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Abstract: Microorganism assessment plays a key role in food quality and safety control but conven-
tional techniques are costly and/or time consuming. Alternatively, electronic tongues (E-tongues)
can fulfill this critical task. Thus, a potentiometric lab-made E-tongue (40 lipid sensor membranes)
was used to differentiate four common food contamination bacteria, including two Gram positive
(Enterococcus faecalis, Staphylococcus aureus) and two Gram negative (Escherichia coli, Pseudomonas
aeruginosa). Principal component analysis and a linear discriminant analysis-simulated annealing
algorithm (LDA-SA) showed that the potentiometric signal profiles acquired during the analysis of
aqueous solutions containing known amounts of each studied bacteria allowed a satisfactory differen-
tiation of the four bacterial strains. An E-tongue-LDA-SA model (12 non-redundant sensors) correctly
classified 98 ± 5% of the samples (repeated K-fold-CV), the satisfactory performance of which can be
attributed to the capability of the lipid membranes to establish electrostatic interactions/hydrogen
bonds with hydroxyl, amine and/or carbonyl groups, which are comprised in the bacteria outer
membranes. Furthermore, multiple linear regression models, based on selected subsets of E-tongue
sensors (12–15 sensors), also allowed quantifying the bacteria contents in aqueous solutions (0.993 ±
0.011 ≤ R2 ≤ 0.998 ± 0.005, for repeated K-fold-CV). In conclusion, the E-tongue could be of great
value as a preliminary food quality and safety diagnosis tool.

Keywords: lipid sensor membranes; potentiometric analysis; electronic tongue; food-water bacteria;
chemometrics; principal component analysis; linear discriminant analysis; simulated annealing
variable selection algorithm

1. Introduction

Pathogenic microorganisms in foodstuffs form a major source of foodborne diseases
in humans. In foods, pathogenic microorganisms are frequently present in low levels and
are heterogeneously distributed, which makes their detection a difficult task [1]. Thus,
indicator microorganisms are commonly used to assess food quality and safety, when-
ever there is a positive relationship between the presence of an indicator microorganism
and the occurrence of a pathogen [2]. Escherichia coli and Staphylococcus aureus are used
worldwide as hygiene and safety indicator microorganisms for several food products [3,4].
Enterococcus faecalis is considered an indicator of fecal contamination, although it also
belongs to the natural microbiota of many fermented products (dairy products, meat and
vegetables), with E. faecalis as one of the dominant species. Indeed, E. faecalis plays an
important role in the development of organoleptic characteristics. In addition, this mi-
croorganism contributes to the safety of fermented products since it producers bacteriocins
that have antimicrobial activity against foodborne pathogens and spoilage bacteria [5].
Pseudomonas spp. are commonly found in soil, water, plants and foods (e.g., dairy and
meat products) as well as on the surfaces of food processing plants, which are all linked
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to their capacity to form biofilms [6]. Furthermore, these bacteria are psychrotrophic
(i.e., they can grow at low temperatures ranging from 0 to 7 ◦C), and are thus able to
become the dominant population in cold stored foods [7]. P. aeruginosa is responsible for
serious infections in immunodeficient persons. Most Pseudomonas spp. are resistant to
penicillin and related β-lactam antibiotics [8]. In 2013, the U.S. Center for Disease Control
and Prevention identified antibiotic-resistant threats in the U.S, and P. aeruginosa was in-
cluded in the list of serious threats [9]. The recognition of this bacterium as an emerging
opportunistic pathogen has been highlighted in the European Union Commission Directive
2015/1787 [10], regarding the water quality for human consumption, which endorsed the
identification of P. aeruginosa as a quality indicator microorganism.

Several conventional techniques are commonly applied to detecting microorganisms
including conventional culture methods [11,12], immunological techniques (e.g., enzyme-
linked immunosorbent assays) [13–15], and polymerase chain reactions [16,17]. In spite
of their recognition accuracy, most of these techniques are laborious, time-consuming
and costly [18,19]. Alternatively, (bio)sensor-based approaches have emerged as cost-
effective alternative/complementary identification methods for microorganisms, providing
a short analysis time. However, the industrial use of such instruments in detecting food
spoilage or the presence of pathogenic microorganisms is still at the early stages and some
technical drawbacks still need to be addressed, as reviewed by Ghasemi-Varnamkhasti
et al. [19]. As recently pointed out, electrochemical sensor devices, such as electronic noses
(E-noses) [20,21] and electronic tongues (E-tongues) [22], are the basis of a wide number
of low-cost and fast response analytical strategies for the analysis of gas and liquid matri-
ces, respectively. E-tongues based on different sensing technologies (e.g., potentiometric,
voltammetric), comprising sets of multisensors with low selectivity and cross-sensitivity,
together with multivariate qualitative and quantitative chemometric tools (e.g., principal
component analysis (PCA); soft independent modelling of class analogy (SIMCA); lin-
ear discriminant analysis (LDA); partial least-squares regression (PLS); support vector
machines (SVMs); artificial neural networks (ANNs)) have been successfully applied to di-
rectly or indirectly identify several microorganisms. Voltammetric E-tongues, together with
chemometric tools, have been successfully applied to monitoring the growth of molds
(e.g., Aspergillus, Penicillium, Mucor and Rhizopus) and to differentiating them, or to estimat-
ing the total bacterial count (between 1 and 10 log CFU/mL) in liquid media [23–25], the
amount of E. coli (from 0.1 to 107 CFU/mL) in drinking water treatment plants [26] or of the
number of spoilage bacteria (mesophilic bacteria and Enterobacteriaceae, in the range 4.5 to
9.0 log CFU/g) in fresh cod during storage [27], as well as to differentiating known food mi-
crobial contaminants, including yeasts (e.g., Zygosaccharomyces bailii), bacteria (e.g., E. coli,
P. aeruginosa, Klebsiella oxytoca, Bacillus subtilis) and/or molds (Aspergillus flavus, A. oryzae,
A. ochraceus, A. versicolor, Penicillium commune, Rhizopus stolonifer) [24,26,28–30]. However,
only a few studies have reported the use of laboratory-made potentiometric E-tongues.
For example, lab-made E-tongues, comprising sensors with chalcogenide glass and plasti-
cized polymeric membranes or electrodes containing pastes with different active elements
(e.g., platinum, gold, silver, graphite, silver-palladium, copper and ruthenium oxide) have
been used to differentiate species of Aspergillus (A. flavus, A. oryzae, A. ochraceus, A. versi-
color) and a yeast species (Z. bailii) [29], or to assess the total viable counts (i.e., total number
of microorganisms) of sea bream samples [31]. More recently, commercial potentiometric
E-tongues (α-Astree device from Alpha MOS Company, Toulouse, France), using sensors
based on chemically modified field-effect transistor technology, were capable of accurately
assessing the total viable counts in spoiled fish samples [32], detecting and differentiating
known bacterial strains (S. aureus, E. coli and P. aeruginosa) [33] and differentiating eight
Fusarium isolates and monitoring the fungal growth [34].

The satisfactory qualitative and/or quantitative performances reported for both
voltammetric and potentiometric E-tongues may be related to their sensing responses
towards different primary or secondary metabolites consumed or produced during the
growth of microorganisms, which would lead to detectable composition changes at grow-
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ing media levels [34]. In addition, the differences in the chemical composition of the cell
membranes/walls of microorganisms (e.g., different chemical groups, more or less prone
to redox reactions and/or to electrostatic and hydrogen bond interactions) could result
in numerous and different cell-wall-sensor interactions, leading to specific signal finger-
prints of sensors, and thus to the capability of recognizing and distinguishing different
microorganisms [35]. Bacteria can be classified into two major groups: Gram positive
and Gram negative. The distinction between both groups is based on the Gram staining
method, which depends on differences in the structure of the cell walls. The cell walls
of Gram-positive bacteria consist of a thick layer of peptidoglycans. These bacteria re-
tain the crystal violet dye during the staining process, leading to a violet color. In the
case of Gram-positive bacteria, the major chemical diversity between species is associated
with the composition of the peptide crosslinks between glycan strands (a macromolecular
network of repeating units of the disaccharide N-acetyl glucosamine-N-acetyl muramic
acid) [36,37] and with the high variability in structure and chemical composition of long
anionic polymers, which are composed largely of glycerol phosphate, glucosyl phosphate
or ribitol phosphate repeats, covalently attached to peptidoglycan, namely to teichoic acids
or lipoteichoic acids, anchored to the head groups of the membrane lipids [38]. However,
Gram-negative bacteria have a very thin peptidoglycan layer between the inner and outer
cell membranes, and thus, do not retain the violet dye during the staining process, resulting
in red staining. In the case of Gram-negative bacteria, the layer of peptidoglycan is thinner
and is surrounded by an outer membrane and an asymmetric bilayer, with phospholipids
in the inner leaflet and lipopolysaccharides in the outer leaflet. The lipopolysaccharide
molecules are composed of three moieties; namely, lipid A, a core oligosaccharide and a
polysaccharide O-chain, being an O-chain that is highly variable even between strains [39].
The differences in the type and number of chemical groups present on the cell walls of
microorganisms may result in changes in the surface potential and the charge density of the
membranes of the sensors during the cell-wall-sensor interactions, justifying the capability
of the potentiometric E-tongue in detecting different microorganisms. This recognition
capability may be enhanced according to the type and concentrations of the lipid additives
and plasticizers used for obtaining each lipid sensor membrane. In fact, the sensitivity
of the sensor is related to the concentration of the charged lipids inside the membrane
being, for example, the sensitivity towards charged compounds promoted by low-density
lipids. Meanwhile, the selectivity of a sensor greatly depends on its surface hydrophobicity,
which in turn depends on the relative composition and type of lipids and plasticizers used.
The use of high lipid concentrations results in a more hydrophilic surface and, conversely,
high plasticizer concentration turns the surface more hydrophobic [40].

In this work, a lab-made potentiometric E-tongue, comprising only lipid sensor mem-
branes, was used as a recognition device to discriminate and, for the first time, quantify four
typical food contamination microorganisms (E. faecalis, S. aureus, E. coli and P. aeruginosa).
Lipid polymeric sensor membranes are not specific to any particular substance [40], but,
as previously explained, their sensing characteristics are related to their surface potential
and charge density, for which selectivity and sensitivity vary depending on the type and
concentrations of the lipid additives and plasticizers used [40]. The versatility of E-tongues
containing lipid sensors to respond in the presence of numerous compounds, due to the
establishment of electrostatic interactions or hydrogen bonds between the different com-
pounds and the polar and non-polar regions of the lipid membranes, has been widely
reported in the literature [41–48].

2. Materials and Methods
2.1. Bacterial Strains and Inoculum Preparation

This work was aimed at detecting and quantifying three food-borne pathogens, in-
cluding two Gram-positive spherically shaped bacteria S. aureus ATCC653 and E. faecalis
ATCC29212, and one Gram-negative rod-shaped bacterium (P. aeruginosa ATCC15442).
Additionally, E. coli ATCC29998 was used since it is a broad hygiene/fecal indicator. Bacte-
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rial inoculum solutions were made by mixing 300 µL of glycerol (Sigma-Aldrich, Merck,
Darmstadt, Germany) and 700 µL of bacterial culture, grown overnight in the nutrient-rich
microorganism growing medium, Brain Heart Infusion (BHI; PanReac AppliChem, ITW
Reagents, Barcelona, Spain) at 37 ◦C, under orbital agitation (Orbital incubator S1500,
Stuart, Staffordshire, UK) at 90 rpm. The inocula were cryopreserved at −20 ◦C in a freezer
until being used. All reagents were of analytical grade.

2.2. Growth Conditions and Biomass Recovery

Each strain was inoculated aseptically in separate 1-L Erlenmeyer flasks containing
300 mL BHI. Bacterial cultures were grown for 24 h to reach the stationary phase of cells
at 37 ◦C with orbital agitation of 90 rpm. A total of eight independent fermentations was
carried out for each microorganism studied. At the end of the individual fermentation,
a Gram-staining procedure was performed to determine if there was any culture contami-
nation. Gram staining was performed as described by Gregersen [49]. Heat-fixed smear
on slides were flooded with crystal violet solution (Sigma-Aldrich, Merck, Darmstadt,
Germany) for 20 s and then washed with tap water. Next, the smear was covered with
Gram’s iodine (Sigma-Aldrich, Merck, Darmstadt, Germany), the mordant, for 1 min and
decolorized with commercial 96% ethanol for 15 s, followed by washing with tap water
and counterstaining with fuchsin (Sigma-Aldrich, Merck, Darmstadt, Germany) for 30 s,
and was finally washed with tap water and slides dried at room temperature. Observation
was carried out by optical microscope at magnification of 1000×. Biomass yield of each
culture growth was assessed by dry weight. For this purpose, each bacterial culture was
divided into 4 pre-weighed 50 mL polypropylene centrifuge tubes. Cells were harvested by
centrifugation at 4000 rpm (Eppendorf Centrifuge 5810 R, Hamburg, Germany) for 10 min,
cells were resuspended in water and centrifuged again. The tubes with biomass were dried
at 37 ◦C (for 48 h) and weighed, after cooling in a desiccator, on an analytical balance with
accuracy to 0.1 mg (Pioneer TM, OHAUS, Parsippany, NJ, USA). The biomass concentration
was expressed as a mg of cell dry weight per mL of bacterial culture. All reagents used
were of analytical grade.

2.3. E-Tongue Apparatus

A lab-made potentiometric E-tongue multisensor device, comprising two cylindrical
arrays [50] and a Ag/AgCl reference electrode (Crison, model 5241, Barcelona, Spain),
was used to establish the potentiometric fingerprints of each microorganism resuspended
in water. The E-tongue device was connected to an Agilent Data Acquisition unit (model
34970A, Agilent Technologies, Loveland, CO, USA), which was controlled by Agilent
BenchLink Data Logger software, as shown in Figure 1. Each array comprised 20 lipid
polymeric cross-sensitive sensor membranes (40 sensors in total), each corresponding to
a different mixture of an additive compound (~3%, methyltrioctylammonium chloride,
octadecylamine, oleic acid and oleyl alcohol) and a plasticizer (~32%, bis (1-butylpentyl)
adipate, dibutyl sebacate, dioctyl phenylphosphonate, 2-nitrophenyl-octyl ether and tris
(2-ethylhexyl) phosphate), plus a high molecular weight polyvinyl chloride (PVC, ~65%).
All reagents were of analytical grade. Each sensor was coded with a letter S (for sensor)
followed by a number related to the sensor array (1: or 2:) and a number related to
the lipid sensor membrane applied (1 to 20), corresponding to different combinations of
plasticizer and additive compounds, as described in Table 1. The type of lipid polymeric
sensors and the compositions were chosen due to (i) the satisfactory signal stability over
time with a lower than 5% relative standard deviation (RSD) over a 5-h period using
both standard solutions and real-life samples; (ii) the satisfactory intra- and inter-day
repeatability (0.1 ≤ RSD ≤ 15%) towards standard chemical solutions that mimicked the
five basic taste sensations (sweet, acid, bitter, salty and umami) or the alcoholic aqueous
extracts of olive oils; and (iii) their re-usability during at least a one-year time period
without requiring any replacement of the sensor membranes [51].



Chemosensors 2021, 9, 143 5 of 15

Chemosensors 2021, 9, x FOR PEER REVIEW 5 of 15 
 

 

time with a lower than 5% relative standard deviation (RSD) over a 5-h period using both 
standard solutions and real-life samples; (ii) the satisfactory intra- and inter-day 
repeatability (0.1 ≤ RSD ≤ 15%) towards standard chemical solutions that mimicked the 
five basic taste sensations (sweet, acid, bitter, salty and umami) or the alcoholic aqueous 
extracts of olive oils; and (iii) their re-usability during at least a one-year time period 
without requiring any replacement of the sensor membranes [51]. 

Figure 1. Lab-made E-tongue device: sensor arrays, data logger (data acquisition unit) and control software installed on a 
PC. 

Table 1. E-tongue sensor codes and related composition (%) of the respective lipid 
membranes (type/pair of additive and plasticizer). 

Sensor Code 
Plasticizer (~32%) Additive (~3%) 

1st Array 2nd Array 
S1:1 S2:1 

Bis(1-butylpentyl) adipate 

Octadecylamine 
S1:2 S2:2 Oleyl alcohol 
S1:3 S2:3 Methyltrioctylammonium chloride 
S1:4 S2:4 Oleic acid 
S1:5 S2:5 

Dibutyl sebacate 

Octadecylamine 
S1:6 S2:6 Oleyl alcohol 
S1:7 S2:7 Methyltrioctylammonium chloride 
S1:8 S2:8 Oleic acid 
S1:9 S2:9 

2-nitrophenyl-octyl ether 

Octadecylamine 
S1:10 S2:10 Oleyl alcohol 
S1:11 S2:11 Methyltrioctylammonium chloride 
S1:12 S2:12 Oleic acid 
S1:13 S2:13 

Tris(2-ethylhexyl) phosphate 

Octadecylamine 
S1:14 S2:14 Oleyl alcohol 
S1:15 S2:15 Methyltrioctylammonium chloride 
S1:16 S2:16 Oleic acid 
S1:17 S2:17 

Dioctyl phenylphosphonate 
Octadecylamine 

S1:18 S2:18 Oleyl alcohol 

Figure 1. Lab-made E-tongue device: sensor arrays, data logger (data acquisition unit) and control software installed on
a PC.

Table 1. E-tongue sensor codes and related composition (%) of the respective lipid membranes
(type/pair of additive and plasticizer).

Sensor Code
Plasticizer (~32%) Additive (~3%)

1st Array 2nd Array

S1:1 S2:1

Bis(1-butylpentyl) adipate

Octadecylamine
S1:2 S2:2 Oleyl alcohol
S1:3 S2:3 Methyltrioctylammonium chloride
S1:4 S2:4 Oleic acid

S1:5 S2:5

Dibutyl sebacate

Octadecylamine
S1:6 S2:6 Oleyl alcohol
S1:7 S2:7 Methyltrioctylammonium chloride
S1:8 S2:8 Oleic acid

S1:9 S2:9

2-nitrophenyl-octyl ether

Octadecylamine
S1:10 S2:10 Oleyl alcohol
S1:11 S2:11 Methyltrioctylammonium chloride
S1:12 S2:12 Oleic acid

S1:13 S2:13

Tris(2-ethylhexyl) phosphate

Octadecylamine
S1:14 S2:14 Oleyl alcohol
S1:15 S2:15 Methyltrioctylammonium chloride
S1:16 S2:16 Oleic acid

S1:17 S2:17

Dioctyl phenylphosphonate

Octadecylamine
S1:18 S2:18 Oleyl alcohol
S1:19 S2:19 Methyltrioctylammonium chloride
S1:20 S2:20 Oleic acid

2.4. E-Tongue Analysis

For the experimental potentiometric assays, known amounts of each microorganism
were resuspended in 100 mL of deionized water and then mixed for 1–2 min in a vortex.
Then, the solutions were immediately analyzed with the E-tongue for 5 min to allow time
for attaining a pseudo-equilibrium between the E-tongue non-specific lipid polymeric
membranes and the microorganism of each solution. In practice, after a 5 min analysis,
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the potentiometric signal of each lipid polymeric membrane showed an almost constant
potential, signaling that equilibrium was established. This facilitated a fast analysis time.
After each assay the E-tongue was washed with deionized water and, after 4–5 assays it
was immersed in a HCL aqueous solution (0.01 mol/L) to evaluate the signal repeatability,
as well as promoting a more efficient cleaning of the sensor arrays. At the end of each day,
the E-tongue was stored at room temperature and immersed in an aqueous 0.01 mil/L HCl
solution to clean the sensor arrays. This also improved the signal repeatability.

2.5. Statistical Analysis

The unsupervised and supervised classification performance of the E-tongue to iden-
tify and differentiate the four microorganisms under study was evaluated using principal
component analysis (PCA) and linear discriminant analysis (LDA) coupled with the meta-
heuristic simulated annealing (SA) variable selection algorithm [52–54]. PCA is a technique
that allows reducing the number of variables (in this case 40 E-tongue sensors) into a small
number of principal components (PCs) so that a particular pattern in the dataset is easily
recognizable when they are plotted in a multidimensional space. LDA is a classification
multivariate technique that provides linear models of the classification scores regarding
the descriptors under study (i.e., pre-defined groups). These models maximize the ratio
of between-class variance and minimize the ratio of within-class variance. LDA assumes
a priori knowledge of the group membership of each sample in a training set. The SA
meta-heuristic algorithm was used to identify the best sub-set containing the lower number
of non-redundant E-tongue sensors [44]. The LDA performance was checked using two
internal cross-validation (CV) variants, namely the leave-one-out CV (LOO-CV) and the
repeated K-fold-CV. The former is considered an over-optimistic internal validation tech-
nique and the latter aims to overcome this possible limitation and to minimize overfitting
risks. In the former variant, the dataset minus one observation is used to establish the linear
discriminant (LD) functions and then the omitted data are classified, being the procedure
repeated for all the observations. For the latter CV variant, data are randomly split more
than once, depending on the number of repeats (set equal to 10), each time divided into K
folds of approximately equal size (set equal to 4, allowing keeping 25% of the initial data for
validation purposes). Each of the folds is left out in turn and the other K-1 folds are used
to train the model. The held-out fold is predicted and these predictions are summarized
according to a performance measure like the sensitivity (e.g., the percentage of correct
classifications). The K estimates are averaged to achieve the overall resampled estimate.
Variable scaling and centering procedures were implemented as data normalization pro-
cedures. The PCA and LDA model outputs were graphically evaluated using 3D plots
of the three most significant PCs or LDs, being the calculated sensitivity values (i.e., the
percentage of samples correctly classified into the pre-established groups) for the latter
approach. Multiple linear regression (MLR) models, based on selected non-redundant
E-tongue sensors identified using the simulated annealing (SA) algorithm, were devel-
oped using the potentiometric data acquired during the analysis of the aqueous solutions
containing different known amounts of each of the four studied microorganisms. MLR
is based on the regression analysis of two or more independent variables. In this sense
it is a linear model that describes how a dependent variable (i.e., each microorganism’s
amount in aqueous solutions) relates to more than one independent variable (i.e., from 2 to
40 E-tongue sensors). The accuracy of the E-tongue-MLR-SA models was established based
on the determination coefficients (R2) and the root-mean-square errors (RMSEs) for training
and internal validation (leave-one-out cross-validation, LOO-CV; and repeated K-fold-CV
with 4 folds and 10 repeats) procedures. The accuracy of the E-tongue-MLR-SA models was
compared against the analytical conventional techniques. The acceptance of the alternative
method as a procedure equivalent to a reference procedure (for results) requires that the
slope and intercept values of the regression line between the data for both approaches be
equal to those of a perfect line (i.e., 1 and 0, respectively) [55,56]. All statistical analyses
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were performed using the Sub-select [53] and MASS [57] packages of the open-source
statistical program R (version 2.15.1), at a 5% significance level.

3. Results and Discussion
3.1. Biomass Determination by Dry Weight

At the end of each fermentation assay, the culture was checked by evaluating possible
contamination with undesirable microorganisms. The microscopic observation of the
culture, after Gram staining, allowed verification that at the end of the fermentation, all
the cells had the morphology of the microorganism under study and so the presence of
the other studied microorganisms was not detected. The biomass determined by dry
weight of the culture growth is reported as mean values (standard deviation) for eight
fermentation replicas performed for each microorganism: 1.21 (0.24) mg/mL for E. coli; 0.84
(0.13) mg/mL for P. aeruginosa; 0.97 (0.40) mg/mL for E. faecalis; and 1.41 (0.16) mg/mL for
S. aureus.

3.2. Microorganism Recognition and Differentiation Based on E-Tongue Potentiometric Profiles

The possibility of recognizing and differentiating the four microorganisms under
study, based on the potentiometric fingerprints recorded by the E-tongue during the
analysis of solutions containing different amounts of each microorganism, was evaluated.
In fact, and as previously suggested, it was expected [40] that the surface potential and
charge density of the lipid membranes comprised on the E-tongue would change due to the
establishment of electrostatic interactions/hydrogen bonds between the chemical groups
of the cell walls of each microorganism and those contained in the lipid sensor membranes.
The intensity of the potentiometric signals recorded by each sensor would vary according to
type and number of chemical groups on the cell walls of each microorganism under study,
as well as the different additive–plasticizer combination (4 additives and 5 plasticizers
were used) for each sensor. For each microorganism, eight independent aqueous solutions
were prepared by resuspending known amounts of dry weight cells in 100 mL of deionized
water (E. coli: 0.309 to 0.666 mg/mL; E. faecalis: 0.279 to 0.538 mg/mL; S. aureus: 0.511 to
0.702 mg/mL; and P. aeruginosa: 0.324 to 0.435 mg/mL), totaling 32 independent aqueous
solutions analyzed on the same day to minimize the drifts of signals and to avoid the need
for complex signal pre-treatments. Indeed, the intra-day repeatability of the signals of the
E-tongue sensors was confirmed by analyzing a fresh aqueous 0.01 mol/L HCl solution
(0.5 ≤ RSD ≤ 5.2%) ten times. As shown by a plot of the potentiometric signal for each
sensor in Figure 2, the E-tongue signals recorded by the 40 sensor lipid membranes varied
within the same potential range (0.2 to 350 mV) for the four bacteria being studied. It could
also be inferred that different sensors showed different signal intensities, ranging from 0.2
to 350 mV, highlighting that the different lipid membranes used responded differently in
the presence of aqueous solutions containing each of the four microorganisms.

Next, PCA was applied to the raw E-tongue signals allowing us to obtain a new
coordinate system (i.e., the PCs, which are linearly uncorrelated) through an orthogonal
linear transformation of the recorded signals. The results obtained are shown in Figure
3A. In this figure, the first three PCs, based on the potentiometric signal profiles acquired
by the 40 E-tongue sensors, allowed us to clearly differentiate in the new coordinate space
the aqueous solutions containing P. aeruginosa and E. faecalis, although the same was not
observed for E. coli and S. aureus, for which a clear overplotting was observed. Thus,
the results show that the electronic device could be used to identify aqueous solutions
containing P. aeruginosa or E. faecalis, but not the other two studied microorganisms (E.
coli and S. aureus). To further assess the E-tongue classification capability, the data were
subjected to LDA, for which most discriminant and non-redundant sensors were selected by
the SA algorithm. The best E-tongue-LDA-SA model, for which the first three discriminant
functions (LDs) explained 100% of the data variability, was established based on 12 E-
tongue sensors (1st sensor array: 1st E-tongue array: S1:2, S1:5, S1:7, S1:8 and S1:9; 2nd
sensor array: S2:4, S2:9, S2:10, S2:11, S2:13, S2:14 and S2:18). The supervised discriminant
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model allowed us to correctly classify 100% of the original grouped data (Figure 3B).
Moreover, the model showed sensitivities of 100% for the LOO-CV and of 98 ± 5% for
the repeated K-fold-CV internal validation procedures. It should be noted that, for the
latter CV variant, which ensures that at each run 25% of the dataset is used for validation
(i.e., 2 solutions of each microorganism, totaling 8 among 32 independent samples, were
kept aside for validation purposes), misclassification was only observed between E. faecalis
and P. aeruginosa. The unsupervised and supervised classification performances clearly
highlighted the potential use of the E-tongue as an accurate and fast recognition device
for the four microorganisms studied, being possible to foresee its use as a preliminary
quality/safety control tool, taking into account that these microorganisms are typical
water-food contamination indicators.
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The satisfactory recognition performance of the lab-made potentiometric E-tongue
is in line with the results previously reported in the literature for devices based on the
same sensing technique. For example, Söderström et al. [29] reported that a potentiometric
E-tongue, comprising 27 potentiometric chemical sensors with cross-sensitivity towards
inorganic cations and anions as well as to organic substances, could be used to satisfactorily
differentiate (PCA) A. versicolor, A. ochraceus and Z. bailii, although it misclassified A. flavus
and A. oryzae. A discriminant analysis allowed achieving a correct classification rate of
90% for external validation, it being shown that the potentiometric E-tongue could be
used to differentiate all microorganisms in the stationary phase as well as during their
growth. More recently, a commercial potentiometric E-tongue (α-Astree device with seven
chemically modified solid potential sensors) was used by Al Ramahi et al. [33] to accurately
differentiate (PCA) three bacteria (S. aureus, E. coli and P. aeruginosa) at different growing
time-periods (from 15 to 24 h, to which corresponded discrimination indices from 83 to
96%). Furthermore, it was shown that a discriminant analysis (based on the information
gathered from two sensors) allowed recognizing new E. coli samples, used as an external
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dataset. Finally, Abu-Khalaf and Rumaila [34] also used an α-Astree device for trying to
differentiate (PCA) eight Fusarium isolates, which partially succeeded since the isolates
were clustered into two main groups, and to monitor the fungal growth.
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Figure 3. Differentiation (3D plots) of four common water-food contamination microorganisms based on the E-tongue
signal profiles acquired during the analysis of aqueous solutions of E. coli (0.309 to 0.666 mg/mL, symbol •), E. faecalis
(0.279 to 0.538 mg/mL, symbol N), S. aureus (0.511 to 0.702 mg/mL, symbol �) and P. aeruginosa (0.324 to 0.435 mg/mL,
symbol �). (A) Unsupervised PCA recognition based on the potentiometric signals of 40 E-tongue sensors; and (B)
supervised LDA classification based on the potentiometric signals of a set of 12 non-redundant E-tongue sensors, selected by
the SA algorithm.

3.3. Microorganism Quantification Based on E-Tongue Potentiometric Profiles

The quantitative performance of the lab-made potentiometric E-tongue to quantify
the amounts of each of the four studied microorganisms in aqueous solutions was further
investigated by applying a MLR approach, based on sets of non-redundant sensors selected
using the SA algorithm. Two CV variants were also used to evaluate the performance
of the E-tongue-MLR-SA models, i.e., the LOO-CV and repeated K-fold-CV procedures
(4 folds × 10 repeats). The parameters of the goodness of fitting of the developed models
are shown in Table 2, together with the number and type of sensors included in each
MLR model. The very satisfactory R2 and RMSE values (LOO-CV: 0.994 ≤ R2 ≤ 0.998 and
0.028 ≤ RMSE ≤ 0.064 mg/mL; repeated K-fold-CV: 0.993 ± 0.011 ≤ R2 ≤ 0.998 ± 0.002
and 0.032 ± 0.014 ≤ RMSE ≤ 0.076 ± 0.036 mg/mL) provided support for the use of the
E-tongue as a quantitative tool for predicting the amounts of the bacteria under study in
aqueous solutions. This has opened up the opportunity for the E-tongue to be applied
in quality and safety control. The quality of the E-tongue quantitative performance can
be further verified in Figure 4, where the results achieved for the repeated K-fold-CV
internal validation procedure are plotted. Overall, the referred quantitative performance
is in agreement with previous studies, which have shown the possibility of applying a
potentiometric E-tongue to quantify the total viable counts of microorganisms in sea bream
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samples, using a PLS- (R2 = 0.954) based model [31] as well as in spoiled fish samples,
using SVM- (R2 = 0.937) and ANN- (R2 = 0.986) based models [32].

Table 2. Predictive performance of E-tongue-MLR-SA models regarding the quantification of typical water-food contamina-
tion microorganisms (contents determined according to cells’ dry weight) resuspended in aqueous solutions.

Microorganism Concentration
Range (mg/mL) a

E-Tongue-MLR-SA Models b

N◦ of Sensors c
Determination Coefficient (R2) Root-Mean-Square Error (RMSE, mg/mL)

LOO-CV d Repeated
K-Fold-CV e LOO-CV d Repeated K-Fold-CV e

E. coli [0.083, 3.203] 15 f 0.996 0.993 ± 0.008 0.054 0.076 ± 0.036
P. aeruginosa [0.079, 2.820] 14 g 0.998 0.998 ± 0.002 0.028 0.032 ± 0.014

E. faecalis [0.070, 2.485] 13 h 0.996 0.993 ± 0.011 0.041 0.048 ± 0.019
S. aureus [0.148, 3.143] 12 i 0.994 0.993 ± 0.005 0.062 0.072 ± 0.030
a Experimental content (in mg/mL) range of solutions containing known cells’ dry weights resuspended in deionized water (27, 24, 27 and
27 independent samples for E. coli, P aeruginosa, E. faecalis and S. aureus, respectively); b Multivariate linear regression (MLR) model based
on sub-sets of potentiometric sensors, selected by the simulated annealing (SA) algorithm, among the 40 possible signal profiles acquired
with the electronic tongue (E-tongue) during the analysis of the microorganisms’ solutions; c Number of sensors (and respective signals)
included in the E-tongue MLR-SA model, selected from the 40 signal profiles recorded by the E-tongue during the analysis of each solution;
d LOO-CV: leave-one-out cross validation procedure; e Repeated K-fold-CV: cross-validation procedure with 4 folds, ensuring that at least
25% of the original data are used for internal validation, and 10 repetitions; f E-tongue sensors used in the best E-tongue-MLR-SA model
(1st array: S1:1, S1:2, S1:6, S1:7, S1:10, S1:13, S1:16, S1:18, S1:19; 2nd array: S2:1, S2:5, S2:7, S2:9, S2:12, S2:17); g E-tongue sensors used in the
best E-tongue-MLR-SA model (1st array: S1:5, S1:7, S1:12, S1:13, S1:16, S1:17, S1:20; 2nd array: S2:1, S2:4, S2:8, S2:13, S2:14, S2:16, S2:20);
h E-tongue sensors used in the best E-tongue-MLR-SA model (1st array: S1:2, S1:4, S1:5, S1:17, S1:19, S1:20; 2nd array: S2:2, S2:3, S2:4, S2:5,
S2:6, S2:15, S2:17); i E-tongue sensors used in the best E-tongue-MLR-SA model (1st array: S1:2, S1:7, S1:11, S1:12, S1:13, S1:14, S1:15, S1:16;
2nd array: S2:1, S2:3, S2:6, S2:20).

Lastly, the application of E-tongue-MLR-SA models as a possible complementary
tool to quantify the amounts of bacteria in aqueous solutions was evaluated following
the methodology described by Roig and Thomas [55,56], based on the XPT 90-210 French
standard [58] for the comparison of an alternative procedure with a reference method.
Thus, single linear regressions were established between the amounts of each bacterium
predicted by the E-tongue-MLR-SA model and the experimental known amounts, being
investigated if the slope and intercept values were statistically equal to one and zero,
respectively (corresponding to a perfect linear fit). Table 3 shows the parameters of the
single linear regressions (R2, slope and intercept values and the respective 95% intervals
of confidence, IC) for the two cross-validation variants. As can be inferred, at the 5%
significance level, the slope and intercept values were statistically equal to the expected
theoretical values, except for S. aureus and for the repeated K-fold-CV procedure. Therefore,
it could be stated that, in general, the E-tongue coupled with MLR models can be applied
as a fast and cost-effective strategy to assess the contents of the four studied bacteria in
aqueous solutions.
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Figure 4. Predictive performance (repeated K-fold-CV internal validation: 4 folds × 10 repeats) of the potentiometric
lab-made E-tongue towards the quantification of the microorganism amounts (mg/mL) resuspended in aqueous solutions:
(A) E. coli content assessment using an MLR model based on the signals acquired from 15 E-tongue sensors; (B) P. aeruginosa
content assessment using an MLR model based on the signals acquired from 14 E-tongue sensors; (C) E. faecalis content
assessment using an MLR model based on the signals acquired from 13 E-tongue sensors; and, (D) S. aureus content
assessment using an MLR model based on the signals acquired from 12 E-tongue sensors.



Chemosensors 2021, 9, 143 12 of 15

Table 3. Parameters of the single linear regressions established between the microorganisms’ content
in aqueous solutions predicted by the E-tongue-MLR-SA models (LOO-CV and repeated K-fold-CV)
and the experimental contents based on the known amounts of dry cells’ weight resuspended in
deionized water: coefficient of determination (R2); slopes, intercept values and respective confidence
intervals (CI) at 95%.

Microorganism
LOO-CV a

R2 Slope Slope CI c Intercept
(mg/mL)

Intercept CI d

(mg/mL)

E. coli 0.996 0.992 [0.967, 1.018] 0.0046 [−0.0291, 0.0382]
P. aeruginosa 0.998 0.999 [0.982, 1.017] −0.0007 [−0.0190, 0.0176]

E. faecalis 0.996 0.991 [0.965, 1.017] 0.0058 [−0.0184, 0.0300]
S. aureus 0.994 0.986 [0.955, 1.018] 0.0152 [−0.0270, 0.0574]

Microorganism
Repeated K-fold-CV b

R2 Slope Slope CI c Intercept
(mg/mL)

Intercept CI d

(mg/mL)

E. coli 0.990 1.000 [0.988, 1.012] 0.0012 [−0.0145, 0.0173]
P. aeruginosa 0.997 1.006 [0.999, 1.012] −0.0026 [−0.0096, 0.0044]

E. faecalis 0.993 0.991 [0.981, 1.001] 0.0052 [−0.0042, 0.0146]
S. aureus 0.990 0.984 [0.972, 0.995] 0.0212 [0.0053,0.0371]

a LOO-CV (leave-one-out cross-validation); b Repeated K-fold-CV (4 folds × 10 repeats); c 95% slope confidence
interval; d 95% intercept confidence interval.

4. Conclusions

This study showed that a potentiometric E-tongue, comprising lipid polymeric sensor
membranes, could be used as a practical, non-invasive and direct tool to discriminate and
quantify four typical bacteria (E. coli, E. faecalis, S. aureus and P. aeruginosa) in aqueous solu-
tions, which are recognized as food and/or water contaminant bacteria, related to several
worldwide foodborne outbreaks. The satisfactory qualitative and quantitative predictive
performances of the sensor device could be tentatively attributed to the known capability
of the lipid sensor membranes to establish electrostatic interactions or hydrogen bonds
with hydroxyl, carbonyl and/or amine groups that can be found, in different numbers, in
the outer membranes of the referred bacteria. Finally, the promising results achieved for
aqueous solutions must be further confirmed for other relevant food matrices (e.g., meat
and dairy products) in order to ensure that, in the future, the E-tongue may be used as a
routine safety/quality control tool in the processed/fermented food production field.
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