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Abstract: Accumulating evidence supports the existence of a tissue microbiota, which may regulate 
the physiological function of tissues in normal and pathological states. To gain insight into the reg-
ulation of tissue-borne bacteria in physiological conditions, we quantified and sequenced the 16S 
rRNA gene in aseptically collected skeletal muscle and blood samples from eight healthy male in-
dividuals subjected to six weeks of endurance training. Potential contamination bias was evaluated 
and the taxa profiles of each tissue were established. We detected bacterial DNA in skeletal muscle 
and blood, with background noise levels of detected bacterial DNA considerably lower in control 
versus tissue samples. In both muscle and blood, Proteobacteria, Actinobacteria, Firmicutes and Bac-
teroidetes were the most prominent phyla. Endurance training changed the content of resident bac-
terial DNA in skeletal muscle but not in blood, with Pseudomonas being less abundant, and both 
Staphylococcus and Acinetobacter being more abundant in muscle after exercise. Our results provide 
evidence that endurance training specifically remodels the bacterial DNA profile of skeletal muscle 
in healthy young men. Future investigations may shed light on the physiological impact, if any, of 
training-induced changes in bacterial DNA in skeletal muscle. 
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1. Background 
The symbiosis between humans and bacteria has been long thought to be confined 

to bacteria resident on epithelia which is in direct contact with the external environment, 
such as the gastrointestinal tract, vagina, lungs, and skin. However, recently, we and oth-
ers described the existence of a tissue microbiota in healthy and pathological situations, 
such as type 2 diabetes (T2D), in mice and humans [1–3]. 

Evidence of the existence of a healthy human microbiome in blood [4,5], breast [6–8], 
lung [9–12] and liver [13–15] is accumulating. 

The origin of tissue-resident bacteria is unclear, but the finding that the gut-microbi-
ota signature characteristic of metabolic diseases is also detectable in deep tissues, such 
as the adipose tissue and the liver, supports that bacteria translocate from the gut to these 
tissues [1,16]. An increase in permeability of the intestinal mucosa, as suggested in the 
leaky gut hypothesis, has been proven to be the mechanism at play in the translocation of 
bacteria to non-epithelial tissues [17–22]. Increased intestinal permeability is linked to the 
reduction of interleukin 17 (IL17) producing T-helper cells (Th17) in the lamina propria, 
resulting from the inability of antigen-presenting cells to differentiate Th17 cells [23]. 
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Sequencing of the 16S ribosomal ribonucleic acid (rRNA) gene allows profiling of 
bacterial signatures in different tissues [24,25] and offers the potential to identify bacterial 
biomarkers indicative of specific metabolic states [1,3,23,26]. While numerous reports 
demonstrate the change of gut microbiota in exercise-trained individuals [27–29], they do 
not address the impact of lifestyle factors like endurance training in the control of tissue-
resident bacteria. Here, we hypothesised that a lifestyle intervention like physical exercise 
training remodels the composition of blood and skeletal muscle-borne bacteria. 

To assess the effect of endurance training on bacterial signatures in human peripheral 
tissues, we sequenced bacterial DNA content from blood and skeletal muscle, a primary 
exercise-effector tissue, as surrogate markers of the possible presence of tissue-borne bac-
teria. We performed a meticulous analysis of the bacterial DNA profiles of muscle and 
blood of healthy young men and a thorough evaluation of possible contamination levels. 
We explored the effect of a 6-week endurance training on bacterial communities and iden-
tified that exercise training impacts skeletal muscle, but not blood microbiota. 

2. Methods 
2.1. Participants, Training Protocol and Sample Collection 

With the approval by the Ethics Committee from the Capital Region of Denmark (ref-
erence H-1-2013-064) and informed consent from all participants, eight healthy males, 
aged between 19 and 27 years old took part in the study. The participants represent a 
subset of a larger cohort previously described [30–32]. Participants followed an approved 
exercise protocol described by Fabre et al. [32]. Briefly, they performed a 6-week endur-
ance exercise program consisting of 60-min cycling sessions at 70% of their initial VO2 
max, five days per week. Skeletal muscle biopsies (vastus lateralis) from 8 participants 
and blood samples from 6 of them were collected under fasting conditions at rest (basal) 
before the training period and five days after it, to avoid any effects due to a single exercise 
bout. Samples were instantly snap-frozen in liquid nitrogen and stored at −80 °C for fur-
ther analysis. The clinical characteristics of the participants are shown in Table 1. 

Table 1. Clinical characteristics of study participants. 

 Untrained, n = 8 Trained, n = 8 
Age—years 24 ± 4 24 ± 4 
Weight—kg 79.4 ± 10.0 78.5 ± 9.2 

Body mass index—kg/m2 22.89 ± 2.21 22.71 ± 2.08 
Waist—cm 87 ± 7 80 ± 7 *** 
Hip—cm 94 ± 5 90 ± 5 ** 

Waist/Hip 0.93 ± 0.04 0.89 ± 0.05 * 
VO2—mL 3694 ± 514 4332 ± 458 *** 

VO2/kg 46.5 ± 4.4 55.4 ± 4.3 *** 
Glucose (fasting)—mmol/L 4.9 ± 0.4 5.1 ± 0.4 

Insulin—pmol/L 64 ± 24 64 ± 35 
HOMA-IR 2.31 ± 0.94 2.46 ± 1.56 
HbA1c—% 34 ± 3 33 ± 3 

Plasma cholesterol (total)—mmol/L 1.3 ± 0.8 4.4 ± 0.4 
Low-density lipoprotein—mmol/L 6.7 ± 0.9 2.7 ± 0.4 
High-density lipoprotein—mmol/L 1.2 ± 0.3 1.3 ± 0.2 * 

Triglyceride—mmol/L 4.6 ± 0.8 1.2 ± 0.3 
C-reactive protein—mg/L 1.4 ± 0.2 1.0 ± 0.0 

Leukocytes—×109/L 2.7 ± 0.6 6.1 ± 1.1 
Data are presented ±SD. *** indicates p < 0.001; ** p < 0.01; * p < 0.05. Homeostatic Model Assess-
ment for Insulin Resistance (HOMA-IR); Hemoglobin A1c (HbA1c). 



Biomedicines 2022, 10, 64 3 of 15 
 

2.2. Bacterial DNA Extraction 
Total bacterial DNA was extracted as previously described [24]. Bacterial DNA was 

then sequenced using next generation high throughput sequencing of variable regions of 
the 16S rRNA bacterial gene, with a specific protocol established, as described (www.vaio-
mer.com (accessed on 19 February 2021)). 

2.3. Negative Controls 
Negative controls were introduced during DNA extraction and amplification as pre-

viously described [33]. Empty tubes collected contaminants from labware and reagents 
during the extraction steps (Muscle-EXT-NC, Blood-EXT-NC). Similarly, a mock quanti-
tative polymerase chain reaction (qPCR) reaction was performed, lacking DNA from the 
samples (qPCR-NC). As with muscle and blood samples, negative controls were se-
quenced, and the resulting amplicons were pooled with amplicons from the samples to 
create operational taxonomic units (OTUs) (see Clustering). 

2.4. 16S rRNA Gene Amplicon Sequencing 
The V3-V4 region of the bacterial 16S ribosomal gene was amplified by PCR using 

Vaiomer (Vaiomer, Labège, France) universal primers. The resulting amplicons were se-
quenced using Illumina (Illumina Inc., San Diego, California, United States) 2 × 300 paired-
end MiSeq technology to encompass 476 base pairs. Amplicon sequences either shorter 
than 350 nucleotides (nt), longer than 480 nt, or without the two primers, allowing for 10% 
mismatch, were removed as well as sequences with at least one ambiguous nucleotide 
(N). 

2.5. Clustering 
The read sequences from samples and negative controls were clustered by similarity 

into OTU Operational Taxonomic Units using the swarm algorithm v2.1.6 [34]. We per-
formed the clustering in two steps, the first using an aggregation distance of 1, the second 
with an aggregation distance of 3. OTUs identified as chimaeras by the ‘vsearch’ v1.9.5 
software [35] were removed together with OTUs with an abundance lower than 0.005% 
of the whole dataset. OTUs were assigned taxonomy by sequence alignment to sequences 
in the databank RDP v11.4 (https://rdp.cme.msu.edu/ (accessed on 19 February 2021)) us-
ing Blast+ v2.2.30+ [36]. OTUs with coverage and identity ≥80% to the phiX174 phage 
(NC_001422.1) sequence, used as the internal control in Illumina sequencing, were re-
moved. The process produced 289 OTUs, and we recorded for each sample the number of 
PCR amplicons belonging to each OTU. The sample was the tissue, either blood or muscle, 
taken from one participant either before or after training, e.g., participant11_muscle_pre-
training; resulting in 28 samples = muscle (8 participants × 2 training status) + blood (6 
participants × 2 status). Each element ygi of the resulting count matrix constituted the num-
ber of PCR amplicons from sample i belonging to OTU g. The number of OTU- and sam-
ple-specific PCR amplicons over the number of sample-specific PCR amplicons repre-
sented the OTU relative abundance. 

2.6. Comparing Taxa Abundance before and after Training 
We ran the linear discriminant analysis effect size (LEfSe) algorithm [37] on the entire 

set of OTUs to determine the clades most likely to explain the difference between before 
and after training in either tissue. Differential taxa abundance was calculated on the fil-
tered count matrix using edgeR v2.7.0d [38,39]. The edgeR software fits a negative bino-
mial distribution to replicated count-based data. Biological replicates were the partici-
pants who took part in this study and the counts, the number of PCR amplicons belonging 
to each OTU in each sample. We used the model ~ 0 + group, where the group was a factor 
encoding the tissue (muscle or blood) and the training status (pretraining, posttraining), 
e.g., muscle_pretraining. OTUs were filtered using edgeR filterByExpr with default 
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parameters. We calculated differential taxa abundance using the edgeR quasi-likelihood 
test on the contrasts muscle_posttraining–muscle_pretraining and blood_posttraining–
blood_pretraining. 

2.7. Correlation between OTU Counts and Clinical Parameters 
We calculated the Spearman correlation between the combination of values listed 

below, and we adjusted the p-values for multiple testing corrections using the Benjamini–
Hochberg method [40]. We ran the first four correlations for both tissues, whilst the last 
for muscle only. 
1. Alpha distributions vs. clinical parameters 
2. Δ (posttraining-pretraining) alpha distribution vs. Δ (posttraining-pretraining) clini-

cal parameters 
3. Filtered OTUs counts vs. clinical parameters 
4. Δ posttraining-pretraining) filtered OTUs counts vs. Δ (posttraining-pretraining) 

clinical parameters. 

2.8. Visualisation 
Plots were generated using the ggplot2 R package [41]. 

3. Results 
3.1. Bacterial DNA Is Present in Human Muscle and Blood 

To determine if bacterial DNA is present in healthy human tissues, we amplified and 
sequenced the V3-V4 variable regions of 16S rRNA obtained from aseptically extracted 
skeletal muscle and blood samples of 8 healthy males. We detected bacterial 16S rRNA in 
all samples, with no significant difference in 16S copy numbers per ng of extracted DNA 
before and after training within each tissue (Table S1). Bacterial DNA content in blood 
was significantly lower than in muscle: on average, 340 fewer 16S copy numbers per ng, 
padj = 2.5 × 10−6, (Figure 1). We measured possible bacterial DNA contamination in various 
negative control samples and found extremely low levels of bacterial DNA concentrations 
in controls versus experimental samples (Table S1 and Figure 1; padj < 0.001). More specif-
ically, we detected that the buffer used for muscle DNA extraction (Muscle-EXT-NC) con-
tained 13 times less bacterial DNA than muscle samples and that the buffer used for blood 
DNA extraction (Blood-EXT-NC) had 12 times less bacterial DNA than blood samples. 
Moreover, amplification of the blank qPCR showed 36 and 27 times less bacterial DNA 
than muscle and blood samples, respectively. Multidimensional scaling plot based on the 
OTU highest abundances shows marked segregation between negative controls and ex-
perimental samples, except BlcExt-AP1 and BlcExp-AP2, for which a marginal overlap 
with muscle samples is detected (Figure S1). These results indicate that contamination is 
low in amount and also, given the difference like bacterial DNA between background 
noise and experimental samples, that bacterial DNA contamination was very unlikely to 
be a bias in the detection of resident bacterial DNA in muscle and blood. 
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Figure 1. Quantitative PCR detection of bacterial DNA in muscle and blood. Quantification of 16s 
rRNA per ng of total DNA as measured by quantitative polymerase chain reaction (qPCR) in skele-
tal muscle biopsies (Muscle), blood (Blood), as well as in the following negative controls (NC) buff-
ers used of DNA extraction for skeletal muscle (Muscle-EXT-NC), blood (Blood-EXT-NC) and wa-
ter, buffers and reagents used for PCR (qPCR-NC). Analysed by Tukey’s multiple comparison test 
using 95% family-wise confidence level. 

Phyla distribution in the entire cohort and sample-wise analysis of Operational Tax-
onomic Units (OTUs) showed that Proteobacteria, Actinobacteria, Firmicutes and Bac-
teroidetes account for the major phyla in both muscle and blood (Figure 2). Few OTUs did 
not show any similarity to known bacteria (labelled as unknown) or were ambiguously 
interchangeable under different phyla (labelled as multi-affiliation). Negative controls 
had greater diversity in represented phyla and an increased Actinobacteria’s and Bac-
teroidetes’s relative abundances compared to the samples (Figure 2A). Alpha diversity, a 
measure of bacteria diversity within each sample, showed similar diversity across groups 
before and after endurance training (Figure S2A,B). Collectively, these results demon-
strate that diverse types of bacterial DNA are present in blood and muscle from healthy 
humans. 
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Figure 2. Phyla composition in tissues and controls: (A) The pie charts depict the phyla distributions 
in the entire cohort (whole), samples of untrained and trained participants, muscle and blood sam-
ples and negative controls (controls). (B) The boxplots display the Log10-transformed, sample-wise 
relative abundances of operational taxonomic units (OTUs) by phylum for the entire cohort (top) as 
well as before and after training (bottom). 

3.2. Exercise Remodels Bacterial DNA Content in the Skeletal Muscle, but Not in the Blood 
Next, we aimed to determine if physical exercise training influences the composition 

of tissue bacteria. We detected differences in the bacterial population in muscle but not in 
blood (Figure 3A,B). Differential abundance analysis confirmed the significant difference 
in skeletal muscle microbiota with 2 Pseudomonas OTUs being less abundant, and both 
Staphylococcus and Acinetobacter being more abundant after exercise (Figure 3C). 
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Figure 3. Phylogenetic distribution of bacteria in tissues before and after training: Stacked bar plots 
showing the phylogenetic distribution of bacteria at the genus level before and after training across 
participants in muscle (A) and in the blood (B). The NegCtrl panels show the phyla relative abun-
dances of concomitant controls samples. C and D, Volcano plots displaying the differentially abun-
dant genera before and after exercise in muscle (C) and blood (D), obtained by statistical differential 
abundance analysis performed with edgeR. Labelled OTUs are significant ones, FDR < 0.05. 

In blood, we detected a single unknown genus of Proteobacteria phylum being sig-
nificantly less abundant after exercise along with a Corynebacterium OTU (Figure 3D). In 
contrast, another Corynebacterium OTU increased after exercise, showing that the micro-
bial composition was globally unchanged (Figure 3D). 

Linear discriminant analysis effect size (LEfSe) supported the diminished abundance 
of Pseudomonadaceae, Pseudomonas and the increase of Moraxellaceae, Acinetobacter in 
skeletal muscle after training (Figure 4C) and resulted in a decrease of Burkholderiales and 
increase of Bacteroidales and Clostridiales in muscle after training (Figure 4A). In blood, 
LEfSe analysis showed an increase in Micrococcaceae after training (Figure 4B,D). 
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Figure 4. Analysis of taxonomic differences after training in blood and muscle: Linear discriminant 
analysis effect size (LEfSe) was used to identify taxonomic differences in the microbiota of skeletal 
muscle (A,C) and blood (B,D) before and after exercise training. Cladograms A and B give a repre-
sentation of relevant OTUs on the taxonomic tree. C and D show ranked differential OTUs by effect 
size. The input file for the LEfSe analysis was obtained from the ‘phyloseq’ object using the LEfSe 
function of yungtools2 package. The LEfSe docker container (https://hub.docker.com/r/biobak-
ery/lefse (accessed on 19 February 2021)) was used to perform LEfSe analysis and figure generation. 

3.3. No Correlation between OTUs Profiles and Clinical Parameters 
To gain insight into the potential physiological function of tissue-borne bacteria, we 

searched for any association between OTUs counts and the clinical parameters of each 
participant (Table 1). We found no association between OTUs profiles in blood or muscle 
and clinical parameters such as anthropometric measures, fasting insulin and glucose, tri-
glycerides and cholesterol levels and aerobic capacity. 

To get insight into the potential influence of training efficiency on bacterial profiles, 
we analysed the link between improved aerobic capacity (ΔVO2max), classified into high, 
medium or low aerobic capacity improvement (Table S2), and the bacterial composition 
in blood and skeletal muscle. The principal coordinate analysis (PCoA) plot of Jaccard 
distances did not show any grouping of samples with similar training efficiency (Figure 
S3). In the PCoA, the lack of grouping of samples with an equal increment of aerobic 



Biomedicines 2022, 10, 64 9 of 15 
 

capacity reflects a lack of association between the increased capacity of the heart to deliver 
blood to the muscle and bacterial profiles. 

4. Discussion 
Here, we detected a substantial amount of bacterial DNA in skeletal muscle and 

blood from young healthy humans. Using bacterial DNA as a surrogate marker of the 
presence of bacteria, we analysed the bacterial composition of blood and skeletal muscle 
in healthy men before and after endurance training. We discovered that the composition 
of bacteria is different after training in muscle but not in blood, supporting exercise may 
induce a specific remodelling of the skeletal muscle microbiome. 

Bacterial translocation to peripheral tissues are the subject of intense debate, and con-
cerns about potential contamination have shed doubt on bacterial DNA’s actual presence 
in tissues [33]. Contaminating DNA may swamp the low-biomass amount of bacterial ma-
terial in tissues, potentially leading to false-positive results [42]. Our laboratories have 
vast experience in conducting low-biomass sample handling with particular caution to 
prevent contamination [3,16,24–26,43,44]. To control for possible contamination, we me-
ticulously controlled for contamination at two major steps of sample handling: at the DNA 
extraction level and during PCR amplification. Quantification of background noise levels 
showed several logs of magnitude between the background noise and experimental sam-
ples, and a marked difference in the bacterial origin of extracted DNA in background ver-
sus tissue samples. This indicates that contamination of bacterial DNA in our experimental 
procedures is unlikely to have biased the detection of resident bacterial DNA in tissues. 

In this study, we did not try to characterise the absolute levels of bacterial communi-
ties, but instead comparatively identified tissue-specific changes resulting from endur-
ance training. We argue that the confounding and taxon-specific contamination is unlikely 
to favour a sample over another and represents a low-level noise that is evenly present in 
all samples. Differences between samples, which we identified by rigorous statistical anal-
ysis, are unlikely to be attributed to contamination but rather to a genuine change in the 
tissue-borne microbial composition. Moreover, it is important to stress that the relative 
abundances are shown in Figure 3A,B do not account for the taxa’s absolute quantities. 
Total bacterial DNA concentrations measured by qPCR, as shown in Figure 1, help to bet-
ter appreciate the low magnitude of noise levels. This is particularly relevant when com-
paring tissue samples and negative controls, as the qPCR amplification showed up to 13 
times fewer copies of the 16S rRNA gene than the former. 

Using the same methodology for the analysis of bacterial DNA as in this study, Lluch 
et al. have readily detected bacterial DNA in a variety of mouse tissues, including the 
brain, muscle, adipose tissue, liver and heart [25]. In humans, tissue-borne bacterial DNA 
profiling and the association with tissue-specific pathologies has been performed for in-
stance, by associating bacterial signatures to different malignant histological grades of hu-
man breast tissue [45]. Yet, in these studies like in our study, the legitimate question re-
garding the actual presence of live bacteria remains to be investigated, as the bacterial 
DNA that we and others detect in mouse and human tissues may originate from dead 
bacteria or intracellular bacteria after phagocytosis. A communication showing electronic 
microscopy images of intact bacteria in the human postmortem brain suggests that alive 
bacteria are physiologically present in healthy tissues [46]. Recent results demonstrate as 
well the presence of bacteria in adipose depots [2]. While electron microscopy could vali-
date the presence of intact bacteria, our study suggests a potential role of skeletal muscle 
bacteria in muscle biology regulation. 

The bacterial DNA that we detected in blood and skeletal muscle belongs primarily 
to the Proteobacteria phylum, followed by Actinobacteria, Firmicutes and Bacteroidetes 
phyla. Of interest, these phyla represent the main bacterial bulk in the human gut, though 
in very different frequencies, since Firmicutes and Bacteroidetes represent 90% of the gut 
bacterial community. Actinobacteria, Proteobacteria and Fusobacteria are represented at 
subdominant levels in the human gut and are highly variable among individuals [47,48]. 
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We also detected Chlamydia, Candidatus saccharibacteria and Fusobacteria phyla. Chla-
mydia has been previously detected in the human stomach [49], Candidatus saccharibac-
teria in the oral cavity [50] and Fusobacteria in the oral cavity and gastrointestinal tract 
[51]. In skeletal muscle and blood, the detection of DNA that belongs to bacteria which 
typically populate the digestive tract suggests migration of bacteria or bacterial DNA from 
the gut. 

Increased intestinal permeability (IP) results from a loss of tight junction integrity in 
people undergoing physiological stress, such as that produced by strenuous exercise [52–
54]. During intense and prolonged physical activity, the body temperature increases (hy-
perthermia), the system produces stress hormones [55] and reactive oxygen species (ROS) 
[56], and blood flows away from the gastrointestinal (GI) tract towards muscles, heart and 
lungs [57]. Hyperthermia and blood redistribution cause intestinal barrier disruption [58] 
allowing for bacterial components to transfer outside the GI tract and trigger immune and 
inflammatory responses [59]. An increased presence of pro-inflammatory cytokines, such 
as tumour necrosis factor-alpha (TNFα), interferon-alpha (IFNα), interferon-gamma 
(INFγ) and interleukins (IL1β or IK6), increases the opening of the intestinal epithelial 
tight junctions thereby exacerbating the intestinal permeability [60]. Interestingly, IP due 
to splanchnic hypoperfusion has been observed in healthy men already after 1 h of endur-
ance exercise at 70% of maximum aerobic workload capacity [61]. IP is known to increase 
in T2D patients, giving rise to a persistent chronic, low-grade inflammation, leading to the 
onset of insulin resistance [62] and autoimmune disorders [63]. Data show that regular 
exercise reduces IP, thereby breaking the vicious circle of chronic inflammation and im-
proving glucose metabolism [62,63]. 

In this study, participants trained daily at moderate intensity (one hour per day, 5 
days a week for 6 weeks at 70% of their maximum aerobic capacity), which may enhance 
the intestinal barrier and tight-junction integrity through short-chain fatty acid (SCFA) 
produced by symbiotic bacteria [64]. As an alternative to passive translocation through a 
permeable intestinal barrier, bacteria may translocate via an active migration process. Ac-
cordingly, an active mechanism of translocation mediated by endocytosis was previously 
described [65]. Epithelial cells continuously ingest viable bacteria, which pass from the 
intestine lumen, through the cell, to the lamina propria. There, bacteria are met by macro-
phages which engulf and kill them and potentially transport them to peripheral sites 
through the bloodstream [65]. Active transportation by intestinal macrophages would 
also explain the absence of inflammatory responses towards bacterial DNA found in the 
blood and the muscle of the participants. Indeed, intestinal macrophages do not secrete 
inflammatory cytokines and promote inflammatory anergy towards indigenous bacteria 
[66]. During post-thymic education of the immune system, intestinal macrophages dis-
tribute bacterial debris to peripheric organs. In this way, macrophages educate regulatory 
T cells and shape the T-cell receptor (TCR) repertoire to accommodate antigens deriving 
from commensal microbiota [67]. 

Of interest, we found that exercise induces remodelling of bacterial DNA in skeletal 
muscle, but not in blood. Although these changes are intriguing, the change in muscle 
microbiome may be a consequence of increased blood flow to exercising skeletal muscles, 
which may favour the infiltration of aerobic bacteria such as Acinetobacter, replacing less 
O2-dependent bacteria such as Pseudomonas. Macrophage infiltration in muscle tissue was 
described as a mechanism of repair and regeneration upon endurance exercise training 
[68], which may account for an active and regulated translocation of bacterial DNA to the 
tissue. The very adaptive nature of skeletal muscle may also play a role in the difference 
in bacterial DNA between muscle and blood, as six weeks of exercise training induces 
profound remodelling of the skeletal muscle tissue that is still present after a 5-day recov-
ery, while most blood parameters return to baseline levels. Besides, at the level of the gut 
barrier or at the tissue level, investigations tracing bacterial migration may shed light on 
the mechanisms by which the DNA of specific bacteria populate skeletal muscle and what 
are their physiological triggers. 
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Our attempt to link bacterial DNA profiles in blood and muscle and some clinical 
parameters of each respective participant did not return and significant association. There 
are several potential explanations for these negative results. Notably, we measured clini-
cal parameters at the steady-state, where they may have returned at a baseline level. In 
this case, the clinical variables would not correlate with the posttraining bacterial DNA 
profiles. This hypothesis is particularly relevant in exercise training studies since the mo-
lecular triggers of adaptations to exercise are quickly back to basal levels days after the 
last exercise bout. For instance, the elevation of baseline levels of circulating glucose and 
lipids, which participates in changing gene expression in response to exercise, is transient. 
Another possible explanation for the lack of association between clinical parameters and 
bacterial DNA content is the small number of variables we tested and the relatively small 
sample size of our study cohorts, which does not allow in-depth multi-regression anal-
yses. 

Understanding how tissues respond to bacterial DNA fragments from specific bacte-
ria would provide great insight into the possible regulatory role of bacteria, or at least 
their DNA, on skeletal muscle function. Evidence supports that bacterial DNA binds to 
Toll-like Receptor 9 (TLR9), which in turn controls numerous immune cell functions [69]. 
Among the known Toll-like Receptors, TLR9 appears to be the only subtype able to detect 
DNA from self and non-self [69]. While to our knowledge, no studies have specifically 
investigated if bacterial DNA binds to TLR9 in skeletal muscle, it has been shown that 
TLR9 exerts cellular protection in cardiomyocytes [70]. In cardiomyocytes, a CpG-oligode-
oxynucleotide was shown to have the potential to bind temporally to TLR9 and to reduce 
the use of energy substrates, thereby activating AMP-activated protein kinase (AMPK) 
and protecting the cardiomyocyte [70]. This action was exerted without inducing canoni-
cal inflammatory signalling, suggesting that extracellular DNA released from damaged 
tissue or bacteria is interpreted as a sign of danger by the cell [71]. Bacterial DNA could 
therefore be considered as a triggering signal of danger, to which the skeletal muscle cell 
could adapt by modifying energy metabolism, as previously reported [72]. Such mecha-
nism could be at play in exercised muscle under specific stress conditions, although fur-
ther studies are warranted. 

Finally, in the present study, we have analysed tissues solely from healthy young 
men. However, results from other types of subjects (e.g., females, elders, individuals with 
obesity or type 2 diabetes) may differ and need investigation. 

5. Conclusions 
We demonstrate here that bacterial DNA is present in blood and muscle from healthy 

young men, and we provide evidence that endurance exercise can specifically remodel 
bacterial DNA in skeletal muscle. Our study makes ground for further investigations aim-
ing to determine the contribution of skeletal muscle bacteria on muscle function. 

Supplementary Materials:  The following are available online at www.mdpi.com/arti-
cle/10.3390/biomedicines10010064/s1, Table S1: 16S copy numbers per ng of extracted DNA across 
samples., Table S2: According to the gain in VO2 max after training, the training efficiency of partic-
ipants was classified as High (ΔVO2max > 12), Medium (6 < ΔVO2max <12) or Low (ΔVO2max < 6)., 
Figure S1: Multidimensional Analysis plot of samples and negative controls., Figure S2: Alpha di-
versities in muscle (A) and blood (B)., Figure S3: Multidimensional Analysis plot of samples col-
oured according to the aerobic capacity differences between untrained and trained conditions. 
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