
chemosensors

Article

Silver Nanoparticles Grown on Cross-Linked Poly
(Methacrylic Acid) Microspheres: Synthesis, Characterization,
and Antifungal Activity Evaluation

Panagiotis Kainourgios 1 , Leto-Aikaterini Tziveleka 2 , Ioannis A. Kartsonakis 1 , Efstathia Ioannou 2 ,
Vassilios Roussis 2 and Costas A. Charitidis 1,*

����������
�������

Citation: Kainourgios, P.; Tziveleka,

L.-A.; Kartsonakis, I.A.; Ioannou, E.;

Roussis, V.; Charitidis, C.A. Silver

Nanoparticles Grown on

Cross-Linked Poly (Methacrylic Acid)

Microspheres: Synthesis,

Characterization, and Antifungal

Activity Evaluation. Chemosensors

2021, 9, 152. https://doi.org/

10.3390/chemosensors9070152

Academic Editor: Maria Grzeszczuk

Received: 13 May 2021

Accepted: 19 June 2021

Published: 23 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical
Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., Zographos,
GR-15773 Athens, Greece; pkainourgios@chemeng.ntua.gr (P.K.); ikartso@chemeng.ntua.gr (I.A.K.)

2 Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and
Kapodistrian University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece;
ltziveleka@pharm.uoa.gr (L.-A.T.); eioannou@pharm.uoa.gr (E.I.); roussis@pharm.uoa.gr (V.R.)

* Correspondence: charitidis@chemeng.ntua.gr; Tel.: +30-21-0772-4046

Abstract: Silver nanoparticles (AgNPs) exert profound physicochemical, biological, and antimicro-
bial properties, therefore, they have been extensively studied for a variety of applications such as
food packaging and cultural heritage protection. However, restrictions in their stability, aggregation
phenomena, and toxicity limit their extensive use. Hence, the use of functional substrates that pro-
mote the silver nanoparticles’ growth and allow the formation of uniform-sized, evenly distributed,
as well as stable nanoparticles, has been suggested. This study reports on the fabrication and the
characterization of hydrophilic polymer spheres including nanoparticles with intrinsic antifungal
properties. Poly (methacrylic acid) microspheres were synthesized, employing the distillation precip-
itation method, to provide monodisperse spherical substrates for the growth of silver nanoparticles,
utilizing the co-precipitation of silver nitrate in aqueous media. The growth and the aggregation
potential of the silver nanoparticles were studied, whereas the antifungal activity of the produced
nanostructures was evaluated against the black mold-causing fungus Aspergillus niger. The produced
structures exhibit dose-dependent antifungal activity. Therefore, they could potentially be employed
for the protection and preservation of cultural heritage artifacts and considered as new agents for
food protection from fungal contamination during storage.

Keywords: silver nanoparticles; poly (methacrylic acid) microspheres; antifungal activity; cultural
heritage; food preservation or packaging

1. Introduction

In recent years, nanotechnology has played a crucial role in food packaging improve-
ment by combining antimicrobial agents with external barrier properties. Food deteriora-
tion reduction, resulting in prolonged food preservation, can be feasible through microbial
growth retardation or inhibition via nanotechnology usage in packaging products [1,2].
The exploitation and incorporation of nanoparticles with antimicrobial properties into
a variety of food contact materials such as papers, spheres, and fibers are a priority for
studies aiming at food storage increment [3].

Another field of nanotechnology implementation is related to cultural heritage pro-
tection. Most of the tangible cultural heritage is predominantly based on archives (books,
maps) and artwork (paintings, drawings, sculptures), usually utilizing paper, wood, or
stone [4–6]. These materials are susceptible to degradation and biodeterioration by microor-
ganisms, especially from fungi, since organic matter, like cellulose, is a source of essential
nutrients [7]. Fungal growth on stone and wood constitutes a serious challenge as well [8].
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Preservation of our heritage aims at conservation with minimal alterations in their pristine
physical characteristics. A plethora of strategies have been proposed to effectively address
this challenge [9]; most of these approaches focus on biocidal metallic compounds, mainly
copper, zinc, and silver. However, these strategies may lack compatibility with the material
of the cultural heritage item [10,11] or have a negative environmental impact, such as the
bioaccumulation of metals in living organisms [12].

Silver nanoparticles (AgNPs) have attracted significant attention due to their low cy-
totoxicity towards multicellular organisms, as well as their biocidal properties towards
pathogens [13–15]. The mechanism of toxicity of the AgNPs involves the release of silver
ions (Ag+), the generation of reactive oxygen species, and the destruction of the membrane
structure [16]. Specifically, Ag+ is mainly accountable for these toxic properties, either
by attaching to thiol groups of biomolecules of microorganisms, creating reactive oxygen
species or by interacting with membrane phospholipids and proteins, thus deactivating
vital membrane functions [17–20]. Reports on the mechanism of the action of AgNPs
on phytopathogens have shown that upon treatment, damage to the surface of fungal
hyphae, along with the inhibition of conidial germination are detected [21]. Moreover,
the reported microbicidal effect of AgNPs in drug-resistant fungi is achieved through
multiple cellular targeting, including fatty acids, important in the hyphal morphogenesis
involved in pathogenicity [22]. Furthermore, extensive studies have shown that AgNPs
produce silver ions through their oxidation in aqueous biological media, whereas the Ag+

dissolution rate is highly dependent on the size, morphology, and the capping/stabilizing
agent of the AgNPs [23–25]. The majority of the strategies for the chemical synthesis of
AgNPs emphasize three main aspects: the silver precursor, the reducing agent, and the
stabilizing/capping agent, which grant adequate control over the size distribution of
the AgNPs [26]. Nguyen et al. have reported that polyvinylpyrrolidone (PVP) and citrate
capped AgNPs exhibited reduced cytotoxicity compared to uncapped AgNPs, whereas
AgNPs with diameters of 20–40 nm were 10% more cytotoxic than AgNPs with a diameter
of 60–80 nm [27]. Furthermore, Wang et al. have reported higher cytotoxicity for citrate-
capped AgNPs compared to PVP-capped AgNPs, whereas increased Ag+ dissolution was
observed for nanoparticles with smaller diameters [28].

Therefore, recent studies propose an alternative approach for the formation of AgNPs
to achieve stability and avoid aggregation [29,30]. In these studies, the AgNPs are being
formed on functionalized substrates that promote the attachment of Ag+ (silver precursor)
followed by subsequent reduction to form particles [31]. Moreover, the combination of
the AgNPs with polymeric substrates has emerged as a promising strategy for the stimuli-
triggered release of antimicrobial agents [32]. In this approach, the growth of nanoparticles
is not regulated by a capping/stabilizing molecule, but rather by the intermolecular in-
teractions with the substrate and the silver precursor/reducing agent ratio. According to
Nguyen et al., nuclei formation is a thermodynamically induced process, therefore space
confinement could potentially influence the formation of nanoparticles in terms of size
distribution [33]. Carlberg et al. have demonstrated the formation of AgNPs on the surface
of functionalized electrospun polyimide fibers in a process labeled as “surface-confined
synthesis” that involves either thermal or chemical reduction of the silver ions. According
to their findings, the high specific surface area of the electrospun fibers significantly affects
the growth of the AgNPs [34]. In the work of Sen et al., an organic–inorganic core–shell
microstructure, for the growth of AgNPs on its surface, was synthesized. This strategy
utilized electrostatic interactions between the polymers’ carbonyl groups and the silver
cations, to initiate particle growth [35]. In addition, Hanish et al. employed functionalized
colloidal silica to form AgNPs. It was reported that the functionalization process could
promote organized formation on the silica’s surface instead of random growth [36]. Ac-
cording to Levard et al., the exact properties (e.g., surface density, purity) of the capping
agent in the AgNPs structure have not been extensively studied, considering the analytical
difficulties; consequently, the exact mechanism of how the capping agent affects nanoparti-
cle growth and the nanoparticles’ dissolution rates are currently obscure and difficult to
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determine [37]. Evidently, methodologies that employ substrates for the controlled growth
of AgNPs without the use of a capping agent could potentially overcome these challenges,
while still retaining their antimicrobial efficiency.

Herein, we report the preparation of cross-linked poly (methacrylic acid) (PMAA)
microspheres for the growth of AgNPs. PMAA in aqueous media is almost entirely deproto-
nated and, therefore, can absorb and retain water, and it is accepted as an environmentally
friendly chemical structure [38]. Consequently, PMAA is an ideal substrate for the growth
of the AgNPs, since it has the potential to significantly contribute to the controlled oxida-
tion of the AgNPs via the absorption of water, while effectively exploiting the association
of fungal growth with high moisture levels [39,40]. In addition, the proposed methodology
provides an alternative approach for producing stable, uncapped AgNPs. The uncapped
surface of AgNPs has the potential to exploit the surface plasmon resonance of AgNPs,
thus enabling a variety of sensing applications utilizing the surface-enhanced Raman
spectroscopy (SERS) which is closely correlated with the coupling between the electric
field of the incident beam and the field stimulated by the collective oscillation of valence
electrons [37]. Chatzipavlidis et al. have previously reported the enhanced Raman signal
in the detection of the Rhodamine B molecule as a potential imaging application whereas
similar SERS methodology has been applied to identify Cr(VI) and organic pollutants,
respectively, for environmental analysis applications [40–43]. The proposed methodology
for AgNPs synthesis is an alternative to the standard procedure utilizing capping agents
for the control over the nanoparticles’ size and aggregation whereas it has the potential to
provide the foundation for producing nanocomposite materials with tailored properties.

2. Materials and Methods
2.1. Materials and Characterization Methods

Methacrylic acid (MAA), N-N′-methylene bis (acrylamide) (MBA), silver nitrate so-
lution (2M), and acetonitrile (ACN) were purchased from Acros Organics. 2,2′-Azobis
(isobutyronitrile) (AIBN) and sodium boronhydride (NaBH4) were purchased from Sigma
Aldrich. MAA was distilled prior to its use and all other reagents were used as purchased.
Tween 80 was obtained from Fischer Scientific (Hampton, NH, USA), while potato dextrose
agar (PDA) and potato dextrose broth (PDB) were purchased from Conda (Madrid, Spain).

Infrared spectra (FT-IR) were recorded using a Cary 630 Agilent FTIR spectrometer
equipped with a diamond ATR crystal, whereas a 670 UV-Vis spectrophotometer was used
to measure the ultraviolet absorption spectra (UV-Vis) of the resulting structures. Scanning
and transmittance electron microscopy (SEM, TEM) were employed to determine the size
and shape of the synthesized microspheres, and energy dispersive X-ray spectroscopy (EDS)
was used for the elemental analysis. The SEM and TEM were accomplished utilizing an FEI
inspect microscope with a W (Tungsten) filament operating at 25 kV equipped with EDAX
GENESIS (AMETEK PROCESS and ANALYTICAL INSTRUMENTS), and an FEI CM20
microscope operating at 200 kV, respectively. TEM samples were prepared by placing one
drop of a diluted sample on a carbon-coated Cu grid and allowing the solvent to evaporate.
Thermogravimetric analyses (TGA) were performed on a TGA Netch STA 449 Jupiter, whereas
a Malvern Zetasizer Nano ZS apparatus was utilized for measuring the size, polydispersity,
and surface charge of the polymer microsphere by dynamic light scattering (DLS).

2.2. Synthesis of P(MAA-co-MBA) Microspheres

For the synthesis of polymer microspheres, a modified version of the distillation precip-
itation polymerization procedure has been utilized as previously described [44,45]. Briefly,
ACN, the monomer methacrylic acid, the cross-linker MBA, and the initiator AIBN were
placed in a round-bottom flask and were vigorously stirred under an argon atmosphere. The
concentration of the monomer was at 1% w/v (in relation to ACN, 350 mL), whereas the
concentration of the cross-linker and the initiator were at 10% and 1.25% w/w, respectively
(in relation to the monomer). After 10 min the mixture turned opalescent and then white,
indicating the formation of polymer nanoparticles; at that point, the temperature was in-
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creased to 85 ◦C to initiate the distillation of the solvent and 15 mL of ACN was distilled.
Centrifugation at 8000 rpm for 10 min and rinsing with distilled ACN was carried out to
remove unreacted species.

2.3. Silver Nanoparticles’ Growth on P(MAA-co-MBA) Microspheres (PMAA@Ag)

The growth of AgNPs onto the surface of P(MAA-co-MBA) microspheres was accom-
plished utilizing the chemical co-precipitation of AgNO3 in the presence of NaBH4 as the
reducing agent [30]. In a glass beaker 100 mL of deionized water, 100 mg of P(MAA-co-
MBA) microspheres, and 50 µL of AgNO3 (2N) were placed and stirred for varying time
periods (1 to 24 h). Prior to the addition of the reducing agent, the colloidal solution was
centrifuged (8000 rpm, 10 min) and redispersed in H2O to remove the free silver ions and
the nitrate counter ions. Then, NaBH4 (10 mM) was added dropwise into the mixture and
the color gradually changed from white to yellow, to dark red, and then to light brown,
depending on the stirring time of the P(MAA-co-MBA)/AgNO3 solution, thus indicating
the formation of the AgNPs. Figure 1 depicts a schematic representation of the growth of
the AgNPs on P(MAA-co-MBA) microspheres (PMAA@Ag).
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Figure 1. Schematic representation of Ag ion reduction to AgNPs on the surface of P(MAA-co-MBA) microspheres.

2.4. Evaluation of Antifungal Activity Using the Dilution Method

Fungal strain A. niger ATCC 16888, used in the antifungal activity evaluation assay, was
kindly provided by Dr. Gonou-Zagou (Department of Biology, National and Kapodistrian
University of Athens). Fungal spore suspensions were stored in 0.1% Tween and 20%
glycerol at −80 ◦C prior to use. Before each assay, fungal cells were inoculated in PDA
plates and grown at 27 ◦C for four days. Petri dishes (5.5 cm) were covered with PDA
culture media in which increasing concentrations of PMAA@Ag in sterile distilled water
were added. The selected final concentrations were 5, 1, and 0.5 mg PMAA@Ag/mL.
A fungal inoculum (103 conidia per mL, in 0.1% Triton X-100) was added to each petri dish
and the fungal growth was monitored over a positive growth control sample without the
addition of any antifungal agent. Plates were incubated at 27 ◦C and the fungal growth
was monitored for up to ten days.

3. Results and Discussion
3.1. Synthesis of PMAA-co-MBA Microspheres

Cross-linking of the polymer microsphere is vital for the spherical shape to be retained in
aqueous media. FT-IR spectroscopy was utilized to qualitatively identify the cross-linking of
the P(MAA-co-MBA) microspheres. Therefore, an additional sample of PMAA microspheres
was prepared under the same conditions in the absence of the crosslinker. As shown in
Figure 2, it can be observed that the spectra of both materials exhibit a strong vibration at
approximately 1700 cm−1 which is attributed to the carbonyl vibration, yet the IR spectrum
of P(MAA-co-MBA) exhibits an additional peak at 1531 cm−1, corresponding to the amide
vibration of the cross-linker’s molecule. Evidently, the two spectra exhibit identical vibrations
with the exception of the vibration at 1531 cm−1 at the P(MAA-co-MBA) spectrum which
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corresponds to the amide bond vibration evidencing qualitatively the successful cross-linking
of the PMAA polymer.
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3.2. Size Distribution and Surface Charge of the P(MAA-co-MBA) Microspheres

Microspheres of P(MAA-co-MBA) serve as substrates for the growth of the AgNPs,
consequently, the size distribution, as well as the surface charge, have a close relationship
with the nucleation and growth of the AgNPs. Figure 3 illustrates the results obtained from
the DLS measurements of the polymerized P(MAA-co-MBA) microspheres dispersed in
H2O prior to the growth of the AgNPs. Figure 3a reveals that the hydrodynamic radius of
the microspheres in H2O is at 419 ± 109 nm, whereas the polydispersity index obtained
by the correlation coefficient diagram (Figure 3b) is at 0.062, indicating monodisperse
microspheres. Evidently, the resulting microspheres have a very narrow size distribution,
which was further supported by SEM microscopy (Figure 4a), where the actual microsphere
diameter is measured approximately at 200 ± 15 nm, whereas ζ-potential measurements
affirm that the microspheres possess a strongly negative surface charge at −50 ± 5.34 mV,
as illustrated in Figure 3c. Figure 4b presents the results of the EDS elemental analysis after
the growth of the AgNPs. A broad excitation peak can be seen at 2.9 KeV which is attributed
to metallic silver (15.22%,) whereas Ag2O or hybrid Ag/Ag2O are absent. According to
the literature, these species are expected to exert smaller energies, around 0–1.35 KeV [46].
Carbon and oxygen peaks are attributed to the organic polymer counterpart, whereas
gold was identified due to the sampling process for SEM analysis. Although elemental
quantification of silver in EDS analysis was indicative, the results (15.22%) do not differ
considerably when compared to the quantification analysis derived from TGA (23%); these
differences could be attributed to the presence of Au in the EDS analysis.

3.3. Growth of AgNPs

It has been shown that increasing AgNO3 concentration promotes both nucleation
and growth of AgNPs [47]. In the current study, the Coulomb interaction between silver
ions and the carboxyl-terminal groups of the polymer’s chain was selected as the driving
force for the initiation of nanoparticle growth instead of the initial AgNO3 concentration.
Therefore, during the stirring of the microspheres with AgNO3, aliquots were sampled
every hour for 7 h, and a final sample was collected after 24 h of stirring. Each sample was
centrifuged to remove nitrates and free silver ions, subsequently redispersed in the initial
sample volume and finally reduced to AgNPs using 10 mM NaBH4. Each aliquot was
measured in a UV-Vis spectrophotometer. Figure 5a depicts the UV spectra of the analyzed
samples. The absorption peak shifted in different wavenumbers, yet a constant correlation
between stirring time and peak shift was not observed. Table 1 shows the absorption band
wavenumber, full width at half maximum (FWHM), and band area in correlation with
stirring time. The FWHM, as well as the area of each band, were gradually increasing up
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to 5 h of stirring; from there on, a shift to the initial values was observed. This time effect
can be observed in Figure 5b, where vials containing the corresponding aliquots after the
Ag+ reduction to AgNPs with NaBH4 are illustrated. Specifically, after 24 h of stirring, the
color tends to return to the initial shade acquired within the first hour of stirring.
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Table 1. Absorption band maxima, FWHM, and area versus time of stirring in AgNO3.

Time of Stirring in AgNO3 (h) Absorption Band Maximum (nm) Band FWHM Band Area

1 468 68.53 10.52
2 423 84.97 13.14
3 405 88.98 13.53
4 433 110.38 18.73
5 425 116.13 19.75
6 452 103.90 16.24
7 458 84.89 13.15

24 478 78.19 12.23

According to Hegde et al., AgNPs (<10 nm) with a spherical shape exhibit an absorp-
tion band with a maximum of 400 nm [48], whereas nanoparticle aggregation shifts the
band to higher wavenumbers [49]. Furthermore, Garcia et al. showed the influence of the
increased particle size distribution of AgNPs in the broadening of the absorption band. In
particular, AgNPs with the same average size but wider size distributions exhibited broader
FWHM in their absorption bands [50]. From the above results and observations, it is safe to
deduce that the mechanism of electrostatic attachment of Ag+ to the polymer microspheres
is of a dynamic nature. Therefore, 3 h of P(MAA-co-MBA) stirring microspheres in AgNO3
solution was chosen as the optimum condition to proceed for further characterization,
as well as antifungal activity assessment, since the absorption band is at 403 nm and the
FWHM is at the average measured value, indicating the presence of spherical AgNPs with
an average size distribution, respectively. Moreover, the FWHM to band area ratio (Table 1)
shows that after 3 h of stirring, minimum particle aggregation is achieved.

To correlate these results with the average size of the AgNPs, TEM analysis was
conducted, and the results are presented in Figure 6. In Figure 6a (scale bar at 500 nm)
large (~20 nm) spherical AgNPs are observed on the surface of the polymeric microspheres,
whereas on the top right of the image a cluster of spherical nanoparticles can be seen,
supporting the aggregation of AgNPs. At larger magnifications (Figure 6b–d), spherical
AgNPs of a smaller diameter (<10 nm) are mostly observed, yet with large size distributions,
thus further supporting the results obtained via the UV-Vis absorption spectra in terms of
band area and band absorption maximum. Nevertheless, detached AgNPs can also be seen
orbiting the P(MAA-co-MBA) surface in almost all images of Figure 6. This phenomenon
is probably the result of the electron beam affecting the electrostatically attached AgNPs;
a similar phenomenon was observed for gold nanoparticles according to Chen et al. in an
attempt to manipulate gold nanoparticles utilizing an electron beam [51].
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3.4. Quantification of AgNPs

The mass percentage quantification of the AgNPs in the resulting composite nanostruc-
ture was accomplished via TGA. Figure 7a exhibits the TGA curve for the P(MAA-co-MBA)
sample prior to the AgNPs growth (black curve), whereas the red curve represents the TGA
curve after the growth of the nanoparticles (PMAA@Ag). The pristine PMAA-co-MBA has
a residual mass of 11%, whereas the composite nanostructure exhibits a residual mass of
22%. Both curves start their thermal degradation at 318 ◦C and reach a plateau in terms
of thermal degradation, at 450 ◦C and 423 ◦C for the PMAA-co-MBA and PMAA@Ag,
respectively. According to Cárdenas et al. [52], the homopolymer PMAA exhibits a thermal
degradation temperature at approximately 400 ◦C with minor deviations due to molecular
weight differences. The 22% residual mass generated by the PMAA@Ag sample is the
sum of the residual polymer (11% according to the black curve) and the residual Ag (11%).
AgNPs are known to exhibit increased thermal conductivity; in our measurement, this
can be observed by the rapid thermal degradation of the PMAA@Ag sample compared to
the pristine PMAA sample. In addition, Hausner et al. [53], while studying the thermal
decomposition of capped AgNPs observed that uncapped AgNPs of average size distribu-
tion of 6 nm start to sinter at 400 ◦C. In the present study, TEM analysis has confirmed the
presence of AgNPs with sizing of 5–6 nm (Figure 6b–d). The two materials, PMAA-co-MBA
and AgNPs, exhibit similar thermal degradation. As such, the mass percentage of the
PMAA@Ag sample was subtracted from the mass percentage of the PMAA-co-MBA sample
and was then plotted vs. temperature. These results are observed in Figure 7b. A similar
method was applied by Kunc et al. for the quantification of silica amide functional groups
utilizing TGA and NMR [54]. Indeed, at approximately 398 ◦C, a 12% mass increase can
be observed for the PMAA@Ag sample which is attributed to the thermal degradation of
smaller diameter (~6 nm) AgNPs. Therefore, the AgNPs percentage in the PMAA@Ag
structure was estimated as 23% (11% residual and 12% thermally degraded at 398 ◦C).
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3.5. Antifungal Activity Assessment

For the antifungal activity evaluation, petri dishes were covered with a PDA layer
loaded with increasing concentrations of PMAA@Ag nanostructures (0.5, 1, and 5 mg/mL)
and incubated at their optimum growth conditions for up to ten days. As observed in
Figure 8, after 48 h of incubation, fungal growth was clearly visible in the control samples,
while no growth was observed in plates treated with PMAA@Ag at all concentrations ex-
amined. A. niger began to proliferate on the PMAA@Ag-treated agar on the 4th and 7th day
of incubation, when the lower concentrations of 0.5 and 1 mg PMAA@Ag/mL, respectively,
were employed. However, when 5 mg PMAA@Ag/mL solution, corresponding to approxi-
mately 1 mg AgNPs/mL, was used, the growth of A. niger was completely inhibited even
after longer incubation times of up to ten days. Hence, PMAA@Ag nanostructures exhibit
fungicidal activity at a concentration equal to 5 mg/mL, while at lower concentrations only
fungistatic activity is observed.

Although the biocidal effect and mode of action of AgNPs have long been known [55],
their antifungal activity mechanism has only recently been elucidated. Candida albicans
cells were employed for the clarification of the antifungal mode of action of AgNPs [56].
During exposure of C. albicans to AgNPs, significant changes to the fungal membranes
were observed, resulting in the formation of pores, and, finally, cell death. The possible
mechanism by which the AgNPs break down the membrane permeability barrier is by
perturbing the membrane lipid bilayers, causing the leakage of ions and other materials, as
well as forming pores and dissipating the electrical potential of the membrane.

AgNPs usually range in size from 1–200 nm, and as the particle size decreases, the
surface area to volume ratio greatly increases. Consequently, the physicochemical, and
especially the biological properties, of AgNPs are markedly improved as compared to
the original material. Although AgNPs sizing from 1–10 nm are known to exert the
highest antimicrobial activity [57,58] even at low concentrations, previous studies on fungi
have shown that, in some cases, high concentrations of metallic NPs are needed for the
antifungal activity to be exerted [4–6,59]. These interactions and their effect on membrane
integrity are directly dependent on the size, the shape, and the AgNPs concentration. Apart
from depending on the concentration of the AgNPs, the extent of inhibition also depends
on the initial microbial population [60]. Specifically, Levard et al. [37] reported on these
particles’ interactions with intracellular substances from lysed cells, causing, therefore,
their coagulation and the particles’ exclusion from the liquid system.
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4. Conclusions

Cross-linked poly (methacrylic acid) microspheres have been successfully prepared by
utilizing the distillation precipitation method. Coulomb forces between silver cations and
polymeric carboxyl side groups were employed as the driving force to promote the growth
of silver nanoparticles on the surface of the P(MAA-co-MBA) microspheres, whereas UV-Vis
and TEM microscopy revealed that these electrostatic interactions are of a dynamic nature.
Our results evidenced that a 3 h stirring of P(MAA-co-MBA) microspheres in AgNO3
was the appropriate time for the growth of AgNPs with an average size polydispersity.
These results further suggest that the proposed methodology could result in nanostructures
with tunable size and consequently, properties. The antifungal assessment against the
growth of A. niger showed a fungistatic action in lower concentrations, whereas at higher
concentrations the PMAA@Ag nanostructures exhibited fungicidal activity. The produced
materials can be used for antifungal applications such as additives in filters, membranes,
and storage packages in the medical, food, and cultural heritage (preventive conservation)
sectors. However, it should be mentioned that, regarding food packages, AgNPs migration
tests should be carried out; our future plans include the performance of these tests together
with the evaluation of the antifungal activity of the obtained materials with respect to
other fungi.
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