axial scans show severe pneumome-
diastinum associated with pneumothorax and subcutaneous emphysema in COVID+ patient with 
CPAP. 

This is exactly what we observed: we found a higher prevalence of complications due 
to barotrauma in the group of mechanically ventilated COVID+ patients. This alteration 
seems to correlate not only with an increased probability of developing both pneumome-
diastinum and pneumothorax as manifestations of barotraumatic pathology, but also with 
an increased risk of developing complicated conditions (pneumomediastinum associated 
with pneumothorax), an event that was not observed in patients without SARS-CoV2 
pneumonia in our study. 

Nevertheless, we did not find any significant differences in the pneumonia severity 
scores in COVID+ patients with barotrauma vs. no barotrauma, suggesting that the sever-
ity of pneumonia is not a factor that directly predisposes patients to barotrauma. 
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According to our results, NIV caused a higher rate of barotrauma. This could be due 
to several mechanisms. Patients under NIV did not receive ventilation in prone position; 
therefore, a prone position, often performed on IMV patients with the aim to better venti-
late the posterior segments of the lungs, could have a protective effect in reducing ba-
rotrauma. Another protective factor in the patients who underwent IMV could be that 
they need to receive specific therapies with the aim to reduce the resistance of the lung 
and chest wall. Consequent lower lung resistances could reduce the barotrauma rate by 
reducing alveolar stress–strain. Finally, people under NIV were sustaining spontaneous 
breathing: dyspnea or increased work of breathing, due to hypoxia increasing the maxi-
mal inspiratory effort, leading to an increase in transpulmonary pressure, especially when 
under mechanical ventilation with continuous positive airway pressure (C-PAP). There-
fore, in these conditions, patients’ lungs under NIV could have been more exposed to the 
high pressures of mechanical ventilation, a factor promoting barotrauma. 

As mentioned above in the introduction, pneumomediastinum can be seen as the first 
manifestation of iatrogenic barotrauma and is caused by alveolar rupture and gaseous 
infiltration from the peribronchial sheaths up to the mediastinal planes. This is what 
emerged from our study: pneumomediastinum developed on average after 3 days of me-
chanical ventilation. Most cases of pneumomediastinum that we observed were associ-
ated with pneumothorax (10/16), with pneumothorax as an evolution of barotrauma pa-
thology that started with pneumomediastinum. However, when pneumothorax was iso-
lated, its onset occurred after 18 days on average, suggesting that it was promoted by 
other factors, such as the evolution of pneumonia. 

The descending trend in barotrauma incidence we observed could be explained by a 
better knowledge of COVID-19’s physiopathology and better experience in the manage-
ment of these patients, especially regarding ventilation techniques; mechanical ventilation 
may not be standardized, but it should be adapted to single cases while being aware of 
the possibility of barotrauma complications. In the COVID− patients, we did not find a 
significant change in the incidence during the entire study period. 

5. Conclusions 
Based on our experience, the incidence of barotrauma in patients who were mechan-

ically ventilated was significantly higher in COVID+ patients than in COVID− patients, 
regardless of the degree of the severity of pneumonia. Therefore, it would be useful to 
identify other risk factors that expose mechanically ventilated patients to iatrogenic ba-
rotrauma. The inflammatory response causing acute lung injury in COVID-19 patients 
remains a challenge for invasive and lung-protective ventilation management. CT remains 
an essential tool in the early detection, diagnosis, and monitoring of the clinical course of 
SARS-CoV2 pneumonia in evaluating the disease severity, but also in the assessment of 
iatrogenic complications such as barotrauma pathology. 
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