Insights about CO Gas-Sensing Mechanism with NiO-Based Gas Sensors—The Influence of Humidity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powder Synthesis and Sensors Fabrication
2.2. Materials Characterization
2.2.1. Structural and Morphological Investigations
2.2.2. Surface Chemistry Investigations
2.2.3. Gas-Sensing Investigations and Experimental Chronology
- -
- Fine-tuning toward 50 ppm of CO under ambient conditions (50% RH@25 °C) was performed with respect to the operating temperature as a way to determine where the maximum CO detection takes place.
- -
- The mean values of the sensor signal dependence with respect to different CO concentrations were investigated for different RH levels at sensors operating at a temperature of 250 °C.
- -
- Simultaneous electrical resistance and contact potential difference with respect to the CO concentrations under different RH levels when sensors operated at 250 °C.
- -
- Dependences of the potential energetic changes with respect to different ox ygen concentrations and RH levels for NiO-based gas sensors operated at 250 °C.
3. Results
3.1. Morphological and Structural Results
3.2. Surface Chemistry Results
3.3. Gas-Sensing Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Guan, W.; Tang, N.; He, K.; Hu, X.; Li, M.; Li, K. Gas-sensing performances of metal oxide nanostructures for detecting dissolved gases: A mini review. Front. Chem. 2020, 8, 76. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Milovanovic, V.; Vasilevic, Z.Z.; Stamenkovic, Z. Semiconductor Gas Sensors: Materials, Technology, Design and Application. Sensors 2020, 20, 6694. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Misha, Y.K.; Lin, L. Functional gas sensing nanomaterials: A panoramic view. Appl. Phys. Rev. 2020, 7, 021301. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Fu, J.; Li, J.; Ali, R.; Wang, H.; Liu, Y.; Su, H.; Li, Y.; Lau, W.-M.; Mahmood, N.; et al. Strain-regulated sensing properties of α-Fe2O3 nano-cylinders with atomic carbon layers for ethanol detection. J. Mater. Sci. Technol. 2021, 68, 132–139. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, Z.; Zeng, D.; Xie, C. Metal-oxide-semiconductor based gas sensors: Screening, preparation, and integration. Phys. Chem. Chem. Phys. 2017, 19, 6313–6329. [Google Scholar] [CrossRef]
- Tyagi, P.; Sharma, A.; Tomar, M.; Gupta, V. SnO2 thin film sensor having NiO catalyst for detection of SO2 gas with improved response characteristics. Sens. Actuators B Chem. 2017, 248, 998–1005. [Google Scholar] [CrossRef]
- Morsbach, E.; Kunz, S.; Baümer, M. Novel nanoparticle catalysts for catalytic gas sensing. Catal. Sci. Technol. 2016, 6, 339–348. [Google Scholar] [CrossRef]
- Kim, H.-R.; Haensch, A.; Kim, I.-D.; Barsan, N.; Weimar, U.; Lee, J.-H. The role of NiO doping in reducing the impact of humidity on the performance of SnO2-based gas sensors: Synthesis strategies, and phenomenological and spectroscopic studies. Adv. Funct. Mater. 2011, 21, 4456–4463. [Google Scholar] [CrossRef]
- Hübner, M.; Simion, C.E.; Tomescu-Stanoiu, A.; Pokhrel, S.; Barsan, N.; Weimar, U. Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens. Actuators B Chem. 2011, 153, 347–353. [Google Scholar] [CrossRef]
- De Lima, B.S.; Martinez-Alanis, P.R.; Güell, F.; dos Santos Silva, W.A.; Bernardi, M.I.B.; Marana, N.; Longo, E.; Sambrano, J.R.; Mastelaro, V.R. Experimental and Theoretical Insights into the Structural Disorder and Gas Sensing Properties of ZnO. ACS Appl. Electron. Mater. 2021, 3, 1447–1457. [Google Scholar] [CrossRef]
- Hozak, P.; Vorokhta, M.; Khalakhan, I.; Jarkovska, K.; Cibulkova, J.; Fitl, P.; Vlcek, J.; Fara, J.; Tomecek, D.; Novotnz, M.; et al. New Insight into the Gas-Sensing Properties of CuOx Nanowires by Near-Ambient Pressure XPS. J. Phys. Chem. C 2019, 123, 29739–29749. [Google Scholar] [CrossRef]
- Degler, D. Trends and Advances in the Characterization of Gas Sensing Materials Based on Semiconducting Oxides. Sensors 2018, 18, 3544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Gao, C.; Li, Q.; Pang, H. Nickel oxide/Graphene Composites: Synthesis and Applications. Chem. Eur. J. 2019, 25, 2141–2160. [Google Scholar] [CrossRef] [PubMed]
- Fominykh, K.; Feckl, J.M.; Sicklinger, J.; Doeblinger, M.; Böcklein, S.; Ziegler, J.; Peter, L.; Rathousky, J.; Scheidt, E.-W.; Bein, T.; et al. Water Splitting: Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as High-Performance Catalysts for Electrochemical Water Splitting. Adv. Funct. Mater. 2014, 24, 3123–3129. [Google Scholar] [CrossRef]
- Danjumma, S.G.; Abubakar, Y.; Suleiman, S. Nickel Oxide (NiO) Devices and Applications: A review. Int. J. Eng. Res. Technol. 2019, 8, 12–21. [Google Scholar] [CrossRef]
- Dey, S.; Mehta, N.S. Oxidation of carbon monoxide over various nickel oxide catalysts in different conditions: A review. Chem. Eng. J. Adv. 2020, 1, 100008. [Google Scholar] [CrossRef]
- Park, S.; Ahn, H.-S.; Lee, C.-K.; Kim, H.; Jin, H.; Lee, H.-S.; Seo, S.; Yu, J.; Han, S. Interaction and ordering of vacancy defects in NiO. Phys. Rev. B 2008, 77, 134103. [Google Scholar] [CrossRef] [Green Version]
- Saruhan, B.; Fomekong, R.L.; Nahirniak, S. Review: Influences of Semiconductor Metal Oxide Properties on Gas Sensing Characteristics. Front. Sens. 2021, 20. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 2003, 15, R813. [Google Scholar] [CrossRef]
- Koziej, D.; Barsan, N.; Shimanoe, K.; Yamazoe, N.; Szuber, J.; Weimar, U. Spectroscopic insights into CO sensing of undoped and palladium doped tin dioxide sensors derived from hydrothermally treated tin oxide sol. Sens. Actuators B Chem. 2006, 118, 98–104. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.-H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, R.; Meng, F.; Zhang, J.; Zuo, K.; Han, E. Approaches to Enhancing Gas Sensing Properties: A Review. Sensors 2019, 19, 1495. [Google Scholar] [CrossRef] [Green Version]
- Wagner, R.; Kamin, D.S.; Moos, R. Novel Operation Strategy to Obtain a fast Gas Sensor for Continuous ppb-Level NO2 Detection at Room Temperature Using ZnO—A Concept Study with Experimental Proof. Sensors 2019, 19, 4104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Bhati, V.S.; Ranwa, S.; Singh, J.; Kumar, M. Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen. Sci. Rep. 2017, 7, 236. [Google Scholar] [CrossRef] [PubMed]
- Großmann, K.; Wicker, S.; Weimar, U.; Barsan, N. Impact of Pt additives on the surface reaction between SnO2, water vapour, CO and H2; an operando investigation. Phys. Chem. Chem. Phys. 2013, 15, 19151–19158. [Google Scholar] [CrossRef] [PubMed]
- Koziej, D.; Barsan, N.; Weimar, U.; Szuber, J.; Shimanoe, K.; Yamazoe, N. Water-oxygen interplay on tin dioxide surface: Implication on gas sensing. Chem. Phys. Lett. 2005, 410, 321–323. [Google Scholar] [CrossRef]
- Barsan, N.; Hübner, M.; Weimar, U. Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds. Sens. Actuators B Chem. 2011, 157, 510–517. [Google Scholar] [CrossRef]
- Weisz, P.B. Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis. J. Chem. Phys. 1953, 21, 1531–1538. [Google Scholar] [CrossRef]
- Hua, Z.; Li, Y.; Zeng, Y.; Wu, Y. A theoretical investigation of the power-law response of metal oxide semiconductor gas sensors I: Schottky barrier control. Sens. Actuators B Chem. 2018, 255, 1911–1919. [Google Scholar] [CrossRef]
- Hua, Z.; Tian, C.; Huang, D.; Yuan, W.; Zhang, C.; Tian, X.; Wang, M.; Li, E. Power-law response of metal oxide semiconductor gas sensors to oxygen in presence of reducing gases. Sens. Actuators B Chem. 2018, 267, 510–518. [Google Scholar] [CrossRef]
- Nachman, M.; Cojocaru, L.N.; Ribco, L.V. Electrical Properties of Non-Stoichiometric Nickel Oxide. Phys. Stat. Sol. 1965, 8, 773–783. [Google Scholar] [CrossRef]
- Gielisse, P.J.; Plendl, J.N.; Mansur, L.C.; Marshall, R.; Mitra, S.S.; Mykolajewycz, R.; Smakula, A. Infrared Properties of NiO and CoO and their Mixed Crystals. J. Appl. Phys. 1965, 36, 2446. [Google Scholar] [CrossRef]
- Marikutsa, A.; Rumyantseva, M.; Konstantinova, E.A.; Gaskov, A. The Key Role of Active Sites in the Development of Selective Metal Oxide Sensor Materials. Sensors 2021, 21, 2554. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Kammeyer, C.W.; Bauer, J.; Hedges, W.L. Polar properties of carbon monoxide. J. Phys. Chem. 1981, 85, 4057–4060. [Google Scholar] [CrossRef]
- Tantardini, C.; Oganov, A.R. Thermochemical electronegativities of the elements. Nat. Commun. 2021, 12, 2087. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-Y.; Yoo, H.-W.; Kim, J.Y.; Jung, W.-B.; Jin, M.L.; Kim, J.-S.; Jeon, H.-J.; Jung, H.-T. High-Resolution p-Type Metal Oxide Semiconductor Nanowire Array as an Ultrasensitive Sensor for Volatile Organic Compounds. Nano Lett. 2016, 16, 4508–4515. [Google Scholar] [CrossRef] [PubMed]
- Sahm, T.; Gurlo, A.; Barsan, N.; Weimar, U.; Mädler, L. Fundamental studies on SnO2 by means of simultaneous work function change and conduction measurements. Thin Solid Films 2005, 490, 43–47. [Google Scholar] [CrossRef]
- Heiland, G.; Kohl, D.; Seiyama, T. (Eds.) Chemical Sensor Technology; Kodansha: Tokyo, Japan, 1988; Volume 1, pp. 15–38. [Google Scholar] [CrossRef]
- Thiel, P.A.; Madey, T.E. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 1987, 7, 211–385. [Google Scholar] [CrossRef]
- Wicker, S.; Guilat, M.; Weimar, U.; Hemeryck, A.; Barsan, N. Ambient Humidity Influence on CO Detection with SnO2 Gas Sensing Materials. A Combined DRIFT/DFT Investigation. J. Phys. Chem. C 2017, 121, 25064–25073. [Google Scholar] [CrossRef] [Green Version]
Sample | Binding Energy (eV) | Atomic Relative Concentrations (atom%) with and without C | |||
---|---|---|---|---|---|
Ni2p3/2 | O1s (Chemical Species and Their Percentages) | Ni | O | C | |
NiO As received | 855.2 | 529.5 Olatt (41.9%) | 55.2 | 42.0 | 2.8 |
530.8 OHads (45.6%) | 56.8 | 43.2 | - | ||
532.7 H2O (12.5%) | |||||
NiO 0.5 min Ar ion etching | 855.3 | 529.6 Olatt (57.9%) | 55.3 | 42.9 | 1.8 |
531.3 OHads (29.5%) | 56.3 | 43.7 | - | ||
532.9 H2O (12.6%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simion, C.E.; Ghica, C.; Mihalcea, C.G.; Ghica, D.; Mercioniu, I.; Somacescu, S.; Florea, O.G.; Stanoiu, A. Insights about CO Gas-Sensing Mechanism with NiO-Based Gas Sensors—The Influence of Humidity. Chemosensors 2021, 9, 244. https://doi.org/10.3390/chemosensors9090244
Simion CE, Ghica C, Mihalcea CG, Ghica D, Mercioniu I, Somacescu S, Florea OG, Stanoiu A. Insights about CO Gas-Sensing Mechanism with NiO-Based Gas Sensors—The Influence of Humidity. Chemosensors. 2021; 9(9):244. https://doi.org/10.3390/chemosensors9090244
Chicago/Turabian StyleSimion, Cristian E., Corneliu Ghica, Catalina G. Mihalcea, Daniela Ghica, Ionel Mercioniu, Simona Somacescu, Ovidiu G. Florea, and Adelina Stanoiu. 2021. "Insights about CO Gas-Sensing Mechanism with NiO-Based Gas Sensors—The Influence of Humidity" Chemosensors 9, no. 9: 244. https://doi.org/10.3390/chemosensors9090244