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Abstract: Recently, the use of natural products for the synthesis of carbon dots (CDs) has received
much attention. Herein, leftover kiwi (Actinidia Deliciosa) fruit peels were successfully turned into
beneficial fluorescent carbon dots (KN-CDs) via the hydrothermal-carbonization route. KN-CDs
1 and KN-CDs 2 were prepared without and with ammonium hydroxide, respectively. KN-CDs
1 and KN-CDs 2 were systematically characterized by various analytical techniques. Synthesized
KN-CDs showed spherical-shaped morphology with narrow size distribution and excellent optical
properties with excitation-independent behaviors. The quantum yields of KN-CDs 1 and KN-CDs 2
were calculated as 14 and 19%, respectively. Additionally, the KN-CDs possess excellent prolonging
and photostability. Because of the excellent optical properties of KN-CDs, they were utilized as
fluorescent sensors. The strong fluorescence of the KN-CDs was selectively quenched by Fe3+ ion,
and quenching behavior showed a linear correlation with the concentrations of Fe3+ ion. KN-CDs 1
and KN-CDs 2 showed the detection of Fe3+ ions within the concentration range of 5–25 µM with the
detection limit of 0.95 and 0.85 µM, respectively. Based on the turn-off sensing by the detection of
Fe3+ ions, KN-CDs would be a promising candidate as a selective and sensitive fluorescent sensor.

Keywords: kiwi fruit peel; hydrothermal-carbonization; carbon dots; fluorescent sensor; ferric
ion detection

1. Introduction

Carbon dots (CDs), defined as carbon-based nanomaterials with a size of <10 nm,
have attracted great attention since their first discovery in 2004. CDs are reported as a
potential candidate in sensors [1], fluorescent inks [2], catalysts [3], drug carriers [4], and
light-emitting diodes [5]. CDs are widely used because of their astonishing structural
and optical properties. Compared to conventional semiconductor quantum dots [6], CD
properties have advantages such as a tunable wavelength [7], small size, eco-friendly
applications, high biocompatibility [8], high solubility [9], photostability [10], and good
selectivity and sensitivity [11,12]. Many methods exist to prepare CDs such as the bottom-
up method, which includes microwave [13], thermal decomposition [14], hydrothermal
treatment [12,15], template route [16], and plasma treatment [17]. The top-down method
includes arc-discharge [18,19], laser ablation [20], electrochemical oxidation [21], chemi-
cal oxidation [22], and ultrasonic treatment [23]. Among these methods, hydrothermal
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treatment has been widely used to prepare CDs because of their simplicity of reaction, low
consumption of energy, and eco-friendly applications [24,25].

The heteroatoms in CDs improve the optical properties; thus, the use of natural
products is attractive in the synthesis of CDs by the hydrothermal method [26–28]. The
properties of CDs mainly depend on their precursors. Naturally, plant sources are com-
posed of many functional groups; thus, by the use of plant parts as a carbon source, it is
expected that the prepared CDs will be enriched with heteroatoms. This is believed due
to the excellent properties, and further surface passivation is not required [11,29,30]. In
addition, by the use of plant parts, the usage of toxic or harsh chemicals can be eliminated.
Many reports are available regarding the synthesis of CDs by hydrothermal treatment
using plant parts such as flowers, leaves, roots, stems, and seeds [27,31,32]. Therefore, the
natural carbon source is still explored for the synthesis of CDs, and CDs with appreciable
properties are highly desirable.

Detection of ferric (Fe3+) ions is among the important issues because Fe3+ ions are
essential for human health and the environment; however, excess or dearth of Fe3+ ions
will create serious health and environmental problems [29,31]. Currently, there are various
detection methods available for the detection of Fe3+ ions, such as electrochemistry proto-
cols, as well as various spectrophotometric assays, including inductively coupled plasma
atomic emission spectrometry and atomic absorption spectrophotometry. However, these
detection methods require sophisticated instrumentation, complicated sample preparation,
expensive reagents, and are time consuming. Hence, fluorescence-based sensing methods
are preferable because they possess several advantages such as high signal output, easy
monitoring, simplicity, rapid response, and cost-effectiveness [29,31]. Thus, developing a
simple, reliable fluorescence sensor for the detection of Fe3+ ions is highly essential.

Here, leftover kiwi fruit peel was used to prepare KN-CDs by the hydrothermal-
assisted carbonization route. To increase the nitrogen content in KN-CDs, ammonium
hydroxide (NH4OH) was used. KN-CDs 1 and KN-CDs 2 were synthesized without
and with NH4OH, respectively. The obtained KN-CDs were thoroughly characterized
through various analytical techniques to know their surface morphologies, size, and optical
properties. Further, KN-CDs were utilized as metal sensors. To sense the excess metal
ions in the human body or to detect the heavy metal ions in the environment, CDs are
used [33–35]. In general, excess or deficiency of metal ions in an aqueous medium has a
potential impact on the environment and human health. Hence, a sensing metal ion in
aqueous media is crucial and necessary. In this regard, the prepared KN-CDs were used as
potential fluorescent probes for the detection of Fe3+ ions.

2. Experimental Section
Synthesis of KN-CDs

The KN-CDs were synthesized using the hydrothermal-assisted carbonization route.
In detail, leftover kiwi fruit peel was crushed well with deionized water using a commercial
mixer grinder. The obtained mucilage (approximately 70 mL) was collected in a 100 mL
capacity Teflon-lined stainless-steel autoclave and then heated for 24 h at 200 ◦C. Succes-
sively, the autoclave was cooled to room temperature. The hydrothermally carbonized
suspension of kiwi fruit peel was filtered using a cellulose membrane with a pore size
of 0.22 µM to remove the larger-sized carbon particles. The resultant brownish-yellow
supernatant (KN-CDs 1) was transferred to a glass vial and stored in a refrigerator at 5
◦C for further characterization. On the other hand, KN-CDs 2 was prepared by adopting
the same procedure as that of KN-CDs 1 with the inclusion of NH4OH. Approximately
1.0 mL of NH4OH was added to the suspension, and the pH was adjusted to around 8.
Scheme 1 shows an illustration of the procedure of KN-CDs synthesis from the leftover
kiwi fruit peel.
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Scheme 1. Schematic illustration of the fluorescent KN-CDs formation from leftover kiwi fruit peel.

3. Results and Discussion

The KN-CDs were prepared using kiwi peel by hydrothermal treatment at 200 ◦C for
a period of 24 h. KN-CDs 1 and KN-CDs 2 were prepared by the absence and presence
of NH4OH, respectively. The prepared KN-CDs 1 and KN-CDs 2 were characterized by
various techniques, such as X-ray diffraction (XRD), Raman, X-ray photoelectron spec-
troscopy (XPS), field-emission scanning electron microscopy (FESEM), and high-resolution
transmission electron microscopy (HRTEM). Figure 1a shows the XRD patterns of the
KN-CDs (KN-CDs 1 and KN-CDs 2). The presence of amorphous carbon reflects from
the broad peaks centered at ~2θ around 22.5 and 42.5◦, which corresponds to (002) and
(100) planes, respectively [36,37]. The interlayer spacing of the KN-CDs was calculated as
0.39 nm using the (002) plane. Additionally, the higher interlayer spacing of the KN-CDs
(0.39) compared to that of bulk graphite (0.34 nm) is accredited to the presence of abundant
functional groups at the edges of the KN-CDs [38]. Figure 1b depicts the Raman spectra of
the KN-CDs with two distinct peaks at ~1375 and 1580 cm−1 as the D- and G-bands, respec-
tively [39–41]. The G-band (sp2-carbon) concerns the graphitization of the KN-CDs and
the D-band (sp3-carbon) the defects of the KN-CDs [42]. The intensity ratio of the D- and
B-bands (ID/IG) was calculated as 0.62 and 0.67 for KN-CDs 1 and KN-CDs 2, respectively.
These results of Raman studies suggest the moderate graphitization of the KN-CDs.

Figure 1. (a) XRD patterns and (b) Raman spectra of the KN-CDs.
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The functional groups of the KN-CDs were characterized by FTIR spectroscopy
(Figure S1). The absorption bands around 3450–3200, 2930, and 2865 cm−1 correspond to
the stretching frequency of O–H/N–H and asymmetric and symmetric C–H functional
groups in the KN-CDs, respectively [43,44]. The absorption bands at 1770–1700, 1580,
and 1400 cm−1 could be assigned to the stretching of C=O/N–H, C=C–C, and C–N/O–
H(bending), respectively [45,46]. The absorption bands around 1275 and 1050 cm−1 suggest
the presence of C–OH and C–O–C groups in the KN-CDs, respectively [46–48]. These
FTIR results confirmed the presence of acid, hydroxyl, amino, and carbonyl moieties in the
KN-CDs. Further, the functional groups and elemental compositions of the KN-CDs were
examined by XPS techniques. Figure 2 displays the survey spectrum of the synthesized
KN-CDs and its deconvoluted XPS spectra of C 1s, N 1s, and O 1s. Figure 2a reveals the
presence of elements such as carbon, nitrogen, and oxygen with atomic percentages of
78/78, 2/4, and 20/18% in the KN-CDs 1/KN-CDs 2 at 284, 400, and 532 eV, respectively.
Figure 2b,c displays the deconvolution spectrum of KN-CDs 1 and KN-CDs 2, respec-
tively, at the C 1s level, which shows five peaks at 284.7, 285.5, 286.5, 287.6, and 289.0 eV
ascribed to C–C/C=C, C–OH, C–N–C/C–O–C, C=O, and O=C–OH, respectively [49–52].
Figure 2d shows the high-resolution deconvolution spectrum of KN-CDs 1 at N 1s, reveal-
ing three peaks at 398.9, 400, and 401.9 eV, which correspond to the functional groups
C–N–C, C–N–H, and (C)3–N, respectively. Figure 2e shows the deconvolution spectrum of
KN-CDs 2 at the N 1s level, revealing three peaks at 398.8, 400, and 401.3 eV, which are
attributed to the functional groups C–N–C, C–N–H, and (C)3–N, respectively [29,52,53].
In Figure 2f, the high-resolution spectrum at the O 1s level reveals four peaks ascribed to
functional groups C=O, C–OH, C–O–C, and O=C–OH at 531.5, 532.7, 533.5, and 535.0 eV,
respectively, for KN-CDs 1 and at 531.2, 532.4, 533.3, and 534.4 eV, respectively, for KN-CDs
2 (Figure 2g) [54–56]. A slight shift in peaks of KN-CDs 2 at the N 1s and O 1s levels
(Figure 2e,g) might be due to the increase in nitrogen content. From the XPS studies,
the presence of hydroxyl, amine, and carboxyl functional groups in the KN-CDs can be
concluded, which supports the results of the FTIR analysis.

FESEM images (Figure S2a,b) of the KN-CDs 1 reveal a smooth surface, which might
be due to the aggregation of the smallest particle with monodispersity. The chemical
compositions present in the KN-CDs 1 of C, N, and O were revealed from the EDX spectrum
(Figure S2c). The elemental mapping of KN-CDs 1 shown in Figure 3 reveals the even
distribution of C, N, and O. Similar to KN-CDs 1, KN-CDs 2 (Figure 4) also reveals the
smooth surface and even distribution of C, N, and O (Figure S3 and Figure 4). However, the
N content in KN-CDs 2 is higher than in KN-CDs 1. This is because of the use of NH4OH
during the synthesis of KN-CDs 2. Figure 5 shows the TEM images of the KN-CDs. The
particles are in the range of 3.0–9.0 nm. The average diameters of KN-CDs 1 and KN-CDs
2 were calculated as 5.6 and 5.1 nm based on statistical analyses of 50 carbon dots using
Gaussian fitting (Figure 5a,d), respectively. The images reveal the near-spherical shape
and monodispersed particles of the KN-CDs. The HRTEM images visibly display the
lattice fringes, which confirms the fair graphitic nature of the KN-CDs. The d-spacing
values were calculated as 0.21 nm attributed to the C(100) plane of graphitic carbon [31,57].
This acceptable graphitic nature of CDs shows consistent results with HRTEM, XRD, and
Raman studies.
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Figure 2. (a) XPS survey spectra of the KN-CDs. (b) C 1s, (d) N 1s, and (f) O 1s levels of high-resolution XPS of KN-CDs 1.
(c) C 1s, (e) N 1s, and (g) O 1s levels of high-resolution XPS of KN-CDs 2.
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Figure 3. (a) FESEM image of KN-CDs 1 and the corresponding elemental mapping of (b) carbon, (c)
oxygen, and (d) nitrogen, and (e) overlapping of elemental mapping.

Figures 6a and 7a show the UV–vis spectra of KN-CDs 1 and KN-CDs 2, respectively.
The KN-CDs exhibit two peaks at 275 and 327 nm indicating the π–π* transition of C=C
and the n–π* transition of the C=O/C–N groups, respectively [58,59]. KN-CDs 2 shows
a sharp peak of π–π* transition compared to KN-CDs 1. This sharp peak might be of
higher nitrogen content in KN-CDs 2. The synthesized aqueous KN-CDs 1 and KN-CDs 2
solutions showed a transparent pale-yellow dispersion under daylight and emitted a cyan-
blue fluorescence under 365 nm UV light, which is revealed from the photographic images
in Figures 6a and 7a. The fluorescence spectra of KN-CDs 1 and KN-CDs 2 are depicted
in Figures 6b and 7b, respectively. Both KN-CDs 1 and KN-CDs 2 display excitation
and emission spectra with an optimum excitation wavelength around 360 nm and an
emission wavelength around 432 nm with good quantum yields of 14 and 19%, respectively
(calculated using Equation (S1)). The fluorescence spectra of KN-CDs 1 and KN-CDs 2 at
various excitation wavelengths are depicted in Figures 6c and 7c, respectively. As a result,
the spectra clearly show the unique excitation-dependent emission spectra. The intensity
of the emission spectra increased with the excitation wavelength from 300 nm to 360 nm.
Then, the emission intensity decreased gradually with excitation wavelengths of 370 nm
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until 450 nm. The normalized excitation-dependent emission spectra of KN-CDs 1 and
KN-CDs 2 are displayed in Figures 6d and 7d, respectively. Figure 6c,d, and Figure 7c,d
suggest the red shift of the emission spectra with the increment of excitation wavelength.
These results suggest the excitation-dependent emission spectra of the KN-CDs. This might
be due to the surface state such as functional groups in KN-CDs, the quantum confinement
effect, and the molecular fluorescence of the KN-CDs [58,60,61]. The above measurement
result suggests the presence of high nitrogen content in KN-CDs 2, and thus, it is believed
that because of high functionalities in KN-CDs 2 (Figure 7), the intensity of the emission
spectra of KN-CDs 2 is higher than that of KN-CDs 1 (Figure 6) and hence showed higher
quantum yield.

Figure 4. (a) FESEM image of KN-CDs 2 and the corresponding elemental mapping of (b) carbon, (c)
oxygen, (d) nitrogen, and (e) overlapping of elemental mapping.
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Figure 5. (a,b) TEM and (c) HRTEM image of KN-CDs 1. (a) Particle size distribution graph of KN-CD 1). (d,e) TEM and (f)
HRTEM image of KN-CDs 2. (d) Particle size distribution graph of KN-CD 2.

Figure 6. (a) UV–vis spectrum; (b) excitation and emission spectra; (c) excitation-dependent emission spectra; (d) excitation-
dependent emission normalized spectra of KN-CDs 1.
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Figure 7. (a) UV–vis spectrum; (b) excitation and emission spectra; (c) excitation-dependent emission spectra; (d) excitation-
dependent emission-normalized spectra of KN-CDs 2.

Further, the stability of the KN-CDs solution was studied with storage time and
irradiation time (Figure 8). Figure 8a,c shows the emission spectra of the KN-CDs (KN-
CDs 1 and KN-CDs 2) at different storage times. Intensities are almost the same and
display insignificant changes even after 90 days. In addition, the intensities did not change
even after continuous UV light irradiation for 60 min. Photobleaching nor coagulation
was not observed for longer storage time and under continuous irradiation of UV light.
The photobleaching stability might be due to the electrostatic repulsions between the KN-
CDs in solution [29,31]. Moreover, this reveals the photostability of the KN-CDs and thus
suggests the utilization of the KN-CDs as metal ion-selective probes. Due to the difference
in nitrogen content in KN-CDs 2 compared to KN-CDs 1, it was expected that there would
be a difference in selection towards metal ions.

The prepared KN-CDs were used as metal ion sensors, which is usually detected
by the interactions between metal ions and functional groups in the KN-CDs that form
the complex. The change in emission spectra of the KN-CDs 1 and KN-CDs 2 solutions
with various metal ions Al3+, Ca2+, Cd2+, Co3+, Cr3+, Cu2+, Fe3+, Hg2+, Mn2+, Ni2+, Pb2+,
and Zn2+ are depicted in Figures 9a and 10a, respectively. The intensities of emission
spectra of the KN-CDs with and without metal ions show insignificant changes, except for
Fe3+ ions. The fluorescence intensities of the KN-CDs solution with Fe3+ ions are nearly
zero, suggesting that the quenching could be assigned for the possible complex formation.
This result indicates that the prepared KN-CDs can be employed as specific, efficient, and
selective sensors towards Fe3+ ions due to the stronger affinity. Figures 9b and 10b show
the histogram of the changes in the fluorescence intensities (F-F0/F0) × 100 at 432 nm that
occurred with various metal ions at the same concentrations (1000 µM). Aqueous KN-CDs
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1/KN-CDs 2 and KN-CDs 1+Fe3+/KN-CDs 2+Fe3+ solutions are pale-yellow and yellowish-
orange, respectively, under daylight. Further, they emitted cyan-blue fluorescence and
turn-off fluorescence, respectively, under 365 nm UV light, as shown in the photographic
images ofFigures 9b and 10b. This supports the fluorescence quenching of aqueous KN-
CDs 1/KN-CDs 2 solutions in the presence of Fe3+ ions. As shown in Figures 9c and 10c,
the emission intensities decreased with the concentration (5–25 µM) of the Fe3+ ions.
Further, Figures 9d and 10d reveal a good linear relationship between (F-F0)/F0 and the
concentrations in the range of 5–25 µM of the Fe3+ ions with R2 of 0.998 and 0.999 using KN-
CDs 1 and KN-CDs 2, respectively. The values of the limit of detection (LOD) for KN-CDs
1 and KN-CDs 2 were calculated as 0.95 and 0.85 µM, respectively, using Equation (1) [36].

LOD =
3σ
S

(1)

where σ is the standard deviation (n = 5), and S is the slope of the linear calibration plot.

Figure 8. Fluorescence emission spectra of KN-CDs 1 at (a) different storage times at room temperature and (b) different
irradiation times under a UV lamp. Fluorescence emission spectra of KN-CDs 2 at (c) different storage times at room
temperature and (d) different irradiation times under UV light.
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Figure 9. (a) Changes in the emission spectra of KN-CDs 1 by the addition of different metal ions (1000 µM) and (b) the
corresponding metal ion affinity (%). (c) Fluorescence spectra of KN-CDs 1 in the presence of different amounts of Fe3+ ions
(5–25 µM), and (d) the linear calibration graph for (F0/F)/F0 with different concentrations of Fe3+ ion.

Figure 10. (a) Changes in the emission spectra of KN-CDs 2 by the addition of different metal ions (1000 µM) and (b) the
corresponding metal ion affinity (%). (c) Fluorescence spectra of KN-CDs 2 in the presence of different amounts of Fe3+ ions
(5–25 µM), and (d) the linear calibration graph for (F0/F)/F0 with different concentrations of Fe3+ ion.
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KN-CDs 1 and KN-CDs 2 show similar results towards the detection of metal ions.
The introduction of NH4OH resulted in a trivial increment in the fluorescence intensity of
KN-CDs 2 compared to KN-CDs 1. This can be explained by considering the presence of
nitrogen constituents in the carbon source itself, and thus, the addition of NH4OH does
not show remarkable variation in the detection limit values. These higher intensities of
KN-CDs 2 might help in bioimaging applications. A comparison table of the LOD values
in the present work with previous studies is listed in Table 1 [1,21,61–67]. This suggests
the prepared KN-CDs can be efficient candidates for the detection of Fe3+ ions than the
reported ones.

Table 1. Comparison of different CDs with various carbon precursors for the sensing of Fe3+ ions.

No. Carbon Precursor Excitation (nm) Linear Range (µM) LOD (µM) Reference

1 L-glutamic acid 360 8–80 3.8 [1]
2 Graphite 365 10–200 1.8 [21]
3 Crop wastes 350 0–500 5.23 [62]
4 Hydrogenated rosin 310 0–60 6.16 [63]
5 Tartaric acid 350 0–70 0.5 [64]
6 P. avium 310 0–100 0.96 [61]
7 Cellulose 320 1–100 1.14 [65]
8 Lignin 320 0–350 5.34 [66]
9 Citric Acid 360 0–150 3.4 [67]

10 Kiwi fruit peel 360 5–25 0.85 This
Work

4. Conclusions

In this work, a cheap, simple, and green method for the synthesis of KN-CDs (KN-
CDs 1 and KN-CDs 2) using leftover kiwi fruit peel by the hydrothermal-carbonization
method is reported. The existence of heteroatoms as chemical compositions in the KN-CDs
was confirmed from FTIR, XPS, and EDX mapping studies. KN-CDs 1 and KN-CDs 2
exhibit a moderate degree of graphitization and narrow size distribution with average
grain sizes of ca. 5.1 and 5.6 nm, respectively. Further, as-synthesized KN-CDs 1 and
KN-CDs 2 emitted strong blue fluorescence under a UV light with quantum yields of 14
and 19%, respectively. Additionally, a redshift in emission with the excitation wavelength
was observed. The fluorescence of the KN-CDs was prominently quenched with Fe3+ ions
and showed good linearity between concentrations of Fe3+ in the range of 5–25 µM and
(F0/F)/F0. The detection limits of Fe3+ ions by KN-CDs 1 and KN-CDs 2 were obtained as
0.95 and 0.85 µM, respectively. Therefore, as-synthesized KN-CDs can be used as effective
fluorescence probes for the detection of Fe3+ ions with high sensitivity and selectivity in an
aqueous medium without any further surface passivation. Thus, the unique KN-CDs from
the natural waste material will motivate researchers towards the use of the KN-CDs for
human safety and environmental pollution.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/chemosensors9070166/s1, Figure S1: ATR-FTIR spectra of KN-CDs 1 and KN-CDs 2, Figure S2:
(a,b) FESEM images with different magnifications and (c) EDX spectrum of KN-CDs 1, Figure S3: (a-d)
FESEM images of KN-CDs 2 with different magnifications and (e) the corresponding EDX spectrum.
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