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Abstract: Cutaneous melanoma (CM) is the most lethal form of skin cancer if it becomes metastatic,
where treatment options and survival chances decrease dramatically. Immunotherapy treatments
based on the immunologic checkpoint inhibitors programmed death cell protein 1 (PD-1) and cyto-
toxic T-lymphocyte antigen 4 (CTLA-4) constituted a main breakthrough in the treatment of metastatic
CM, particularly for the achievement of long-term benefits. Even though it is a very promising therapy,
resistance to primary immune checkpoint blockade (ICB) arises in about 70% of CM patients treated
with a CTLA-4 inhibitor, and 40–65% of CM patients administered with a PD-1-targeting treatment.
Some long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are implicated in triggering
pro- and anti-tumorigenic responses to various cancer treatments. The relationship between lncRNAs,
circRNAs and ICB immunotherapy has not been explored in cutaneous metastatic melanoma (CMM).
The aim of this pilot study is to evaluate the potential role of circRNA and lncRNA expression
variability as pre-treatment predictor of the clinical response to immunotherapy in CMM patients.
RNA-seq from 12 formalin-fixed paraffin-embedded (FFPE) samples from the metastatic biopsies
of CMM patients treated with nivolumab was used to identify response-associated transcripts. Our
findings indicate that specific lncRNAs and circRNAs, probably acting as competitive endogenous
RNAs (ceRNAs), are involved in the regulatory networks of the immune response against metastatic
melanoma that these patients have under treatment with nivolumab. Moreover, we established a
risk score that yields predictions of the overall survival (OS) and progression-free survival (PFS) of
CMM patients with high accuracy. This proof-of-principle work provides a possible insight into the
function of ceRNAs, contributing to efforts to decipher the complex molecular mechanisms of ICB
cancer treatment response.

Keywords: circRNA; cutaneous melanoma; immunotherapy; metastasis; lncRNA; ceRNA

1. Introduction

Melanocytes are pigment-producing cells in the skin that are derived from the neural
crest during embryonic development [1]. Epidermal melanocytes can undergo a malignant
tumor transformation process that leads to cutaneous melanoma (CM), which is the deadli-
est type of skin cancer [2]. CM is common and is increasing in incidence rates in the Western
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World [3]. In 2040, 510,000 new cases are expected to be diagnosed; of them, it is calculated
that around 96,000 will die [3–5]. Both genetics and environmental risk factors have been
characterized for CM. Exposure to ultraviolet radiation (UV) is the main risk factor for
melanoma. UV radiation is known to generate mutations that induce cell death and the
malignant transformation of melanocyte cells [6]. One of the consequences of constant
exposure to UV is that melanoma has one of the highest mutation rates and mutational
burdens compared to other solid malignancies [7]. Genomic studies have identified several
driver genes in melanoma, such as BRAF, NRAS, TP53, PTEN, among others, as well as
the relevant pathways involved in its carcinogenesis, such as the MAPK and PI3K/AKT
pathways, and the cell-cycle control and telomerase programs. All of them are affected by
pathologic somatic mutations in protein-coding genes [8].

Interestingly, many of these mutations arise early in the clinical process: for example,
over 80% of benign nevi already have a BRAF mutation [9]. In more advanced stages,
metastatic progression is driven by specific genomic alterations, including somatic mu-
tations and other perturbations of genomic integrity [10,11]. Detected and treated early
on, CM is highly curable. However, if CM becomes metastatic (CMM), treatment options
and survival chances decrease dramatically. Immunotherapy treatments based on the
immunologic checkpoint inhibitors programmed death cell protein 1 (PD-1) and cytotoxic
T-lymphocyte antigen 4 (CTLA-4), such as nivolumab or ipilimumab, have been a main
breakthrough in the treatment of CMM and have changed the landscape of treatment
options for CM in recent years [12]. Even though it is a very promising therapy, primary
immune checkpoint blockade (ICB) resistance arises in about 70% of CM patients treated
with a CTLA-4 inhibitor, and 40–65% of CM patients administered with a PD-1-targeting
treatment [13,14]. Several studies have proposed a variety of molecular pathways that
might lead to therapy failure [14,15]. Based on them, multiple efforts are underway to deter-
mine reliable biomarkers for the prediction of immunotherapy responses, among which the
predominant ones are PD-L1 expression, microsatellite instability and tumor mutational
burden (TMB). Until now, only TMB has been tested as a biomarker in therapeutic trials,
but it has not been found to predict clinical benefit in melanoma patients, owing to the high
mutation rate of all melanoma tumors [14,16].

Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can act as competi-
tive endogenous RNAs (ceRNAs) [17] and lead to a new additional post-transcriptional
layer. LncRNAs participate in the control of gene expression at the epigenetic, transcrip-
tional and post-transcriptional stages, and are important for a variety of cellular functions
and molecular signaling pathways [18]. By functioning as miRNA sponges and by control-
ling splicing and transcription, circRNAs can affect gene expression [19]. It is becoming
increasingly apparent that dysregulated lncRNAs and circRNAs are implicated in the
carcinogenesis and progression of numerous cancers, acting as either oncogenes or tumor
suppressors [20]. Moreover, a growing body of evidence has shown that several immune-
related ceRNAs are present in the tumor microenvironment (TME), and they significantly
influence immune cell infiltration and cancer-cell response to anti-PD-1 immunotherapy
in different cancers [21]. However, to our knowledge, the relationship between lncRNAs,
circRNAs and ICB immunotherapy has not been explored in CMM. The aim of this study
is, therefore, to evaluate the potential role of circRNA and lncRNA expression variability as
a clinical response predictive immunotherapy biomarker in CMM.

2. Materials and Methods
2.1. Subjects

A total of 16 metastatic melanoma patients (clinical data shown in Supplementary
Table S1) treated with nivolumab donated one pre-treatment FFPE biopsy sample. The
closest biopsy to the start of the ICB treatment was selected. In four cases, only the primary
tumor was available, while for 12 patients, we were able to collect the metastatic lesion.
Samples were collected at the Hospital Regional and Hospital Universitario Virgen de la
Victoria (Málaga) from 2018 to 2019. The study followed the Declaration of Helsinki and
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was vetted by the Ethical Committee of Malaga, reference number 26/10/2017 with the
title: “Omics integration for precision cancer immunotherapy”. For this specific analysis,
we used the metastatic biopsies in order to identify biomarkers that were specific to the
metastatic disease, given the scarce knowledge in the field [22] and that it is currently
the most frequent indication for immunotherapy in melanoma. Responders and non-
responders were defined based on RECIST v1.1 criteria: non-responders were defined as
patients that progressed up to three months after the start of the treatment, and responders
were the patients who maintained a partial or complete response for a year, or those that
remained in treatment for at least one year.

2.2. Nucleic Acid Isolation

The tumor-specific area in the FFPE melanoma samples was predefined by a pathol-
ogist. Two to four 10 µm slides were dissected for nucleic acid extraction, using the
microtome HM 340E (Thermo Scientific, Waltham, MA, USA). RNA was extracted with
the RNeasy FFPE kit (Qiagen Dusseldorf, Germany; Ref. 73504) according to the manufac-
turer’s instructions.

2.3. Next Generation Sequencing

RNA-Seq libraries were prepared using TruSeq Stranded Total RNA Gold (Illumina;
San Diego, CA, USA, EEUU; Ref. 20020598) and indexed by IDT for Illumina TruSeq RNA
UD Indexes (Illumina; San Diego, EEUU Ref. 20020591). The libraries concentration was
determined by the Qubit dsDNA BR kit (Thermo Scientific, Waltham, US), and the size
distribution was examined by the Agilent Bioanalyzer (Santa Clara, CA 95051, USA). Paired-
end reads (75bp × 2) were acquired from the Illumina NextSeq 550 platform (Illumina; San
Diego, EEUU) according to the corresponding protocol.

2.4. Realtime PCR Validation

The expression levels of CDR1-AS, the most frequent circRNA, was verified by qRT-
PCR using a predesigned TaqMan probe in all samples (Hs05016408_s1) (Thermo Scientific,
Waltham, US) (Supplementary Figure S1).

2.5. lncRNA and circRNA Detection

A quality control of Fastq data from paired-end reads was performed with FastQC.
Fastq files were trimmed with a cutoff of Q30. We evaluated five different pipelines to iden-
tify and quantify circRNAs reads. CIRI [23] CIRCExplorer2 [24] DCC [25], STARchip [26]
and CIRIQUANT [27] were used and compared. The circRNAs sequences were annotated
based on the circAtlas 2.0 database [28]. To obtain high-confidence circRNAs, we used
a filtering cut-off minimum of two junction reads in at least two samples and in at least
three software packages (validation strategy), which allowed a minimum of back-splice
junction reads (BSJs) per circRNA. These criteria resulted in 19,030 unique circRNAs among
all samples, and we used these high-confidence circRNAs for all the analyses performed
in this study. With forward-splice junction reads (FSJs) and back-splice junction reads
(BSJs), we used the following formula: 2*bsj/(2*bsj + fsj) to calculate the circular-to-linear
transcripts ratio. LncRNA reads were identified by mapping trimmed fastq files against
the reference genome GRGh38 using STAR (v 2.5.1b). Read quantification was conducted
with Feature Count. LncAtlas [29] was used to annotate the lncRNAs.

2.6. Differential Expression Analysis

The DESeq2 pipeline with total mapped reads were used to perform the differential
expression (DE) of high-confidence circRNAs and lncRNAs. The DE analysis was based
on negative binomial generalized linear models, and the threshold values were set to an
adjusted p-value < 0.1 and an absolute value of log2 (fold change) > 1.5. For the DE analysis
of both circRNAs and lncRNAs, the total linear mapped read counts were used for size
factor estimation.
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We compared our differentially expressed of circRNAs to those reported in prior
research using the circRNA disease databases circ2disease [30] circad [31] and circAtlas [28]
The CSCD database [32] was used to estimate cellular localization of all detected circRNAs.

2.7. ceRNAs-miRNAs-mRNAs Interactions

We constructed a network composed by the circRNAs, lncRNAs and messenger
RNAs (mRNAs) that were overexpressed or downregulated in relation to the response
to ICB in our cohort, together with the microRNAs that interact with them. The tool
Analysis of Common Targets for circRNAs (ACT) [33], which employs the miRBase [34] and
miRanda [35] was used to identify microRNA (miRNA)-binding sites for the differentially
expressed circRNAs. To characterize the lncRNAs and obtain the list of interactions between
microRNAs (miRNAs) and the differentially expressed lncRNAs, DIANA-LncBase v2 [36]
was employed. The R multiMir package [37] was used to detect the interactions between the
differentially expressed messenger RNAs (mRNAs) and the miRNAs. For these interactions,
we only used the subset of miRNAs that belonged to the group of miRNAs that interacted
either with differentially expressed circRNAs or lncRNAs. This package combines up
to seven different tools: DIANA-microT, ElMMo, MicroCosm, miRanda, miRDB, PicTar,
PITA and TargetScan [38–46]. To improve the prediction sensitivity, only those interactions
that appeared in at least five different tools were considered as a miRNA-differentially
expressed mRNA pair.

Finally, we calculated the strength of the linear association between the ceRNAs (the
differentially expressed circRNAs and lncRNAs) and the differentially expressed mRNAs
of the network by the Pearson correlation.

2.8. Gene Set Enrichment and Gene Interactions Networks

The differentially expressed mRNA genes targeted by predicted miRNAs were an-
alyzed using the Ingenuity Pathways Analysis (IPA) software version 01-20-04 (Qiagen
Ingenuity Systems (www.ingenuity.com/)). Upstream regulator analysis (URA), down-
stream effects analysis (DEA), mechanistic networks (MN) and causal network analysis (I)
prediction algorithms were used to obtain functional annotations and regulatory network
analysis [47].

2.9. Statistics and Visualization

Statistical analyses charts and graphs were performed using R 4.0.2. The Venn Diagram
R package was used to create Venn diagrams. The ComplexHeatmap R package [48] was
used to create heatmaps, and the subsequent plots and graphs were created with the
ggplot2 package [49]. In survival analysis, the Kaplan–Meier (KM) and log-rank tests
were used to test the differences between groups. The risk score for each patient was
estimated by adapting the previously described method for the estimation, using the joint
expression information of the differentially expressed circRNAs and lncRNAs [50]. This
joint expression was calculated with the DE value of 135 circRNAs and lncRNAs, weighted
by the regression coefficients in a univariate Cox regression analysis (Equation (1)):

Risk Score (RS) =
N

∑
i=1

(Expressioni∗Coefficienti) (1)

where N is the number of differentially expressed circRNAs and lncRNAs, Expression-i repre-
sents the normalized expression value, and Coefficient-i is the Cox regression coefficient in the
univariate model.

2.10. Special Case

Note on additional clinical information about patient IMK36. While this patient fulfills our
criteria for non-responders, all the analyses indicate that he/she is an outlier. Soon after the start
of the Nivolumab treatment, the patient presented ulcers in the legs and received antibiotic and

www.ingenuity.com/
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corticoid treatment that could have inhibited the initial antitumor immune response. However,
he/she has not been removed from the study to avoid reducing the sample size [51].

3. Results
3.1. Overview of circRNA and lncRNA Expression Patterns in Cutaneous Melanoma Tissues

We analyzed the circRNA and lncRNA transcripts by RNA-seq sequencing analysis
with ribosomal RNA (rRNA) depletion from the FFPE tissue of clinical CMM tumors to
find aberrant expressions of these ceRNAs between responders and non-responders to the
PD-1 blockade. The raw sequences were processed with five different circRNA pipelines
to increase the analysis specificity and sensitivity. Only circRNAs that were found in
at least three of the five pipelines were selected for further analyses (19,030 circRNAs).
Both differentially expressed circRNAs and differentially expressed lncRNAs between
responders and non-responders were used to build an ICB-response ceRNA network
(Figure 1a). Overall, 4339 circRNA loci were detected by all tested software in metastatic
tissue samples (Figure 1b,c). The top ten circRNAs generating loci were hsa-CDR1, has-
HIPK3, hsa-SMARCA5, hsa-CSNK1G3 and hsa-PCMTD1. Interestingly, hsa-CDR1 stood as
the top circRNA loci with remarkable distances to the others in four out of the five software
packages. Moreover, the pattern of enrichment in non-responders was reproduced by all
five (Figure 2a). The distribution of circRNAs, according to response throughout the 46
human chromosomes, indicated a similar horizontal coverage between responders (yellow
line) and non-responders (blue line) (Figure 2b). However, some chromosomes, such as
1, 5, 8, 18 and 22, tend to be enriched in the circRNAs of non-responders. Furthermore,
irrespective of the distribution by response, the total number of reads did not correlate with
the chromosomal length. This was particularly patent in chromosome 3 and 12 (Figure 2c).
Remarkably, the most significant entity was the circRNA derived from protein-coding
regions (Supplementary Figure S2).
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Figure 1. Workflow and circRNA tools comparison. (a) Bioinformatic workflow of the ceRNA
interaction network. The pipeline is depicted from the RNA-seq fastq files to the Ingenuity Pathway
Analysis. Five different software packages were employed to identify circRNAs. mRNAs affected
by ceRNAs were predicted by their interaction with miRNAs. Differential expression analysis with
DESeQ2 was used to decipher differences in responses to immunotherapy. (b) Venn diagram with
the number of different cirRNAs detected by each software. (c) UpSet plot showing the maximum
number of identified circRNAs with each software combination.
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3.2. Differential Gene Expression of circRNAs and lncRNAs

To analyze the expression patterns of lncRNAs and circRNAs in relation to response
to immunotherapy, we identified the expression profile of dysregulated circRNAs and
lncRNAs in eight responders versus four non-responders using transcriptome analysis. In
the volcano map, we depict the differentially expressed circRNAs (Figure 3a) and lncRNAs
(Figure 3b) with a fold-change greater than 1.5 and an adjusted p-value less than 0.1. We
found 23 aberrantly expressed circRNAs, of which 21 circRNAs were upregulated and
only 2 were downregulated. To further characterize the identified differentially expressed
circRNAs, we retrieved data from three circRNA databases: circBase, circAltlas and the
cancer-specific CircRNA Database (CSD). The annotations from the latter were particularly
relevant given that almost all known circRNAs that we associated with the response are
related to cancer (15 circRNAs, 68.2%). On top of that, 7 of the 23 differentially expressed
circRNAs (31.8%) have been newly identified in this study. Based on the fold change, the top
five most upregulated circRNAs were hsa-ALDH1L2_0014, hsa-CD38_0001, hsa-CD74_0005,
hsa-CDR1_0001 and hsa-CPM_0002.
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Figure 3. CeRNAs as biomarkers of response to ICB in metastatic melanoma. (a) Volcano plot with
23 circRNAs that are differentially expressed (b) Volcano plot with 112 lncRNAs that are differentially
expressed (c) Ratio of circRNA vs. lineal RNA per differentially expressed circRNA loci. Y-axis lists
the differentially expressed circRNA among responders and non-responders. X-axis represents the ratio:
2*circular/(2*circular + linear), where range 0 represents deviation to linear expression and 1 maximum
deviation to circRNA expression. (d,e) Expression signatures of the differentially expressed circRNAs
and differentially expressed lncRNAs, respectively, separating responders and non-responders to ICB.
Normalized expression values are represented against location and several clinical variables.

To better understand the relation between linear and circular expression seeking other
possible differences between responders and non-responders, we determined the circular–linear
ratio of the differentially expressed circRNAs (Figure 3c). The inferred ratios from the RNAseq
data with the formula 2*Circular/(2*Circular + Linear) showed a broad distribution ranging
from 0.1 to 1. This analysis can represent the splicing preference of the loci interrogated. We
observed ratios higher than 0.5 in hsa-SLIT2, hsa-RP11, hsa-IFI30, hsa-HLA-DRB1 and hsa-CDR1.
Interestingly, hsa-CDR1 showed one of the higher ratios and was the most relevant circRNA in
term of number of counts. It was transcribed with a total of 2211 counts, distributed in 1644 vs.
567 counts between responders and non-responders, respectively.

Regarding the lncRNAs, 112 were differentially expressed with a fold change of 1.5 and an
adjusted p-value < 0.1, from which 58 were found to be downregulated and 54 were found to be
upregulated. Differentially expressed lncRNAs were annotated with LncAtlas [39].

Finally, we were able to group responders and non-responders by their expression of
circRNAs and lncRNAs. Hierarchical clustering analysis showed responders discrimination
among responders and non-responders for both types of RNAs (Figure 3d,e).

3.3. Competitor Endogenous RNA Network (ceRNA Network)

In order to understand the role of the differentially expressed circRNAs and lncRNAs
as post-translational regulators in the context of resistance to ICB, a ceRNAs Network
was built that included 69 lncRNAs with a miRNA interaction (36 upregulated and 33
downregulated; the 43 missing lncRNAs that add up to the total 122 differentially expressed
lncRNAs do not have any miRNA interaction) and 23 circRNAs (21 upregulated and 2
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downregulated). Two additional layers complemented the network. One of them consisted
of 537 target miRNAs from the miRBase with strongly predicted binding sites to our
differentially expressed circRNAs and lncRNAs. Of them, the ones showing the highest
prediction values were Let-7e-5p, miR-1285-3p, miR-6757-3p, miR-877-3p and miR-3689d. The
second additional component comprised 154 differentially expressed mRNAs among the
responders and non-responders that showed interactions with miRNAs predicted to bind
with the differentially expressed ceRNAs. Furthermore, the statistical correlation between
the differentially expressed mRNAs regulated by these miRNAs, and the differentially
expressed ceRNAs, showed that all correlations were direct, reinforcing the notion of
the ceRNAs’ inhibitory role on miRNAs’ action (Figure 4). We also identified several
major putative regulators, such as LINC00861, CHRM3-AS2, MEG3 and RP11−115D19.1,
which correlated with multiple mRNAs, as well as three mRNAs that we speculate can be
regulated by two or more ceRNAs in the context of melanoma resistance to nivolumab:
ICOS, PAX3, HLA−DOA and HLA−DPB1.
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3.4. IPA Functional Enrichment Analysis Based on the ceRNA Network

In order to gain more quantitative and qualitative insight into the mechanism of
the putative regulation of ICB response by ceRNAs, we characterized the biofunctions
and diseases associated with the differentially expressed mRNAs that interacted with the
differentially expressed ceRNAs, as well as the downstream and upstream modulators.
Influence network analysis shows that the DE of the interactome key molecules led to
activity changes, mostly in immunological processes. Activated molecules included TNF,
IRF, IL27, TLR9, EIB3, TGM2 and IFNG, and inhibited ones included MAPK1 and IL1RN
(Figure 5a). Consistently, almost all the enriched functional categories were related to
the immune response, and even specifically to the PD-1–PD-L1 cancer immunotherapy
pathway, the target axis of nivolumab, as show in Figure 5b. This figure depicts the
enriched pathways and the direction based on the Z-score: the most activated pathways of
responders were the TH1 pathway, the T-cell receptor signaling pathway, the ICOS-ICOS-L
signaling pathway in T-helper cells, the role of NFAT in the regulation of the immune
response, dendritic cell maturation, and calcium-induced T lymphocyte apoptosis. On the
other hand, pathways with a Z-score predicting pathway inhibition were the natural-killer
cell-signaling pathway, the synaptogenesis signaling pathway and PD-1, as well as PD-L1
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cancer immunotherapy, together with MSP–RON signaling in the macrophages pathway.
Regarding molecules, the most relevant molecules annotated for these molecular functions
were CCL5, CD6, CSF2RA, HLA-B HLA-DRA, HLA-E, ICOS, IKZF1, IL12RB1, IL12R,
LAIR1, LILRB2, LILRB4, MS4A1, PDCD1, TBX21 and UBD. Even though the Z-score of
relevant pathways for the response indicated an inhibition of the axis, it is important to
evaluate the individual contribution of the differentially expressed genes in our dataset.
Indeed, in Figure 5c, we can observe that the relevant immune response elements of the
PD−1-PD−L1 axis, such as those coding for the receptor of TNF (TNFR), IFNγ, MHC1α, β
and PD1, are upregulated in responders to nivolumab (Figure 5c).
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ceRNA dysregulation.

Next, by using the IPA upstream regulator analysis tool applied on the ceRNA network,
we can predict upstream molecules and provide a mechanistic network that could explain
the observed changes in gene expression. Interestingly, we observed the following activated
transcription regulators: SOX11, IRF1, NLRC5 and SMRACA4. NEUROG1 was found
uniquely inhibited. Regarding cytokines, IL1RN and IL13 were inhibited and IL27, IFLN1,
TNF, IFNG and EBI3 (Supplementary Figure S3) were predicted to be activated. Other
altered upstream regulators were TLR9 and TGM2, which were activated, and SAFB,
SAFB2, RARA and ESR1, which were found inhibited.

Furthermore, to characterize the specific role of ceRNAs in the regulation of the mecha-
nism of resistance to ICB, we sought to identify the pathways aberration related specifically
to response genes that are correlated with such regulators. For this, we generated Z-scores
of IPA canonical pathways of all differentially expressed mRNAs (DEmRNA) vs. the
DEmRNA correlated with ceRNAs (DEmRNA-ceRNA) and vs. the differentially expressed
mRNAs not associated with ceRNA (DEmRNA-noceRNA) (Figure 6). It is very important
to note that there are three pathways that denote an opposite activation profile compared
with all or non-ceRNA-related mRNAs. One of them is the natural-killer cell-signaling
pathway. Additionally, the Z-score of PD−1, PD−L1 cancer immunotherapy was higher
when the pathway was defined by the expression differences of the mRNAs related to
ceRNAs. Moreover, ceRNAs seem to be involved in a fraction of the mechanisms associated
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with drug response. This indicates that ceRNAs may modulate specific processes of ICB
resistance independently of other regulators that they can synergize or oppose.
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Figure 6. Role of ceRNA as modulators of the ICB resistance. Comparison of the pathways’ aberration
according to absence or presence of mRNAs associated with ceRNAs.

Moreover, the gene ontologies and pathways were determined with IPA. The statistical
overrepresentation test was used to find the enriched GO terms and pathways by matching
our gene list with the human genome. The most relevant biological processes were as
follows: leukopoiesis, lymphopoiesis, cell development and lymphocyte homeostasis
(GO:0002521, GO:0030098, GO:0046650, GO:0002260). Supplementary Figure S4 represents
the top enriched ontologies for disease and disorders, molecular and cellular function,
and the physiological system and physiology. The enriched ontology terms were mainly
related to cancer, cellular growth and cellular proliferation, as well as immunological
conditions. The most enriched molecular and cellular functions were cellular development,
cellular growth and cell-to-cell signaling and proliferation. The most enriched physiological
systems were the hematological system development and function system, the lymphoid
tissue structure and development system and the immune cell-trafficking system. Like
the GO term results, the KEGG pathway enrichment analysis identified Axon guidance,
the T-cell receptor signaling pathway, natural-killer cell-mediated cytotoxicity, the ErbB
signaling pathway and the Fc epsilon RI signaling pathway as the enriched pathways in
the interactome.

3.5. Prognostic Risk Score Using the Differentially Expressed ceRNAs

A survival risk score based on the basal gene expression of 135 differentially expressed
ceRNAs categorized the patients in two groups: high and low risk. A high value risk score
was linked with a ceRNA signature of worse overall survival, whereas a low value was
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associated with an ceRNA expression pattern of better survival. Patients considered low
risk had a greater significant overall survival (OS) with a log-rank p-value of 0.00018. The
low-risk patients’ median OS was of 28.49 months (95% CI, 18.46—NR), while patients
considered high risk had a median OS of 1.84 months (95% CI, 0.92—NR) (Figure 7a).
Concerning progression-free survival (PFS), this score is able to predict which patients will
be in the high- or low-risk categories with a log-rank p-value of 0.00018 (Figure 7b). The
median PFS of low-risk patients was of 15.34 months (95% CI, 10.20—NR), while high-risk
patients had a median PFS of 1.64 months (95% CI, 0.53—NR).
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Figure 7. Prognostic value of the ceRNA signature. (a) Association of the ceRNA Risk score based on
gene expression levels with OS in cutaneous metastatic melanoma. (b) Stratification of the patients
according to PFS using the ceRNA-based risk score.

4. Discussion

In an attempt to unmask new players in the control of ICB resistance mechanisms,
we characterized the association of RNA species of recent annotation with the response to
ICB in metastatic CM patients. Therefore, we performed transcriptome analysis of bulk
metastatic melanoma tissue to generate information from both tumor and immune cells
from a metastatic niche. Our hypothesis was that circRNAs and lncRNAs could regulate
the response to ICBs by exerting a sponge function that inhibited specific miRNAs as
ceRNAs. In order to test this, we integrated miRNAs that were targets of differentially
expressed ceRNAs and targeted differentially expressed mRNAs from our dataset. The
resulting selection of differentially expressed mRNAs targeted by those miRNAs was
subjected to a correlation test with ceRNAs. Consistent with our hypothesis, the expression
correlations were always direct, suggesting that the increased expression of ceRNAs was
aligned with the increased expression of the mRNA, putatively through the inhibition of the
corresponding miRNA. Since miRNAs’ expression information is absent from our dataset,
our conclusions cannot include the direct association with the miRNAs. In line with several
previous reports that have highlighted the importance of immune function in the process
of melanoma metastasis and ICB response [52–55], our results show a profound influence
of the dysregulation of these non-coding RNAS (ncRNAs) on the activation or inhibition
of key anti-tumor immunological processes, such as the Th1, natural-killer cell-signaling,
T-cell receptor signaling or the PD-1–PD-L1 cancer immunotherapy pathways. Interestingly,
the expression perturbation of the responders was associated with an increasing expression
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of PD-1 and PD-L1 (CD274). The identification of these ceRNAs as regulators of PD-1 and
PD-L1 expression is important for understanding the interindividual variation in this axis,
which holds the first FDA-approved marker for ICB [53].

On the other hand, the identification of the pattern of pathway aberration that was
exclusive to the ceRNAs-associated genes unmasked a modulatory role of the ceRNAs for
a subset of specific resistance pathways. This finding implies that ceRNAs can either refine
or oppose the effects on drug response processes. This is particularly important for two
pathways that are intrinsically related to the ICB response: the natural-killer cell signaling
pathway and PD-1–PD-L1 cancer immunotherapy. The dysregulation of the ceRNAs in
responders is related to the inhibition of the natural-killer cells, while it ameliorates the
inhibition of the PD-1/PD-L1 axis.

With all these observations, it can be envisaged that the major disruption of immuno-
logical anti-tumor pathways related to ceRNAs and observed in responders denote the
crucial role that the tumor immune microenvironment (TIME) plays in the treatment re-
sponse to ICB. Some lines of evidence indicate that tumor cells can modify the TIME by
recruiting immunosuppressive cells, and both circRNAs and lncRNAs are tools that tumor
cells can use via extravesicular particles to obtain a favorable TIME, consequently leading
to treatment failure. Interestingly, previous reports, regarding both hepatocellular carci-
noma and pancreatic cancer, associated specific circRNAs with the response to targeted
therapy and linked them to natural killer cell dysregulation [54]. With IPA analyses, we
can precisely predict functional regulatory networks from gene expression data and assign
a significance score to each network based on how well it fits the database’s set of focus
genes [47]. Two of the main molecules highlighted by the ceRNA network (Figure 5a) are
TNF and IFNG. Recently, the overexpression of TNF, IFNG and IL2, among other molecules,
have been reported as key molecules that may enhance melanoma progression through
activating the JAK–STAT signaling pathway [55]. Moreover, other studies indicate that both
TNF and IFNG are directly linked with the high density, T-cell infiltration and cytotoxicity
of cytotoxic T-cell (CTL) functions [56]. This process has been recently characterized by
Weigelin B. et al., 2021, whose findings suggested that CTL-mediated apoptosis induction is
not a one-size-fits-all process, and the most common mechanism of tumor-cell eradication
by antigen-specific CTL is the accumulation of sublethal damages [57]. Additionally, other
studies have shown a strong positively correlation between TNF and PD-L1 expression
and poor prognosis [58]. Based on our dataset, we speculate that some of the identified
differentially expressed mRNAs of the TNF ligand family (TNFSF8, TNFRSF9, TNFRSF17,
TNFRSF13B, TNFRSF12A and TNFRSF11B) may affect the CTL activity and the lymphocyte
infiltration. This supports the relevance of TNF in response to ICB in CMM and contributes
to the support of the concept of combining therapies based on anti-TNF and anti-PD-1
in CMM.

With regards to the specific ceRNAs identified in this study, CDR1 circRNA stands out
as a potentially implementable biomarker of response. Previous studies have highlighted
the relevance of CDR1 in cancer, particularly in the metastatic melanoma process. The main
biological process identified to date is sponging miRNA-7, which is well established as a
cancer progression marker. Recently, Hanniford D. et al. 2020 described a more complex
regulation of this region via the epigenetic silencing of the lncRNA LINC00632 [59]. In
our study, we observed that CDR1 is one of the most relevant differentially expressed
circRNAs in terms of abundancy and differential expression in non-responders. Moreover,
we observed that the responders tend to have a more homogeneous CDR1 expression,
indicating that CDR1 seems to be dysregulated in most of the non-responders. Further
studies are needed to validate CDR1 for predicting and monitoring treatment response.

Finally, this work has found another utility as a generator of a prognosis prediction
model in the context of responses to ICB in metastatic CM. A prognostic risk score has been
created for the signature of ceRNAs and used to stratify patients at a high and low risk
regarding OS and PFS. The application of this score can be used to predict these outcomes.
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To our knowledge, this the first time that a differentially expressed ceRNAs signature could
be associated with a prognosis of any ICB treatment.

This study is a proof-of-principle work which develops a highly reliable bioinformatic
pipeline to identify circRNAs and lncRNAs, as well as expression survival scores. Despite
the small sample size and the lack of available validation datasets due to the novelty of the
approach, our results and conclusions are compatible with the ceRNA hypothesis and gen-
erate a unique response signature that warrant further validation in independent cohorts.

All in all, this work provides a novel insight into the modulators of ICB resistance and
implies the existence of new players to be considered as prognosis biomarkers and targets
to counteract resistance in ICB-treated cutaneous melanoma.

5. Conclusions

In the present study, we characterized the ceRNAs in metastatic melanoma patients
treated with ICB to explore the biological role of the ceRNA network on the responses. Our
exploratory analysis revealed that ceRNAs can modulate specific ICB resistance processes;
therefore, they need to be considered in the complex regulatory scenario of the TIME
interactions. Finally, the definition of a Risk score based on the ceRNA expression signature
constitutes a potentially useful tool for predicting prognoses in the context of ICB treatment
in metastatic CM.
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of the main molecules of the differentially expressed mRNAs of the ceRNA network predicted by
IPA. (b) Main relevant acti-vated upstream molecules are IL27 and EBI3, while SAFB is an important
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