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Abstract: The success of cell-based approaches for the treatment of cartilage or fibro-cartilaginous
tissue defects requires an optimal cell source with chondrogenic differentiation ability that maintains
its differentiated properties and stability following implantation. For this purpose, the aim of
this study was to evaluate the use of endostatin (COL18A1), an anti-angiogenic factor, which is
physiologically involved in cell differentiation during meniscus development. Swine neonatal
meniscal cells not yet subjected to mechanical stimuli were extracted, cultured in fibrin hydrogel
scaffolds, and treated at two different time points (T1 = 9 days and T2 = 21 days) with different
concentrations of COL18A1 (10 ng/mL; 100 ng/mL; 200 ng/mL). At the end of the treatments, the
scaffolds were examined through biochemical, molecular, and histochemical analyses. The results
showed that the higher concentration of COL18A1 promotes a fibro-chondrogenic phenotype and
improves cellularity index (DNA content, p < 0.001) and cell efficiency (GAGs/DNA ratio, p < 0.01)
after 21 days. These data are supported by the molecular analysis of collagen type I (COL1A1, a
marker of fibrous-like tissue, p < 0.001), collagen type II (COL2A1, a marker of cartilaginous-like
tissue, p < 0.001) and SRY-Box Transcription Factor 9 (SOX9, an early marker of chondrogenicity,
p < 0.001), as well as by histological analysis (Safranin-O staining), laying the foundations for future
studies evaluating the involvement of 3D endostatin hydrogel scaffolds in the differentiation of
avascular tissues.

Keywords: endostatin; fibrin hydrogel scaffold; chondrocyte; differentiation; morphology; meniscal
tissue engineering

1. Introduction

Meniscus repair or regeneration is still an unsolved clinical challenge, mainly due to
the morpho-functional peculiarities of this tissue. The menisci are fibro-cartilaginous struc-
tures, located in the knee joint and interposed between the femoral condyles and the tibial
plateaus. Each knee consists of two menisci, a medial and a lateral one. Microscopically,
the menisci are made up of an extracellular matrix (ECM) and cells secreting it.

In mammals, the neonatal meniscus appears fully vascularized, but with advancing
age, the inner zone loses its vascularity. For this reason, the inner area of the tissue is
called the “white-white zone”, while the outer area, which maintains a certain degree of
vascularization in adults, is called the “red-red zone”. The intermediate zone is called the
“red-white zone”. Previous studies have verified that the change in the vascularity of the
meniscus coincides with a phenotypic change in both the cells and the cellular matrix [1–5].

Biomedicines 2022, 10, 2415. https://doi.org/10.3390/biomedicines10102415 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines10102415
https://doi.org/10.3390/biomedicines10102415
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-6855-9279
https://orcid.org/0000-0001-8849-2051
https://orcid.org/0000-0002-8292-4543
https://orcid.org/0000-0001-9341-7187
https://orcid.org/0000-0002-2780-5971
https://orcid.org/0000-0003-1674-3020
https://doi.org/10.3390/biomedicines10102415
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines10102415?type=check_update&version=1


Biomedicines 2022, 10, 2415 2 of 16

To date, it is possible to identify changes that occur, at least, at four different levels,
although they are all interconnected with each other: (i) the phenotype of cells pass from a
fibroblast-like phenotype in the inner zone to a chondrogenic-type phenotype [1,6]; (ii) the
composition of the matrix changes with age: it mainly consists of type I collagen in new-
borns, while in adults, type II collagen is mostly synthesized, especially in the inner zone;
moreover, cellularity decreases but cells increase the production of glycosaminoglycans [7];
(iii) the biomechanical properties change, the increase in aggrecan synthesis enhances
the compressive strength while the reduction in type I collagen decreases the ability to
resist tension forces [8–10]; and (iv) the vascularization changes, that is, from completely
vascularized tissue at the periphery, and becomes avascularized in the inner zone [1,6,11].

The structure and composition of the meniscus make it particularly resistant to loading
forces but with poor regenerative capacity, especially in the avascular area. While a lesion
in the red-red zone can undergo repair mechanisms, a white-white lesion is unable to heal
spontaneously and correctly [12,13]. To date, various treatments are being studied but
meniscal tear repairs are still an active challenge in the field of orthopedics since there are
still no treatments available that completely restore functionality to the tissue and prevent
osteoarthritic phenomena [14–23].

Tissue engineering for the meniscus combines engineering with biological sciences in
order to improve the functions of a tissue or an organism. It is still difficult to reproduce
in vitro conditions that physiologically can be found in the knee. First of all, the joint
environment is physiologically hypoxic [24–28]. Recent studies published by our research
group demonstrated the role that hypoxia has in the differentiation of neonatal meniscal
tissues, i.e., it favors the expression of endostatin, an antiangiogenic factor that could be
involved in the differentiation of meniscal cells, and favors the deposition of the matrix,
especially in the posterior horn [27,28]. Both fibroblasts and fibro-chondrocytes express this
protein [1,27] but, in young animals, the highest peak of endostatin is recorded together
with phenotypic changes of meniscal cells (from fibroblast-like to fibro-chondrocytes),
while lower endostatin expression is found to be associated with decreased vascularity,
typical of the adult animal. Therefore, endostatin could play a key role in the differentiation
of meniscal cells.

In addition to the joint environment, the three-dimensional supports favor chon-
drogenic differentiation [29–33]. In fact, it was reported that chondrocytes tend to de-
differentiate in monolayer, becoming fibroblast-like cells [34]. This mechanism often occurs
after the implantation of chondrocytes in the joint, inducing post-operative fibrosis phe-
nomena [35]. In this context, hydrogels represent a promising prospect. They are semi-solid
solutions of water and polymers which gelatinize or precipitate depending on the poly-
mer [36,37]. They have good biocompatibility and mechanical properties, and—being
porous structures—they allow the infiltration and survival of cells inside them [36,38,39].
In particular, previous studies demonstrated that fibrin glue hydrogel is able to promote
chondrocyte survival and synthetic activity in vitro [40,41] and in vivo [42,43], leading to the
formation of tissue with cartilage-like properties. Moreover, other studies [44] that focused
on the role of fibrin glue in delivering chondrocytes into solid scaffolds demonstrated that
this gel is able to increase cell seeding efficiency and uniformity promoting a major matrix
deposition as a result of an efficient rescue of the chondral phenotype [41].

In view of this evidence, the aim of this study was to evaluate the role that exogenous
endostatin administration could have in a hydrogel scaffold seeded with neonatal porcine
meniscal cells: more precisely, we analyzed the capacity of pig neonatal cells to differentiate,
under diverse endostatin concentrations and culture times, through the evaluation of
(1) cellularity, (2) production of glycosaminoglycans, and (3) type I, type II collagen, and
SRY-Box Transcription Factor 9 (SOX9) gene expression, in a biocompatible hydrogel fibrin
scaffold, in order to lay the basis for studying the influence of angiogenesis factors to
promote the regeneration of a meniscal lesion in the avascular area.
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2. Materials and Methods
2.1. Experimental Design

Meniscal cells from newborn piglets were isolated to study the basal expression of
endostatin. Three experimental times were considered (T0 = starting point [passage 3],
T1 = 9 days in culture, T2 = 21 days in culture), as well three different concentrations
(10 ng/mL; 100 ng/mL; 200 ng/mL) of exogenous endostatin (#NP_569712, R&D System,
Minneapolis, MN, USA) were added to meniscal cell culture of newborn piglets starting
at the passage 3 (P3). At the end of each time point, morphological, biochemical and
molecular analyses were performed (Figure 1).
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Figure 1. Experimental design. Meniscal cells were isolated and expanded to P3. At this passage, the
fibrin glue hydrogel was assembled and the cells were added. Scaffolds were cultured in different
concentrations of exogenous endostatin (10 ng/mL, 100 ng/mL, 200 ng/mL) and in negative control
conditions by means of no endostatin added. After 9 or 21 days in vitro, the scaffolds were collected
for morphological, biochemical, and molecular analysis.

2.2. Sample Collection

In compliance with the 3Rs principles (Replace, Reduce and Refine) and the Legislative
Decree number 26 of 2014, no animals were sacrificed for experimental purposes. Sixty knee
joints (n. of animals = 30) were collected from newborn piglets that died under the weight
of the mother on a local farm.

2.3. Cell Culture

Medial menisci were isolated in aseptic conditions and minced with surgical scissors.
The fragmented tissues were digested in Dulbecco’s modified Eagle’s medium (DMEM,
Thermo Fisher Scientific, Waltham, MA, USA) containing Collagenase II 3.75 g/mL (Wor-
thington Biochem. Corp., Lakewood, NJ, USA) overnight at 37 ◦C at 245 rpm on a shaker.
The following day, the digest was filtered with 70 µm filters and then centrifuged twice at
350 g for 10 min, re-suspending it in sterile phosphate-buffered saline (PBS, Thermo Fisher
Scientific, Waltham, MA, USA). The pellet that was deposited after the second centrifuge
was re-suspended in culture medium consisting of DMEM with fetal calf serum (FCS 10%,
EuroClone, Pavia, Italy), glutamine (2 mM, Thermo Fisher Scientific, Waltham, MA, USA),
antibiotics (100 U/mL, Penicillin–streptomycin, Thermo Fisher Scientific, Waltham, MA,
USA, 50 µg/mL Gentamicin sulfate, LONZA, Basel, Switzerland), amphotericin B (0.5
µg/mL, EuroClone, Pavia, Italy), HEPES (10 µM, Thermo Fisher Scientific, Waltham, MA,
USA), sodium pyruvate (1 mM, Thermo Fisher Scientific, Waltham, MA, USA), FGF-2
(1 ng/mL, R&D System, Minneapolis, MN, USA), and 1 ng/mL TGF-β1 (R&D System,
Minneapolis, MN, USA). Live cells were counted with a hemocytometer chamber and sub-
sequently expanded in culture medium up to passage 3 (P3) in standard culture conditions
(21% O2, 37 ◦C, 5% CO2).
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2.4. Immunofluorescence: Basal Expression of Endogenous Markers

By immunofluorescence (IF), basal expression of cell endogenous markers at T0/P3
was studied using the following antibodies: type I and type II collagen (anti-COL1 Millipore,
Temecula, CA, USA and anti-COL2 Abcam Laboratories, Cambridge, UK, respectively),
SRY-Box Transcription Factor 9 (anti-SOX9, Abcam Laboratories, Cambridge, UK), endo-
statin (anti-ENDO, Millipore, Temecula, CA, USA) and vascular endothelial growth factor
A (anti-VEGFA, am Laboratories, Cambridge, UK). To perform IF, 20.000 cells/cm2 at P3
were seeded on matrigel (Corning, NY, USA) in 24-multiwell plate and when they reached
80% of confluence, they were washed with PBS and fixed in cold (−20 ◦C) methanol
(Thermo Fisher Scientific, Waltham, MA, USA) for 10 min. After a further three washes
in PBS, the nonspecific sites were blocked with 10% Normal Goat Serum (NGS, Thermo
Fisher Scientific, Waltham, MA, USA) in PBS for 30 min. The primary antibodies were
diluted 1:50 and a 2 h-incubation at room temperature (RT) was performed. The secondary
antibody (Thermo Fisher Scientific, Waltham, MA, USA) was diluted 1:500 in PBS 1% of
NGS and incubated for 1 h RT. Wells were washed again in PBS and after incubation with
Hoechst’s solution (Thermo Fisher Scientific, Waltham, MA, USA) in PBS for 5 min, the
slides were sealed to a microscope slide by fluorescent mounting media (DAKO, Sant Clara,
CA, USA). Fluorescent images were captured by Confocal Laser Scanning Microscope
(FluoView FV300; Olympus Italia, Milan, Italy).

2.5. Scaffold Preparation of Fibrin Glue Hydrogel

Hydrogel scaffolds (HS) were prepared as published by Deponti et al. [43] with
some modifications. Briefly, after being trypsinized (0.05% trypsin EDTA, EuroClone,
Pavia, Italy) at P3, the cells (80 × 106 cells/mL) were re-suspended in a solution named A
containing fibrinogen bovine plasma (113.2 mg/mL, Aigma-Aldrich, St. Louis, MA, USA),
aprotinin (3.24 mg/mL, Sigma-Aldrich, St. Louis, MA, USA), tranexamic acid (30 mg/mL,
Sigma-Aldrich, St. Louis, MA, USA) in PBS. The scaffolds were assembled in a 96-well
plate: first, 150 µL of solution A was placed in a well, secondly, 150 µL of solution B
(thrombin, 13.7 mg/mL in PBS, Millipore, Temecula, CA, USA) was added. The scaffolds
polymerized after 30 min under a sterile hood at room temperature, and then they were
removed from wells and immersed for 9 days or for 21 days in different concentrations of
exogenous endostatin (R&D System, MN, USA) dissolved in culture medium: (i) 10 ng/mL
(E10), (ii) 100 ng/mL (E100), (iii) 200 ng/mL (E200), (iv) no endostatin added as negative
control (UNT). Four replicates for each treatment and time points were maintained in vitro,
changing culture medium twice a week. At the end of each time point, samples were
stored at −80 ◦C for biochemical and molecular analyses or fixed in 4% buffered formalin
(Bio-Optica, Milan, Italy) for morphological analysis.

2.6. Morphological Analyses: Safranin-O Staining

After fixation, HS were dehydrated in an increasing scale of ethanol (70%, 95%, 100%,
Bio-Optica, Milan, Italy), clarified in xylene (Bio-Optica, Milan, Italy) and embedded in
paraffin (VWR International Srl, Milan, Italy) and 4 µm sections were cut. Standard stain
protocol was used to evaluate morphology and GAGs deposition. Briefly, the slices were
hydrated to water using xylene and a decreasing ethanol scale (100%, 95%, 70%, 50%).
The sections were stained by 1 min incubation of hematoxylin (Bio-Optica, Milan, Italy),
followed by 10 min of washing in tap water. Then, the sections were incubated for 5 min
in a 0.05% solution of Fast Green (FCF, Sigma-Aldrich, St. Louis, MA, USA) in distilled
water, and quickly rinsed in 1% acetic acid (Sigma-Aldrich, St. Louis, MA, USA) solution
in distilled water. A 5 min counterstain was performed with a 0.1% Safranin-O solution
(Sigma-Aldrich, St. Louis, MA, USA). Finally, slices were dehydrated in alcohol solution
(95%, 100%) and clarified with xylene.
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2.7. Biochemical Analyses

To quantify the DNA content and GAGs production, HS were digested in a papain
solution (Sigma-Aldrich, St. Louis, MA, USA) as described by Aidos et al. (2022). After
digestion, the DNA content was estimated using Quant-iT Picogreen dsDNA Assay Kit
(Molecular Probes, Eugene, OR, USA) according to the kit instructions, while the produc-
tion of GAGs was estimated using the 1,9-dimethylmethylene blue due binding assay
(Polysciences Europe GmbH, Hirschberg an der Bergstrasse, Germany).

2.8. Molecular Analyses

Total RNA was extracted using RNeasy Mini Kit (Qiagen, Hilden, Germany) and was
quantified with Nanodrop 8000 (Thermo Fisher Scientific, Waltham, MA, USA). ImProm II
Reverse Transcription System (Promega, Milan, Italy) was used to RNA reversely transcribe.
The primers (Eurofins Genomics, Ebersberg, Germany) listed in Table 1 [27,28] were used
to amplify type I and type II collagen (COL1A1 and COL2A1) and SRY-Box Transcription
Factor 9 (SOX9) genes by Real-Time PCR (7500 Fast Real-Time PCR System, Applied
Biosystems) with PowerUp SYBR master mix (Thermo Fisher Scientific, Waltham, MA,
USA). B-actin (ACT) gene was used as reference. Three reaction steps were performed:
(1) holding stage at 95 ◦C for 3 min; (2) 40 cycles of 98 ◦C for 15 s and then 60 ◦C for 1 min;
(3) melting curve was used to exclude unspecific amplifications. ∆Ct measurements were
determined by cycle threshold (Ct) of the target gene minus the Ct of reference gene for
each sample.

Table 1. Primer sequences used in Real-Time PCR showing the forward and reverse sequences of the
chosen primers, with the resulting amplicon length.

Gene Forward (5′-3′) Reverse (5′-3′) Amplicon Size (bp)

COL1A1 CCA ACA AGG CCA AGA AGA AG ATG GTA CCT GAG GCC GTT CT 64

COL2A1 CAC GGA TGG TCC CAA AGG ATA CCA GCA GCT CCC CTC T 102

SOX9 CCG GTG CGC GTC AAC TGC AGG TGC GGG TAC TGAT 119

ACT CAA GGA GAA GCT CTG CTA CG AGA GGT CCT TCC TGA TGT CC 245

2.9. Statistical Analyses

Statistical analyses were performed with GraphPad Prism software. Two-way ANOVA,
considering the treatment and the time as variables, was used to analyze data, followed by
Tukey’s multiple comparisons test. For greater clarity, graphs were split in two in order to
illustrate as clearly as possible the effects of time and the effects of the treatment. In the
figures, data were expressed as mean ± the standard error of the mean. Differences were
considered significant when p < 0.05.

3. Results
3.1. Immunofluorescence: Basal Expression of Endogenous Markers

Chondrogenic markers were used to analyze the basal expression of meniscal cells at
P3. Meniscal cells were able to express type I collagen in the cell cytoplasm (Figure 2A).
They appeared negative for type II collagen (Figure 2B), but they were positive for SOX9
(Figure 2C). The investigation of vascular-related markers revealed that meniscal cells
expressed both cytoplasmatic VEGFA (Figure 2D) and weak nuclear endostatin (Figure 2E).

3.2. Scaffolds Analyses
3.2.1. Safranin-O Staining: GAGs Deposition

At the end of each experimental time, HS were collected for Safranin-O staining, which
is specific for GAGs deposition where the cartilage-like tissue appears magenta colored.
T0 (Figure 3A0) and negative control (Figure 3A1,A2) appeared completely negative for
Safranin-O staining. At T1, a weak positivity for Safranin-O staining was observed in all
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endostatin-treated groups as cellular magenta spots (Figure 3B1–D1, green arrows). After
21 days (T2) of endostatin-treated culture, GAGs deposition increased especially in E200,
showing a more evident staining in the territorial matrix (Figure 3D2, white arrows) as
well as cellular positivity (Figure 3D2, green arrows). In the T2 endostatin-treated groups,
E10 and E100, unlike E200, a larger isogenous group in cell cultures (Figure 3B2–C2, black
arrows) was present.
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3.2.2. Biochemical Analysis: DNA and GAGs Content

GAG production, DNA content, and their ratio (GAG/DNA) were evaluated as
productivity, viability, and efficiency indexes, respectively. In all endostatin treatments,
cells improved their ability to produce GAGs matrix over time (p < 0.001) (Figure 4A0–A3).
At T1, E200 significantly increased GAGs production compared to all other experimental
groups (p < 0.05; Figure 5A1). After 21 days, both E100 and E200 showed higher matrix
production than both negative controls (p < 0.01) and T0 (p < 0.001) (Figure 5A2), while no
significant differences were observed between the E10 and UNT groups (Figure 5A2). DNA
content decreased over time in all treatments (p < 0.05) (Figure 4B0–B3). No differences were
observed after 9 days (Figure 5B1) compared to T0. Although all T2 treatments showed
a significant decrease in terms of viability when compared to T0 and T1 (Figure 4B0–B3),
E100 T2 did not show significant differences compared to T0 and T1 (Figure 5B2).

Concerning the GAGs/DNA ratio, it increased over time in all treatments (p < 0.01)
(Figure 4C0–C3). In addition, T2 of all endostatin treatment groups showed higher efficiency
compared to T0 (p < 0.01) (Figure 4C0–C3). Furthermore, T1 E200 was significantly higher
compared to T0 (p < 0.01) (Figure 5C1) and UNT (p < 0.01) (Figure 5C2).

3.2.3. Gene Expression: COL1, COL2, SOX9

Type I collagen expression significantly increased over time (p < 0.001) in all treat-
ments, but no differences were observed between T1 and T2 (Figure 6A0–A3). E10 and
E100 increased COL1A1 gene expression at both T1 (Figure 7A1) and T2 (Figure 7A2)
compared to UNT (p < 0.05) or T0 (p < 0.001). Instead, treatment with E200 induced a lower
upregulation of the gene than the UNT group compared to T0 (Figure 7A1–A2).
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Figure 3. GAGs deposition was evaluated by Safranin-O staining at T0 (d = 0, (A0)), T1 (d = 9 days
in vitro, (A1–D1)) and T2 (d = 21 day in vitro, (A2–D2)). (A0) UNT group at T0; (A1) UNT group at
T1; (A2) UNT group at T2; (B1) E10 at T1; (B2) E10 at T2; (C1) E100 at T1; (C2) E100 at T2; (D1) E200
at T1; (D2) E200 at T2. Green, white and black arrows indicate cellular magenta spots, the territorial
matrix and isogenous groups, respectively. Scale bar: 50 µm.
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Figure 5. Biochemical analysis: GAGs (A1,A2) and DNA (B1,B2) content and their ratio GAG/DNA
(C1,C2). Comparison between the time points (9 days = T1 and 21 days= T2) for all treatments.
Two-way ANOVA and Tukey’s multiple comparisons test were performed. N = 4; ** = p < 0.01;
*** = p < 0.001. Z, Y and X were used when the treatment was significantly different (0.001, 0.01
and 0.05, respectively) from all other treatments and to T0 at the considered time point. Data were
expressed as mean ± S.E.M. The dashed black line is the expression level corresponding to T0, while
the pink one corresponds to the expression level of the UNT group.
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Figure 7. Gene expression: COL1A1 (A1,A2), COL2A1 (B1,B2), SOX9 (C1,C2). Comparison between
the time points T1 (A1–C1) and T2 (A2–C2) for all treatments. Two-way ANOVA and Tukey’s
multiple comparisons test were performed. N = 4; * = p < 0.05; *** = p < 0.001. Z, Y and X were
used when the treatment was significantly different (0.001, 0.01 and 0.05, respectively) from all other
treatments and to T0 at the considered time point. Data were expressed as mean ± S.E.M. The
dashed black line was the expression level corresponding to T0, while the pink one corresponds to
the expression level of the UNT group.
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Type II collagen had a variable trend over time according to the treatments (Figure 6B0–B3).
UNT, E10 and E100 induced downregulation of the gene over time (Figure 6B0–B2), but
E200 maintained always its expression (Figure 6B3). Concerning the treatments, E100
had already induced a decrease in COL2A1 expression after 9 days compared to all other
groups (Figure 7B1), but at T2, E10 and E200 were upregulated compared to the UNT
groups (Figure 7B2, pink dotted line).

SOX9 decreased its expression in all treatments over time compared to T0 (p < 0.001)
(Figure 6C0–C3), but in the E200 and E10 groups, no significant differences were observed
at T2 compared to T1 (Figure 6C1,C3). After 9 days of treatments, no significant differences
were observed in the groups treated with endostatin except for E100 compared to the
negative control (p < 0.001) (Figure 7C1, pink dotted line); after 21 days, E200 and E10
were able to maintain higher gene expression compared to the UNT group (p < 0.001)
(Figure 7C2) which, in turn, had a significant downregulation compared to T1 (p < 0.001)
(Figure 6C0).

4. Discussion

One of the goals of tissue engineering is to regenerate and repair meniscal lesions
in the inner area of the meniscus, with an adequate cellular source, in the most suitable
culture environment and possibly in a material that favors adequate differentiation. Based
on our previous works, we believed that another important point to consider could be
meniscal vascularization, which varies during growth. For this reason, we developed a
protocol using neonatal cells with high differentiation potential, a fibrin hydrogel scaffold
and endostatin as a growth factor. Neonatal cells were chosen as their unaltered plasticity
makes them particularly sensitive to endostatin stimuli in a suitable in vitro culture system:
basal expression of these cells revealed the presence of COL1A1, COL2A1, SOX9, and VEGF
as they belong to a very vascularized tissue and a weak nuclear expression of endostatin,
which is expected to increase with age. This feature is in accordance with the differentiation
capacity of meniscal cells which tend to decrease with age [45–47]. Furthermore, these
results are in line with the previous works published by our research group [1,27,28], while
in the literature there are no references to the basal expression of neonatal porcine meniscal
cells. Nevertheless, Vanderploeg et al. (2012) evaluated the matrix proteins of young bovine
(2–4 years old)—an animal that already walks—by identifying both the expression of type I
collagen and type II collagen [48].

For the in vitro culture substrate, we adopted a fibrin glue hydrogel previously used
for the chondrogenic differentiation of articular chondrocytes [43]. This biopolymeric
material exhibits excellent biocompatibility and promotes cell attachment [49]; moreover, it
was shown to be an excellent polymer for generating cartilaginous tissue [43,50–56].

Finally, we decided to add endostatin, one of the most potent inhibitors of angiogene-
sis [57], as a growth factor in the in vitro system. As a result, we verified that endostatin
is able to influence the expression of chondrogenic markers such as COL1A1, COL2A1,
and SOX9. The idea of verifying the role of endostatin on meniscal cell differentiation
stems from observations on menisci of newborn, young and adult pigs, where we observed
that tissue maturation was modulated by the endostatin, which is highly expressed in
young animals [1,27]. Moreover, Hoberg et al. [58] observed that the endothelial cells of the
vessels present in the meniscus produce biological factors, including endostatin, that can
contribute to the healing of lesions. The same authors [58] studied the expression of differ-
ent angiogenic factors in human fibro-chondrocytes upon co-culture with endothelial cells,
to investigate the potential role of meniscal repair. They found an increase in endostatin
expression by fibro-chondrocytes correlated with a significant reduction of proliferation
in endothelial cells, thus suggesting that endostatin may contribute to the poor healing
capacities in the less vascularized zone of menisci. Additionally, Pufe et al. [59] published
that the spatial and temporal expression of endostatin in the meniscus is important for its
development and for the maintenance of avascular zones.
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Other authors were interested in anti-angiogenic molecules: Fuji et al. [60] have indeed
studied anti-angiogenic factors, such as chondromodulin-I (ChM-I) and endostatin in the
meniscus. They revealed that ChM-I was mainly detected in meniscal inner and superficial
zones, on the other hand, endostatin distribution was similar between the inner and outer
meniscus. The use of anti-angiogenic factors as growth promoters was speculated for
ChM-I, which was considered a key regulatory molecule that is involved in angiogenic
switching in cartilage during bone formation. The authors suggest that in the avascular
zone of cartilage, ChM-I participates in the rapid growth of endochondral bone forma-
tion and matrix synthesis [61]. Finally, Klinger et al. [62] observed that ChM-I stabilizes
the chondrocyte phenotype by supporting chondrogenesis but inhibiting chondrocyte
hypertrophy and endochondral ossification.

Our last consideration was about the concentration of endostatin that we tested: the
doses of endostatin reported for meaningful effects in vitro and in animal models vary. In a
lung cancer model, a dose of 10 mg/kg of endostatin was just as effective in suppressing
tumor growth [63]. A concentration of 100 ng/mL was reported to be sufficient to inhibit
endothelial cell proliferation in vitro [64]. Another in vitro investigation [65] showed that
endostatin inhibited angiogenic factors in human endothelial cells in a dose-dependent
manner, with the dose–response peaking at a concentration of 200 ng/mL. Such a range of
responses from the literature drove us to use the range from 10 to 200 ng/mL, revealing
that in committed meniscal cells, the higher concentration is the promising one.

Taking into account these interesting results, we observed that high concentrations
of endostatin were able to stimulate neonatal meniscal cells in the fibrin glue to produce
a huge amount of GAGs compared to all other groups. Furthermore, even if cellularity—
expressed as DNA content—decreased, cell efficiency significantly increased in the group
with the highest endostatin concentration (E200). It is important to consider that in previous
in vivo, ex vivo and in vitro studies, meniscal cellularity normally decreases over time and
thus becomes mature tissue, as occurs for hyaline cartilage [1,10,27,28,66–70]. The integrity
of chondrocytes or fibro-chondrocytes is critical to maintaining tissue homeostasis. Thus,
if endostatin was able to promote the production of one of the major components of
the meniscus extracellular matrix, this angiogenic factor could lay a good foundation
in meniscal tissue engineering. In more detail, E200 was the concentration that was
most promising for cellular efficiency after both 9 days and 21 days in culture. Similarly,
Sun et al. [71] demonstrated the promising results of the non-viral delivery of the gene for
endostatin to caprine marrow stromal cells (MSCs) via a collagen scaffold: they prepared
21 days of cultured MSC pellets which were revealed to be stained intensely with Safranin-
O, demonstrating the high content of GAGs. Morphologically, the cells displayed a rounded
shape, typical of the chondrocyte phenotype. The same authors [72] have also studied
a collagen scaffold-based cartilaginous construct overexpressing endostatin, using non-
viral transfection. Endostatin-plasmid-supplemented collagen scaffolds were seeded with
mesenchymal stem cells and human nasal chondrocytes and cultured for around 21 days.
They found a higher GAGs density in scaffolds with endostatin-expressing cells and
morpho-functional analyses confirmed the presence of GAGs with an intense Safranin-O
positive staining. In our study, the trend of genes related to chondrogenesis suggested
that lower endostatin concentrations (E10 and E100) increased the type I collagen gene,
decreased the type II collagen gene, and the trend of SOX9 was variable, while E200
downregulated the type I collagen compared to the negative control, and it maintained
the expression levels of type II collagen, which was instead downregulated in all the other
groups as well as SOX9. Hoberg et al. [58] found that the expression of endostatin changed
upon co-culture with endothelial cells whereas the expression of all other extracellular
matrix proteins (collagen I, II) remained unchanged; on the contrary, in our study, we found
an increase in the ECM proteins associated to an increase in the endostatin concentration
in the culture medium. These differences could be related to the in vitro culture support,
as fibrin hydrogel could have improved chondrogenic markers expression according to
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Adesida et al. [73] due to its three-dimensional structures that could stabilize cartilaginous
cells [74].

The correct composition of the extracellular matrix is essential for the regeneration
of healthy tissue. Several imaging studies suggest that osteoarthritic menisci have degen-
erated extracellular matrix and fibers without a regular orientation [75–77]. It is assumed
that this degeneration could be due to hypertrophic mechanisms affecting the meniscal
cells, but to date, there are no studies that validate this theory. When hypertrophy or
osteoarthritic phenomena occur, SOX9 expression decreases [78,79]. SOX9 is known to
be expressed in progenitor cells but its expression remains high only in chondrogenic
differentiation [80–82]. As concerns our study, we observed that after 9 days in culture,
endostatin-treated fibro-chondrocytes actually showed a SOX9 downregulation but this
response was also observable in the untreated group (UNT); hence, it is plausible to hypoth-
esize that this downregulation is not due to the endostatin recombinant protein but rather
attributable to the in vitro culture conditions. Furthermore, it is interesting to observe how,
after 21 days of culture, E200 was able to maintain high SOX9 expression compared to both
of the other treatments and to the untreated group, where a further collapse in the gene
expression occurs. Further studies are needed in the future to investigate the link between
endostatin and hypertrophy and to modify the associated culture environment, precisely
matching endostatin and hypoxia.

At this point, we have to face the two main limitations of this research: (1) the static
in vitro culture and (2) the environmental culture conditions. Static culture definitely cannot
mimic what occurs in vivo in the knee joint, where at least three different types of forces
(compression, traction, sliding) act on the tissue, in addition to the action—albeit minimal—
induced by the movement of synovial fluid around the meniscus [10,83]. To mimic these
forces, it is essential to have an available bioreactor, and currently, there are no bioreactors
capable of mimicking the three forces mentioned above at the same time. Puetzer et al. [84]
published the most effective bioreactor that could be used in meniscal tissue engineering but
it mimics tension and compression forces [84]. Concerning the environmental conditions
of the culture, we used standard culture conditions (37 ◦C, 5% CO2, 21% O2) but the joint
space is physiologically a hypoxic environment (1–9% O2) [24–26]. Hence, the ideal culture
conditions would require a bioreactor under hypoxic conditions.

5. Conclusions

The present work suggests that in vitro culture of meniscal cells in a fibrin hydrogel
scaffold, in the presence of endostatin, improved the differentiation of fibroblast cells
into fibro-chondrocytes. This represents a considerable achievement since one of the
limitations facing meniscal tissue engineering is the in vitro non-replicable phenotype
and thus functions of the tissue due to limited knowledge regarding the biology and the
physiology of the tissue. Further studies are required to improve in vitro cultures in order
to mimic the physiological joint environment in the most suitable way possible.
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