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Abstract: A comparative study is presented on the photoluminescence (PL) response toward molecu-
lar oxygen (O2) in tin dioxide (SnO2), zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles. The
findings show that both PL enhancement and PL quenching can be observed on different materials,
arguably depending on the spatial localization of the defects responsible for the PL emission in each
different oxide. No significant results are evidenced for SnO2 nanoparticles. ZnO with red/orange
emission shown an O2-induced PL enhancement, suggesting that the radiative emission involves
holes trapped in surface vacancy oxygen centers. While the ZnO results are scientifically interesting,
its performances are inferior to the ones shown by TiO2, which exhibits the most interesting response
in terms of sensitivity and versatility of the response. In particular, O2 concentrations in the range of
few percent and in the range of a few tenths of a part per million are both detectable through the
same mixed-phase TiO2 sample, whose rutile phase gives a reversible and fast response to larger
(0.4–2%) O2 concentration while its anatase phase is usable for detection in the 25–75 ppm range. The
data for rutile TiO2 suggest that its surfaces host deeply trapped electrons at large densities, allowing
good sensitivities and, more notably, a relatively unsaturated response at large concentrations. Future
work is expected to improve the understanding and modeling of the photophysical framework that
lies behind the observations.

Keywords: titanium dioxide; zinc oxide; tin dioxide; photoluminescence; optical sensors; oxygen
sensors; rutile; anatase; crystal defects

1. Introduction

In this work, we investigate the interplay between molecular oxygen (O2) adsorption
and photoluminescence (PL) emission of selected metal oxide (MOX) nanoparticles, aiming
to shed light on the potentialities vs. limitations in employing such materials as optical O2
sensors and to discuss the photophysical framework that lies behind the observations.

It is well-known that many MOXs, including those considered in this work, are of great
importance not only in the field of chemosensors but also for photocatalytic applications.
This point is relevant in relation to the motivations of the present study, which can be
summarized by two arguments. The first relates to the applicative interests in developing
O2 sensors, while the second underlines the scientific importance of elucidating the role of
O2 in heterogeneous photocatalysts.
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Oxygen sensing can be implemented in terms of detection of O2 in gas phase or of
dissolved oxygen (DO) in water. Measurements of concentration for the latter are of great
importance for monitoring the health of marine environments and of water pollution
in general [1]. Furthermore, the control of DO content is a relevant issue in biology: to
mention a few examples, hyperoxia has been related to formation of reactive oxygen species
and subsequent cell death [2,3]. Additionally, hypoxia and re-oxygenation enhance the
proliferation, invasiveness and metastatic potential of tumor cells [4,5].

While electrochemical cells (i.e., Clark electrodes) [6] have been used for several years
for DO analyses, approaches and technologies relying on optical measurements are also
largely used thanks to peculiar advantages such as the fact that they do not consume
oxygen and can be relatively portable and easy to miniaturize [7–10]. The optical sensing of
O2 typically relies on the use of photoluminescent organo-metallic coordination complexes,
whose intensity is dependent on the local O2 concentration because of “static quenching”
phenomena. As a result, the O2 concentration is correlated to the PL intensity of the optical
sensing material (or “oxygen indicator”) by the Stern–Volmer quenching relation:

I0/I = 1 + kSV [O2] (1)

where I0 and I are the luminescence intensity in absence and presence of oxygen (or,
more generally, in presence of the quencher), [O2] is the oxygen concentration and kSV
is the Stern–Volmer constant related to the luminescence lifetime and the probability of
quenching interaction [11].

Metal–ligand coordination complexes are widely used for this purpose. However, it is
important to highlight that inorganic semiconductors can also exhibit oxygen-dependent
(and—more generally—gas-dependent properties) that can often be exploited in either
optical and/or electrical responses [12–20]. Among inorganic semiconductors exploitable
for chemical sensing there are of course several MOXs which are not only the primary
materials of choice for realization of chemoresistive sensors but are also suitable for optical
sensing. Optochemical sensing by MOXs includes PL-based detection [21–25] but also
other techniques: for example, MOXs can be used to prepare photonic crystals or metasur-
faces [26–29] finding applications in chemical and/or biological sensing [27,30] and whose
“slow light” effect can be advantageous for increasing photocatalytic efficiencies [31,32].

The second point to underline is that O2 affects the photophysical behavior of pho-
togenerated charge carriers in photocatalytically active MOX materials. This is another
field in which the PL analysis—especially when conducted in controlled environment
conditions—can play a central role. In fact, PL monitors the recombination of charge carri-
ers, while O2 acts as an efficient electron scavenger, adsorbing on MOXs and producing
charged species at the surface (mainly superoxide ions). These ions trigger the production
of reactive oxide species and, importantly for the present discussion, modify (i.e., increase)
the depth of the depletion region where the built-in electric field spatially separates the
opposite charge carriers.

A schematic is proposed in Figure 1. Charge neutrality imposes the equality between
the surface charge (negative in the example of Figure 1) and the bulk excess charge of
opposite sign (represented as valence band holes in Figure 1). The latter is proportional to
the depth Dscr of the space charge region, in which the radiative recombination of electrons
and holes is hampered by the spatial separation of the opposite charges. PL experiments are
hence sensitive to variation of Dscr in a range close to the optical penetration length, which
can be as low as a few tenths of nanometers for PL experiments using above-bandgap
excitation. In this sense, PL spectroscopy is not a surface-specific technique such as second
harmonic generation [33,34], but is specifically sensitive to modifications of charge density
occurring in the sub-surface region affected by the band bending [35–37].
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2.1. Nanoparticles Preparations and Characterizations 

Nanopowders of TiO2, SnO2 and ZnO were obtained through wet-chemical synthesis 
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respectively. 

In summary, for TiO2 preparation a solution of Ti(IV) n-butoxide in absolute ethanol 
was slowly added under stirring to an ethanol/water solution with a volume ratio of 1. 

Figure 1. Schematic representation of the correlation between the PL-active sub-surface region and
the surface concentration of chemisorbed ionic species, here indicated as Xred where “red” indicates
a reduced species that traps free electrons. The surface concentration of chemisorbed species in
panel (A) is lesser than in panel (B), which implies a thinner space charge region Dscr, lesser surface
band bending energy eφBB and a wider PL-active region, in which opposite charge carriers are not
spatially displaced. In both cases, free holes accumulate close to the surface to compensate the surface
charge carried by chemisorbed electron-trapping species. The quantities Λ and α indicate the optical
extinction length and the absorption coefficient at excitation wavelength, respectively.

The spatial extension of the depletion region decisively affects the migration of photo-
generated charge carriers toward the catalyst surface. Hence, elucidating the effect of O2
on the PL activity of photocatalytic MOXs also provides important information on how O2
can affect the efficiency of photocatalytic reactions.

Previous studies highlighted the peculiar position of TiO2 in the field of gas-sensitive
luminescent MOXs. In particular, it is established that both PL enhancement and PL quench-
ing can be induced by O2, depending on the TiO2 crystal phase [38,39]. This property
appears to be a peculiar for TiO2 and suggests that this material is the most interesting one
among typical gas-sensitive MOXs for O2 optochemical detection. However, the literature
on chemosensors lacks comparative studies involving different MOX nanomaterials. Moti-
vated by this consideration, we propose here a comparative study of TiO2, ZnO and SnO2
nanoparticles in relation to their ability to sense O2 via PL modulation. These materials are
chosen based on their importance in the field of chemosensors and on the fact that—to the
best of the author’s knowledge—the possibility of detecting O2 by ZnO and SnO2 has not
been explored much.

While different physical methods can be employed to prepare gas-sensitive MOX
nanoparticles [40–43], this work investigates nanoparticulated powders prepared by the
same chemical route which is used to prepare thick film chemo-resistors, having the
advantage of good production yields and well-established preparative procedures for the
realization of stable devices [44–46].

2. Materials and Methods
2.1. Nanoparticles Preparations and Characterizations

Nanopowders of TiO2, SnO2 and ZnO were obtained through wet-chemical synthesis
from reagent-grade starting materials used as received by the Merck Group supplier (Milan,
Italy) mainly following the procedure described in References [47–49], respectively.

In summary, for TiO2 preparation a solution of Ti(IV) n-butoxide in absolute ethanol
was slowly added under stirring to an ethanol/water solution with a volume ratio of 1.
After 10 min of stirring, the suspension was filtered by gravity, washed several times with
water and diethyl ether, then dried at 100 ◦C overnight. The powders were calcined for 2 h
at a temperature of 650 ◦C. This temperature was chosen on the basis of previous character-
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izations [50] with the aim to obtain both anatase and rutile phases though maintaining a
small crystallite size.

SnO2 powders were prepared by adding drop-wise a small amount of deionized water
to a 0.7 M n-butanol solution of Sn(II)2–ethylexanoate. By introducing HNO3, the solution
pH was found to be 1. Finally, the mixture was stirred for 3 h at room temperature. The
resulting gel was filtered by gravity, washed several times with diethyl ether, dried at
100 ◦C overnight and calcined at 650 ◦C for 2 h.

ZnO synthesis started by preparing a 0.05 M water solution of Zn(NO3)2*6H2O to
which was added ammonia hydroxide solution to reach a pH of 10. The solution was aged
for 24 h at room temperature, then the white precipitate was filtered by gravity, washed
with water and diethyl ether, and then it was dried in air at 100 ◦C overnight, and finally
calcined for 2 h at 450 ◦C.

The morphology, the crystalline structure and the specific surface area (SSA) of the
powders were studied by: (i) Field Scanning Electron Microscopy (FE-SEM) using a Carl
Zeiss Sigma microscope operating at 3.00 kV, (ii) X-ray diffraction (XRD) analysis with a
Philips PW 1830 vertical diffractometer in Bragg–Brentano geometry (PANalytical, formerly
Philips Analytical, Almelo, The Netherland) (Cu Kα radiation, 40 kV, 30 mA) performing
the Rietveld analysis with FullProf program (release 2011) and calculating the average
crystallite size using the Scherrer’s formula [a], and (iii) the Brunauer–Emmett–Teller (BET)
method to the adsorption/desorption isotherms of N2 at 77 K obtained with a Micromeritics
ASAP 2010 physisorption analyzer.

2.2. Photoluminescence Measurements

PL measurements of MOX nanoparticulate at a tunable excitation wavelength in a
controlled environment were performed by placing the samples in a home-built sealed
stainless-steel test chamber equipped with a fused silica entrance optical window. Mixtures
of dry N2 (99.9995% purity) and dry air (20% O2 and 80% N2, 99.9995% purity) were
flown in the test chamber during the measurements by mass flow control system. Optical
excitation (~2 nm for the FWHM of the samples) was provided by a Xe lamp (450 W power)
coupled with a double-grating excitation monochromator (Horiba Gemini, effective focal
length = 180 mm) equipped with two 1200 grooves/mm gratings. The slit widths of the
excitation monochromator were set up to obtain light centered at a desired wavelength
with a spectral width (full width at half maximum) of about 3 nm. The monochromatized
light was collected by a liquid waveguide and focused on the sample, which consisted of
about 100 mg of nanoparticle powders lightly pressed into a steel washer to form a circular
film of 0.7 cm diameter.

A system of converging lens and optical filters was employed to image the illuminated
part of the sample on the input slit of a monochromator (Horiba Jobin-Yvon Triax 320,
effective focal length 320 mm) collecting the PL emission and cutting off the excitation light.
The PL spectra were obtained using a cooled CCD camera. The PL intensities are reported
in counts per second (cps) units, which are the total counts of the digitally processed PL
intensity as obtained by the CCD camera divided by the integration time. The entire system
was controlled via a computer using a home-made LabView program.

3. Results
3.1. Structural and Morphological Characterizations

FE-SEM images (Figure 2) show a homogeneous distribution in particle size and a
somewhat round shape for all materials. In particular, the grain dimension ranges from
20 to 40 nm for TiO2 and SnO2 and from 40 to 60 nm for ZnO. XRD patterns of the tree
powders (Figure 3) confirm a pure single phase with the exceptions of TiO2, for which
there are both anatase (95%) and rutile (5%) phases, as expected. The crystalline phases
(obtained from Rietveld refinement), the average crystallite sizes (evaluated by Scherrer’s
formula) and the calculated specific surface areas are summarized and reported in Table 1.
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Table 1. Calcination temperatures, crystal size, specific surface area (SSA) and the composition of the
TiO2 powders (expressed in atomic percentages).

Sample Calcination
Temperature (◦C)

Crystalline
Phase

Composition
(at. %)

Crystallite
Sizes (nm)

SSA
(m2/g)

TiO2 650
Rutile 5 61

29Anatase 95 34
ZnO 450 Wurtzite 100 33 12
SnO2 650 Cassiterite 100 21 28

3.2. Photoluminescence Response towards O2

The figures shown in this Section express the PL intensity of the samples measured vs.
time as the sample is exposed to pure N2 or to flowing N2–air mixtures.

We start by presenting the results obtained for TiO2 nanoparticles, which are by far
the most interesting ones (as evidenced next).

A representative example of the results obtained using TiO2 is shown in Figure 4,
which reports the intensity map for the PL spectra acquired at excitation wavelength of 370
nm during exposures to pure N2 (from t = 0 to t = 1200 s) and followed by exposures to air
(and hence O2) at different concentrations. Both visible and near-infrared PL emission (VIS-
PL and NIR-PL, respectively) are observed. The two PL emission bands, centered at about
550 nm and 840 nm, originate from anatase and rutile phases of TiO2, respectively [51].
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Figure 4. Intensity map of PL from TiO2 (calcinated at 650 ◦C) acquired at different times during
the experiment. Intensity is quantified in counts per seconds (cps) units. The air flow is activated at
t = 1200 s (2% air concentration), 1500 s (4% air concentration) and 1800 s (10% air concentration), as
also indicated in the next figure. During the first 1200 s and the last 600 s, the sample is kept under
continuous illumination and N2 flow. The data evidence clearly the anticorrelation between the
VIS-PL intensity (which decreases during the interaction with O2) and the NIR-PL intensity (which
increases during the interaction with O2). Excitation wavelength: 370 nm.

Air–N2 mixtures at different (increasing) amounts of air concentration in Figure 4 have
been inserted in the test chamber at times t = 1200 s (0.4% O2 concentration), 1500 s (0.8%
O2 concentration) and 1800 s (2% O2 concentration), preceded and followed by exposure
to pure N2 (i.e., in absence of O2). The anti-correlated response to O2 mentioned in the
introduction is clearly evidenced.
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The PL signal curves vs. gas exposure shown in the rest of the work have all been
obtained from intensity data, as shown in Figure 4, by integrating the PL spectra over
specified wavelength intervals ∆λ, i.e.,

PL signal : ΦPL(λexc, ∆λ) =
∫

∆λ
I(λexc, λPL)dλPL (2)

where I(λexc, λPL) is the PL intensity measured at wavelength λPL as the sample is excited
at wavelength λexc. The different values used for the integration interval and the excitation
wavelength are reported in the text and in the figure captions.

The data in Figure 5 show the wavelength-integrated PL intensity spectra for the TiO2
sample (integrated over different wavelength intervals, namely ∆λ = 500 nm − 600 nm for
the VIS-PL (Figure 4A) and ∆λ = 800 nm − 900 nm for the NIR-PL (Figure 4B).
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flowing rate of 300 sccm. The O2 concentrations are reported on the right axis in percent units.

During the first 20 min (“stabilization phase”) the sample was kept under continuous
illumination at a wavelength excitation of 370 nm and remained exposed to nitrogen flow.
During this “stabilization” process in nitrogen, an O2 desorption likely occurs as the sample
was previously kept in natural air. Next, the gaseous flow was modified by introducing
different amounts of dry air (namely 2%, 4% and 10%) leading to O2 concentrations of
0.4%, 0.8% and 2%. The total flow was kept constant at a rate of 300 sccm during the entire
measurement.

The stabilization phase in Figure 5A shows a VIS-PL enhancement during the O2
desorption, i.e., indicates that O2 quenches the VIS-PL at relatively high O2 concentrations.
It is to be noted that the PL variation is sub-linear vs. the O2 concentration, i.e., the response
saturates. This occurrence is not uncommon and can be explained in terms of saturation of
a Langmuir-type saturation of available adsorption sites.

Considering then the NIR-PL results reported in Figure 5B, we see that the behavior is
quite opposite to the one exhibited by the VIS-PL (as clearly visualized by the intensity map
in Figure 4). In fact, the data obtained in the stabilization phase show a NIR-PL quenching
during the O2 desorption, thus indicating that O2 enhances it. This is confirmed by the
data obtained during the exposure to air. Interestingly, the NIR-PL responses are much
more linear than the one observed previously for VIS-PL.

Additionally, it is important to note that (i): a complete stabilization is reached in
a few minutes, which does not occur for the VIS-PL PL intensity, and (ii): as the 100%
nitrogen flow is restored the PL signal almost completely reverts to the initial level. Both
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these elements clearly evidence that the NIR-PL signal shows the better performance as an
O2-sensing parameter.

Given the interesting results obtained in Figure 5, the sample was tested also for expo-
sure to low O2 concentrations. The results are reported in Figure 6 for O2 concentrations of
25, 50 and 75 ppm.
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The investigated air concentrations are 25, 50 and 75 ppm. As in the previous case, the sample is kept under continuous
illumination and exposure to nitrogen flow in the stabilization phase and each air step has a duration of 5 min. The gas flow
was kept constant at a flowing rate of 300 sccm. The O2 concentrations are reported on the right axis in part per million
(ppm) units.

The data in Figure 6B indicate that the NIR-PL does not sense the O2 concentrations in
the range 25–75 ppm, except for a small response to the first O2 step which is not replied at
successive O2 exposures. Additionally, for the VIS-PL (Figure 6A), the response to the first
O2 pulse is peculiar, as it produces a sudden decrease in the PL intensity which however
recovers during the rest of the measurement, until the O2 concentration is increased. When
O2 is changed to 50 ppm, a stable decrease is then observed, which is produced also for the
successive change at 75 ppm of O2 concentration.

Two elements can be underlined and discussed here: (i) the anomalous behavior
immediately after the exposure to the first O2 step (25 ppm) and (ii) the possibility to
sense the O2 at 50–75 ppm level using the VIS-PL. Instead, these concentrations have to be
considered too low for detection via the rutile PL.

The comparative study was continued by testing nanoparticulated powders of SnO2
and ZnO produced as previously described. These metal oxides are well established
as the sensitive element of chemoresistive sensor devices and their PL response to NO2
has also been studied in some works [52–55]. However, only very limited investigations
of the potentialities of their PL response to O2 have been published (to the best of our
knowledge) [24,56]. The experimental results are summarized in Figure 7.
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dashed horizontal lines indicate the time at which the gaseous flow changes take place. The O2 concentrations are also
indicated in the figures. Excitation wavelengths were 320 nm for SnO2 and 370 nm for ZnO. It is to be underlined that the air
concentrations tested for the SnO2 sample were different from those tested for ZnO and TiO2, due to its lesser responsivity.
(C,D): PL spectra for SnO2 and ZnO acquired in N2 once reached the stabilization (black curves) and at the maximum
intensity in O2 (red curves). (E,F): PL signal for SnO2 (integrated over 500–750 nm interval) and ZnO (integrated over
600–700 nm interval). The O2 concentrations are reported on the right axis in percent units.

The SnO2 powder was characterized by a very weak PL intensity (approximately
two orders of magnitudes lower than the one measured on ZnO sample in comparable
conditions). The excitation spectra of SnO2 and of ZnO are also significantly different, as
the maximum PL intensity was obtained at a wavelength excitation of 320 nm for SnO2
and 370 nm for ZnO. Such a difference correlates with the larger bandgap energy of SnO2
(compared to the ZnO one).

Figure 7A,B show the PL intensity maps vs. time obtained for the SnO2 and the ZnO
sample, respectively. It can be immediately seen that the SnO2 sample showed a much
weaker PL emission, which was almost insensitive to O2. Air exposures for Figure 7A,B
occurred at different concentrations: higher air concentrations (10%, 20% and 50%) were
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tested for SnO2 due to the very weak response of the material. Other measurements at air
concentrations of 2%, 4% and 10% were also performed on the sample (not shown here)
and exhibited even less significant variations of the PL intensity.

The data in Figure 7B refer to ZnO. Compared to SnO2, the latter shows a significant
O2-dependent PL intensity in the visible range. Here, the same air concentrations used in
Figure 4 (i.e., 2%, 4% and 10%) were employed to favor a comparison with TiO2.

Figure 7C,D show the stabilized PL spectra measured for SnO2 and ZnO (respectively)
in N2 and in air (50% air for SnO2, 10% air for ZnO). While any difference in the former is
hardly recognizable, the latter exhibits a PL increase in 10% air that leaves the overall PL
spectral shape unaltered, as also occurred for TiO2. The result is interesting and somehow
unexpected, as discussed in the next section.

The time dynamics of PL intensity for SnO2 and ZnO upon air exposure are reported in
Figure 7E,F for PL spectra integrated with wavelength intervals ∆λ = 500 nm− 750 nm and
∆λ = 600 nm − 700 nm, respectively. The latter evidences the O2-related PL enhancement
with a saturating (sub-linear) response.

4. Discussion

The experimental results indicate that TiO2 can be considered the most interesting
material among the ones considered in this study for possible application as an O2 optical
sensor. The other oxides are less performing, but the experimental findings are nevertheless
interesting from a scientific point of view. In fact, both SnO2 and ZnO exhibit an O2-induced
enhancement, which in TiO2 is observed only for the NIR-PL. This finding appears to be
puzzling, as the mechanism schematized in Figure 1 would suggest for both SnO2 and
ZnO a PL quenching caused by the formation of surface charged species such as O•

2
−

(superoxide ion), in accordance with the results obtained for anatase TiO2. Therefore, the
data lead us to discuss how the O2 adsorption can cause either PL enhancement or PL
quenching.

In this context, it is worth mentioning an interesting investigation by Ma and cowork-
ers [57] who conducted PL measurements in controlled low-pressure O2 conditions at low
temperature, showing that the intensity of anatase PL can be either enhanced or quenched
by exposure to molecular oxygen (O2) depending on the O2 dose. More precisely, they
evidenced PL enhancement at low O2 dosages and PL quenching at higher O2 dosages and
interpreted the data as a result of two O2 adsorption mechanisms. At low O2 pressures, a
dissociative adsorption occurs at surface O vacancy sites, shrinking the depletion region (or,
equivalently, decreasing the upward band bending). This increases the electron-hole spatial
overlap and hence the PL efficiency. On the other hand, at higher O2 partial pressures the
relative amount of oxygen molecules with respect to available surface O vacancy sites also
increases. Additional O2 molecules are therefore adsorbed in the molecular form, forming
superoxide species (e.g.,) enlarging the depletion region as shown in Figure 1 and hence
quenching the PL intensity in a reversible way.

Even though the mechanism discussed by Ma and coworkers is sound, it appears to be
incomplete. In fact, it describes the PL enhancement as caused by an irreversible bonding
of O atoms with the (formerly reduced) lattice, while the only reversible mechanism
(chemisorbed molecules) is associated with the PL quenching. In other words, it does not
envisage the possibility of a reversible PL enhancement, which is indeed observed for rutile
TiO2. Furthermore, our data do not show O2-induced enhancements of VIS-PL. Therefore,
we conclude that additional explanations have to be proposed here.

The basic observation we propose here is that any PL emission which is enhanced
by O2 exposure shall arise from recombination of deeply trapped electrons characterized
by a scarce mobility and not from free (conduction band) electrons. In fact, free electrons
would be scavenged by O2, leading to PL quenching according to the mechanism depicted
in Figure 1. This basic observation is valid regardless of the chemical nature of the deeply
trapped electron.
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It has also to be observed that the O2-induced PL enhancement strongly suggests
that the energy of the involved trapped electrons is below the Fermi level (EF), i.e., that
trapped electrons are present at equilibrium, beforehand the UV illumination. The other
possibility—i.e., energy levels of trapped electrons above EF—conflicts with O2-induced PL
enhancement. In fact, an electron state with energy above EF is empty at initial equilibrium
and becomes occupied only during UV illumination via the relaxation of a photogener-
ated electron in conduction band. However, such a relaxation is clearly in competition
against the scavenging of conduction band electrons by O2, so that the net effect of oxygen
adsorption would be to quench the PL intensity and not to enhance it.

As the O2 adsorption favors both the migration of free (valence band) holes toward
the surface (due to the upward band bending) and the PL emission, it is reasonable to
propose that the trapped electrons causing the NIR-PL emission in rutile TiO2 and the
“red/orange” PL emission in ZnO are prevalently localized at the surface or sub-surface
region. The resulting mechanism can be represented as in Figure 8.
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Figure 8. Possible scheme for O2 enhanced PL emission. In the left figure the ideal case of a free
surface with flat bands is represented. The white circles indicated as (a) are the photogenerated
holes, while (b) indicates surface-localized deeply trapped electrons positioned below the Fermi level
EF. The energies ECB and EVB represent the edge of conduction and valence band, respectively. In
the absence of adsorbed superoxide ions the photogenerated holes are (approximately) uniformly
distributed within the PL-active region, so that the spatial overlap with the traps in (b) and the PL
resulting from their recombination is not maximized. Once superoxide species are present, they
induce the upward band bending reported on the right, fostering an accumulation of photogenerated
holes close to the surface and enhancing the specific PL emission (such as the NIR-PL in TiO2).

Clearly, the chemical identification of the electron-occupied defects of Figure 8 in the
oxides that show O2-enhanced PL is a subject that goes beyond the aim of this work. Here,
only some suggestions can be discussed on that matter. Regarding the NIR-PL from rutile
TiO2, some works indeed argued that it shall be related to surface or sub-surface interstitial
Ti3+ [58].

In regard to ZnO, Marotti and coworkers [59] performed a specific study on red-
PL in ZnO, gathering evidence to suggest that it may be caused by the recombination
of an electron in an intrinsic shallow state with a hole in an intrinsic deep state. They
also proposed that the intrinsic deep state is also involved in the frequently observed
green PL, which might be caused by the electronic transition from the conduction band
to the mentioned deep state. Such a picture has been supported by an extensive study by
Choi and coworkers [60], who indeed recognized (a): recombination between conduction
electron and holes in singly ionized surface vacancy oxygen centers (indicated as V+

O,S in
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their manuscript) and (b): recombination between shallow donors and V+
O,S as the origin of

red PL [60]. This process in schematized in Figure 9.
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Figure 9. Model of red-PL of ZnO generated by above-bandgap excitation. Once the electron-
hole pair is created, both the free charges thermalize to the available states with minimum (for
electrons) and maximum (for holes) energy. Convincing studies (Ref. [60]) assigning the deep
acceptor-like level (here indicated as “deep acceptor”) to singly ionized surface oxygen vacancy
centers are compatible with the observed enhancement caused by O2 adsorption, in accordance with
the arguments explained in the previous figure.

As discussed before, any surface accumulation of holes caused by O2 adsorption is
expected to favor the hole trapping at the deep defect, so that the recombination represented
in the Figure 9 shall be favored in the presence of O2. This possible mechanism suggests
a surface nature of the deep defect: in this sense, it agrees with the work by Choi et al.
However, its identification with V+

O,S cannot be stated with certainty only on the basis of
our experimental findings.

5. Conclusions

To summarize, this work dealt with the effect exerted by molecular oxygen (O2) ad-
sorption on the photoluminescence (PL) of some metal oxides commonly used as sensitive
elements of chemoresistive devices. We presented a comparative study of the PL response
of SnO2, ZnO and TiO2 nanoparticles toward O2. The metal-oxide nanoparticles were all
prepared via sol–gel routes which are already established for the preparation of thick film
chemosensors.

By subjecting the investigated samples to the same experimental procedures, very
different results have been evidenced. SnO2 exhibited virtually no response, while its PL
efficiency was also found to be much lower than for the other oxides. ZnO nanoparticles
exhibiting strong red/orange emission shown, surprisingly, an O2-induced PL enhance-
ment. TiO2 exhibited by far the most interesting results, both in terms of sensitivity and
versatility of the response. In particular, rutile TiO2 is found to give a reversible and fast
response for O2 concentration in the range of relatively high O2 concentrations (0.4–2%)
in terms of its peculiar near-infrared PL emission. Anatase TiO2 is instead found to be
employable in lower concentrations ranges, manifesting sensitivity down to 25 ppm.

We argued that O2-induced PL quenching is observed when the luminescence origi-
nates from free electrons, due to the enlargement of the depletion region and shrinking of
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the PL-active volume. On another hand, PL enhancement likely originates from the recom-
bination of surface-trapped electrons with free (e.g., Figure 8) or trapped (e.g., Figure 9)
holes.

The experimental findings for NIR-PL of rutile TiO2 suggest that its surfaces host
deeply trapped electrons at large densities, so that a good sensitivity and, importantly,
a relatively unsaturated response is obtained. The results thus indicate that a proper
maximization of rutile TiO2 surface area might well complement the anatase phase, so that
a mixed phase nanoparticle system can be used to probe a wide range of O2 concentrations.

We finally suggest that future work attempting to identify the chemical nature of deep
defect states involved in the O2-enhanced PL could proceed by computational quantum
chemistry and by experiments on nanostructures with variable particle sizes and specific
surface areas.
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