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Abstract: Metal phthalocyanines bearing electron-withdrawing fluorine substituents were synthe-
sized a long time ago, but interest in the study of their films has emerged in recent decades. This is
due to the fact that, unlike unsubstituted phthalocyanines, films of some fluorinated phthalocyanines
exhibit the properties of n-type semiconductors, which makes them promising candidates for ap-
plication in ambipolar transistors. Apart from this, it was shown that the introduction of fluorine
substituents led to an increase in the sensitivity of phthalocyanine films to reducing gases. This review
analyzes the state of research over the last fifteen years in the field of applications of fluoro-substituted
metal phthalocyanines as active layers of gas sensors, with a primary focus on chemiresistive ones.
The active layers on the basis of phthalocyanines with fluorine and fluorine-containing substituents
of optical and quartz crystal microbalance sensors are also considered. Attention is paid to the
analysis of the effect of molecular structure (central metal, number and type of fluorine substituent
etc.) on sensor properties of fluorinated phthalocyanine films.

Keywords: metal phthalocyanines; fluoro-substituents; chemiresistive sensors; optical sensors;
quartz crystal microbalance; thin films

1. Introduction

Metal phthalocyanines (MPc) belong to the class of coordination compounds with or-
ganic ligands. The phthalocyanine molecule consists of four isoindole fragments connected
through nitrogen atoms of the tetrabenzoporphyrazine macrocycle. Since their discovery,
phthalocyanines have been widely used not only as dyes and catalysts [1–3], but also in
advanced technological fields, for example, as active layers of solar cells [4,5], diodes [6,7],
and transistors [8,9]. Due to their ability to change conductivity during adsorption of
various gases the application of metal phthalocyanines as sensing layers of chemiresistive
sensors is of particular interest [10–12]. On the one hand, phthalocyanine macrocycles can
chelate with almost all metals of the periodic table. On the other hand, various types of
substituents can be introduced into their macroring [13–16]. Due to such versatility in their
structure, they exhibit different sensitivity to a number of analytes.

Metal phthalocyanines bearing electron-withdrawing fluorine substituents were syn-
thesized a long time ago [17], but interest in the study of their films has emerged in recent
decades. This is due to the fact that, in contrast to unsubstituted phthalocyanines, the
films of some fluorinated phthalocyanines exhibit the properties of n-type semiconductors,
which makes them promising candidates for application in ambipolar transistors [18–20].
Apart from this, it was shown that the introduction of fluorine substituents led to an
increase in the sensitivity of their films to reducing gases [21,22].

Another important property of metal phthalocyanines, which makes them useful
for the modification of electrodes of electrochemical sensors, is their electrocatalytic and
electron mediator capability [23–26]. Electrodes modified with metal phthalocyanines or
their composite materials were shown to be used in amperometric, potentiometric and
biosensors as well as voltammetric electronic tongues for the detection of various analytes,
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among them dopamine, glucose, cysteine and so on [27,28]. Among the wide variety of
phthalocyanines, fluorinated derivatives occupy a special place due to the influence of
fluoro-substituents on the redox potential of compounds and intermolecular interaction
with analytes.

Fluorinated porphyrinoids have been the subject of several reviews over the past few
years. The synthesis of fluorinated porphyrinoids and some aspects of their application for
the creation of new photonic materials have been the subject of several reviews [17,29,30].
In a book chapter written by P. Stuzhin [17], an overview of different methods of synthesis
of phthalocyanines, subphthalocyanines and porphyrazines bearing fluorine atoms and/or
perfluorinated alkyl or aryl groups was provided. S. Casa and M. Henary published
another critical review [30], which covers the aspects of synthesis and the application of
selected fluorine-containing fluorophores. Among other fluorine-containing molecules, the
authors analyzed the methods of synthesis of metal phthalocyanines bearing fluoroalkyl
and fluoroaryl moieties and their application as photosensitizers for photodynamic therapy.
The mini review written by Gorun et al. [31] summarizes recent researches of fluoroalkyl-
substituted metal phthalocyanines, in which the majority of C–H bonds are replaced by
a combination of fluoro- and perfluoroalkyl groups as bioinspired catalytic materials. A
review article written by Dinesh K. Bhupathiraju et al. [29] was focused on the reactions of
nucleophilic substitution of fluorinated analogues of porphyrins, phthalocyanines, chlorin,
phenylcorrole and bacteriochlorins. The authors also considered their electrocatalytic and
light-absorbing properties important for various biomedical applications as well as sensing
behavior. However most of the presented data in this field of chemical sensors were
devoted to the use of porphyrin derivatives as fluorescence sensors for the detection of
dissolved oxygen, and only very limited examples of the application of fluoro-substituted
phthalocyanines in other types of sensors were given. Apart from this, questions concerning
the effect of the number and type of fluorine or fluorine-containing substituents on the
sensor performance were not sufficiently answered.

This review analyzes the state of research over the last fifteen years in the field of
applications of fluoro-substituted metal phthalocyanines as active layers of gas sensors,
with a primary focus on the sensors with electrical response (Scheme 1). Attention will be
paid to the analysis of the effect of molecular structure (central metal, number and type of
fluorine substituent etc.) on sensor properties of the films of fluorinated phthalocyanines.
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2. Brief Overview of Fluorinated Phthalocyanines and Preparation of Their Thin Films

A large variety of phthalocyanines with fluorine and/or fluorine-containing sub-
stituents has been synthesized and investigated [32–35]. In this section, we consider only
those fluoro-substituted phthalocyanines, which were used for the preparation of active
layers of chemical sensors in the publications analyzed in this review. The literature anal-
ysis shows that both phthalocyanines with fluorine atoms directly in the aromatic rings
and phthalocyanines bearing fluoroalkyl and fluoroaryl substituents are widely used for
the preparation of active layers of gas sensors. Some example of such fluorinated MPc
derivatives are summarized in Table 1. The methods of their synthesis have already been
discussed in detail in recent reviews [17,30].

Table 1. Structures of fluoro-substituted phthalocyanines.
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(b) TiOPc(OCH2CF2CHF2)8 

(a) R2 =    R1,3,4 = H 

(b) R2,3 =  R1,4 = H 

5 ZnPcF64 
R2,3 =  R1,4 = F 

6 

(a) MPc[β-O(4-CF3-Ph)4] 
(b) H2Pc[β-O(4-CF3-Ph)4] 
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10 
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Zn[Pc(OCH2C3F7)8] R2,3 =  R1,4 = H 

O CF3

O CF3

Number Abbreviation and Central Metals Substituents

1 MPcF4 (M = Co, Cu, Zn, Pb, VO, Ni) R2 = F, R1,3,4 = H

2 MPcF8 (M = Cu) R2,3 = F, R1,4 = H

3 MPcF16 (M = Zn, Co, Pd, Pb, Cu, Ni) R1,2,3,4 = F

4 (a) TiOPc(OCH2CF2CHF2)4
(b) TiOPc(OCH2CF2CHF2)8

(a) R2 =
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that a phthalocyanine is deposited as a thin film with a controlled structure and mor-
phology on the surface of an electrode. The method of deposition of films is determined 
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F-substituents directly in the aromatic rings (Compounds 1–3, Table 1) are insoluble in 
common organic solvents, but can be sublimed in vacuum with the formation of smooth 
and homogeneous films [21,32,36]. 

Table 1. Structures of fluoro-substituted phthalocyanines. 

 

Number Abbreviation and Central Metals Substituents 
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2 MPcF8 (M = Cu) R2,3 = F, R1,4 = H 
3 MPcF16 (M = Zn, Co, Pd, Pb, Cu, Ni) R1,2,3,4 = F 

4 
(a) TiOPc(OCH2CF2CHF2)4  
(b) TiOPc(OCH2CF2CHF2)8 

(a) R2 =    R1,3,4 = H 

(b) R2,3 =  R1,4 = H 

5 ZnPcF64 
R2,3 =  R1,4 = F 

6 

(a) MPc[β-O(4-CF3-Ph)4] 
(b) H2Pc[β-O(4-CF3-Ph)4] 
(c) CoPc[α-O(4-CF3-Ph)4] 
(d) H2Pc[α-O(4-CF3-Ph)4] 

(a), (b) R2 = R1,3,4 = H 

(c), (d) R1 =  R2,3,4 = H 

7 ZnPcCF 
 R1,3,4 = H 

O CF3

O CF3

R1,3,4 = H

8 H2Pc(OCH2CF3)4 R2 =
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(a) TiLR4 (See Section 4.2.) 

(b) TiLR8  

(a) R2 =       R1,3,4 = H 

(b) R2,3 =      R1,4 = H 

15 

(a) MPc(OCH2CF2CHF2)4 (M = Zn, Ni) 

(b) MPc(OCH2CF2CHF2)4 (M = Zn, Ni) 

(c) MPc(OCH2CF2CHF2)8 (M = Zn, Ni, Cu) 

(d) MPc(OCH2CF2CHF2)4Cl4 (M = Zn, Ni) 

(e) MPc(OPhF5)4Cl4 (M = Zn, Ni) 

(a) R1 =    R2,3,4 = H  

(b) R2 =       R1,3,4 = H 

(c) R2,3 =     R1,4 = H 

(d) R2 =     R3 = Cl    R1,4 = H 

(e) R2 =     R3 = Cl     R1,4 = H 

9 H2[Pc(OCH2(CF2)6CF3)4]
R2 =
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Thin films of MPcFx (x = 4, 8, 16) deposited by physical vapor deposition (PVD) or 
organic molecular beam deposition techniques are usually polycrystalline and have 
preferable orientation of polycrystallites relative to the substrate surface (Figure 1a–c) 
[37]. Their orientation degree and size of crystallites are dependent on the substrate ma-
terial and deposition conditions [22,38,39], that is, the rate of film growth and substrate 
temperature [40]. In turn, the structure and surface morphology of fluorinated phthalo-
cyanine films have a significant effect on their conductivity, charge carrier mobility, and 
sensor performance [41–43]. Summarizing the data on the deposition of films of fluori-
nated metal phthalocyanines given in the literature, the main conditions of these pro-
cesses can be identified. The films are deposited in ultra-high (~10−9 Torr) or high vacuum 
(~10−5–10−6 Torr) at evaporator temperatures from 300 to 480 °C [38]. 
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For the use of phthalocyanines as active layers of chemical sensors, it is impor-
tant that a phthalocyanine is deposited as a thin film with a controlled structure and
morphology on the surface of an electrode. The method of deposition of films is deter-
mined by the properties of the compound itself. It is known that phthalocyanines with
F-substituents directly in the aromatic rings (Compounds 1–3, Table 1) are insoluble in
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common organic solvents, but can be sublimed in vacuum with the formation of smooth
and homogeneous films [21,32,36].

Thin films of MPcFx (x = 4, 8, 16) deposited by physical vapor deposition (PVD)
or organic molecular beam deposition techniques are usually polycrystalline and have
preferable orientation of polycrystallites relative to the substrate surface (Figure 1a–c) [37].
Their orientation degree and size of crystallites are dependent on the substrate material
and deposition conditions [22,38,39], that is, the rate of film growth and substrate temper-
ature [40]. In turn, the structure and surface morphology of fluorinated phthalocyanine
films have a significant effect on their conductivity, charge carrier mobility, and sensor
performance [41–43]. Summarizing the data on the deposition of films of fluorinated metal
phthalocyanines given in the literature, the main conditions of these processes can be identi-
fied. The films are deposited in ultra-high (~10−9 Torr) or high vacuum (~10−5–10−6 Torr)
at evaporator temperatures from 300 to 480 ◦C [38].
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Figure 1. Topographic AFM images (2 µm × 2 µm) of CoPcF16 thin films grown at different elevated substrate temperatures:
100 ◦C (a), 220 ◦C (b), and 290 ◦C (c). Adapted from [37] with permission from Elsevier. XRD patterns of CoPcFx (x = 0, 4, 16)
thin films (d).

Similarly to the films of unsubstituted metal phthalocyanines, XRD patterns of MPcFx
films usually contain a single strong diffraction peak in the range from 5◦ to 7◦ 2θ, which is
a typical feature of thin films with a strong preferred orientation (Figure 1d).

It was shown that in contrast to MPc (M = Cu, Co, Zn), which are able to form α-
and β-modifications [44,45], CuPcF4, CoPcF4, and ZnPcF4 crystallize only in one triclinic
(P-1 space group) phase [32,46]. At the same time, two polymorphs α-CuPcF16 (P-1 space
group, Z = 1) [47], forming on a substrate at room temperature, and triclinic β-CuPcF16
(P-1 space group, Z = 2) growing on a substrate heated to 360 ◦C [48], were identified
in the case of CuPcF16. Thin films of fluorinated metal phthalocyanines with non-planar
structure (e.g., PbPcFx, VOPcFx, etc.) were also investigated. PbPc films were shown to
consist of two crystal phases, triclinic and monoclinic, while PbPcF4 and PbPcF16 films
are single-phase, having the same structures as their single crystals, in tetragonal (I4) and
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triclinic (P-1) space groups, respectively [49]. VOPc and VOPcF4 crystallites have strong
preferred orientation relative to the substrate surface [50].

The introduction of fluoroalkyl or fluoroaryl substituents (Compounds 4–16, Table 1)
leads to the better solubility of phthalocyanine derivatives in organic solvents [51–53]. For
this reason, the drop cast, spin coating and jet spray techniques are used for the preparation
of their films on different substrates and electrodes [33,54]. Duan et al. [52] utilized a phase-
transfer method for the preparation of the layers of (trifluoromethyl)phenoxy-substituted
phthalocyanine derivatives (Compounds 6, Table 1), while Dong and co-authors [55]
deposited films of metal-free phthalocyanines bearing trifluoroethoxy-substituents by a
solution-based quasi-Langmuir-Shäfer (QLS) method. The structure and morphology of
the films were dependent on the phthalocyanines’ molecular structure and the deposi-
tion technique. For example, the drop-casted films of ZnPc(OCH2(CF2)6CF3)8 [56] and
H2Pc(OCH2(CF2)6CF3)4 [57] were less crystalline than vacuum-deposited films, and they
had a tendency to form J-type molecular stacking structures. The use of a phase-transfer
method led to the formation of crystalline films of M[Pc(OCH2C3F7)8] (M = 2H, Zn) [58]
and MPc [α-O(4-CF3-Ph)4] (M = 2H, Co) [52] with a helical ribbon-like structure with a
ribbon width of about 1.5–5 µm and length over 30 µm. Thus, when producing layers for
chemical sensors, the film-deposition parameters must be strictly controlled, in order to
obtain films of a certain phase composition and ordering.

3. Active Layers of the Devices with Electrical Sensor Response

To date, metal phthalocyanines with various substituents are widely investigated and
utilized as active layers of chemical sensors with electrical response for the detection of
different gases due to their semiconductor behavior and ability to change their resistance
upon interaction with various gases [59–61]. Among them, fluorinated phthalocyanines are
known to use, as active layers of chemical sensors toward ammonia [21,62], chlorine [63,64],
nitrogen dioxide [52,65] and hydrogen [50,66]. The sensor devices are mostly based on
chemiresistors [21,67,68] and organic field effect transistors (OFET) [69]. For the prepara-
tion of the standard chemiresistive sensors, films are deposited onto the substrates with
interdigitated electrodes. In the case of OFET, there is a broad range of various configu-
ration designs, as summarized in a recent review article on gas sensors based on OFET
structures (Figure 2) [70].

It is known that the introduction of electron-withdrawing substituents, such as flu-
orine, can change the charge transport properties of metal phthalocyanines from p-type
to n-type. For instance, MPc (M = Cu, Co, Zn) are typical p-type materials, while the cor-
responding MPcF16 derivatives demonstrate n-type semiconductor behavior [71]. MPcF4
(M = Cu, Co, Zn) are known to exhibit both p-type and n-type behavior, depending on
central metals and environment [72]. For this reason, fluorinated metal phthalocyanines
are widely used as an active layer in both unipolar and ambipolar transistors combining
bilayer structures or blends of n- and p-type MPcs [9,20,73].

Bouvet et al. [74] suggested one more principle of transduction based on molecular
semiconductor-doped insulator (MSDI) heterojunction (Figure 3).
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In short, the principle of operation is in the tuning effect exerted by the doped in-
sulator layer at the level of the heterojunction in the electronic properties of the LuPc2
semiconductor, which demonstrates inverted sensor response to accepting and donating
analyte molecules. This idea was described in more detail in their recent review [75]. In
such molecular semiconductor-doped insulator heterojunction structures the top layer (e.g.,
LuPc2) has a very high carrier concentration, while such relatively poor semiconductors
as fluorinated metal phthalocyanines are used as sublayers. Electrons and holes at def-
inite conditions may be injected in the sublayer, which justify their name as molecular
semiconductor-doped insulators [75].

The main characteristics of sensors with electrical sensor response with fluorinated
metal phthalocyanines as active layers are summarized in Table 2.
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Table 2. Main characteristics of sensors on the basis of fluorinated metal phthalocyanines.

Active Layer Sensor Type Analyte Investigated
Range, Ppm LOD, Ppm Recovery Time, S Ref.

ZnPcF16 Chemiresistive NH3 in N2
H2 in N2

0–1000
0–2000 n/a Several hours [76]

ZnPcF16 Chemiresistive
NH3, N(CH3)3,

NH2CH3,
N(C2H5)3

0.72 (NH3) n/a n/a [77]

CoPcF4 Chemiresistive NH3 10–50 2.5 30 (20 ppm) [62]

PdPcF16 Chemiresistive NH3
H2

10–50
1000–5000

n/a
500

55 (10 ppm)
60 (1000 ppm) [68]

MPcFx (M = Cu, Co, Zn,
x = 4, 16) Chemiresistive NH3 0.1–50 0.1 (for ZnPcF4) 110 (10 ppm)

(for ZnPcF4) [21]

PbPcF4
PbPcF16

Chemiresistive NH3 1–5 n/a 90–220 [49]

VOPcF4 Chemiresistive NH3
H2

10–50
10–500 n/a 230 (30 ppm)

50 (300 ppm) [50]

CuPcF16/pNIDPP
CuPcF16/pNIDMP MSDI NH3 1–50 ~1

0.228 n/a [78]

CuPcF16/LuPc2 MSDI NH3 30–90 n/a n/a [79]

CuPcF16/LuPc2 on bare ITO
CuPcF16/LuPc2 on

DMBz/ITO
MSDI NH3 1–90 0.28 (RH 50%)

0.14 (RH 50%) n/a [80]

CuPcFn/LuPc2, n = 8, 16) MSDI O3 in air
NH3 in Ar

0.09 (O3)
35 (NH3) n/a n/a [74]

CuPcF16 OFET DMMP
Methanol

5–60
200–1650

n/a >1 h [69]

TiOPc/CuPcF16 OTFT NO2 <5 0.25 n/a [81]

CuPcF16/CuPc OTFT NO2 20 20 n/a [65]

CoPc[β-O(4-CF3-Ph)4]
H2Pc[β-O(4-CF3-Ph)4]
CoPc[α-O(4-CF3-Ph)4]
H2Pc[α-O(4-CF3-Ph)4]

(Compounds 6, Table 1)

Chemiresistive
NO2,
NH3,
H2S

Dependent on
the analyte

0.003
0.03
0.198

0.25 (to NO2)

n/a [52]

H2Pc(OCH2CF3)4
(Compound 8, Table 1) Chemiresistive NO2 0.1–0.5 n/a 420 (500 ppb) [55]

H2[Pc(OCH2C3F7)8]
Zn[Pc(OCH2C3F7)8]

(Compounds 10, Table 1)
Chemiresistive NO2

50–900
100–750

50
100 n/a [58]

H2[Pc(OCH2(CF2)6CF3)4]
(Compound 9, Table 1) Chemiresistive NO2 0.1–1 n/a 180 (0.5 ppm) [57]

CoPcR8
(Compound 12, Table 1) Chemiresistive NH3 0.3–50 0.3 40 (5 ppm) [51]

Gd2[Pc(OPhF)8]3
Tb2[Pc(OPhF)8]3

(Compounds 11, Table 1)
Chemiresistive NH3 1–20 -

0.151
126

103 (20 ppm) [82]

CuPcF16/rGO Chemiresistive Cl2 0.06–3 1.41·10−3 551 [83]

CoPcF16/SWCNT Chemiresistive Cl2 0.04–2 0.05·10−3 150 (500 ppb) [84]

CuPcF16/SWCNT
CuPcF16/MWCNT Chemiresistive Cl2 0.1–2 0.27·10−3

0.85·10−3 n/a [63]

MPcF16/SWCNT (M = Co,
Zn, Cu) Chemiresistive Cl2 0.04–2 0.04·10−3 n/a [85]

ZnPcF16/MWCNT Chemiresistive Cl2 0.01–2 0.06·10−3 n/a [64]

Compound 7
(Table 1)/SWCNT Chemiresistive NH3 1–50 0.78 170 (10 ppm) [86]
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3.1. Sensors Based on MPcFx Films Obtained by PVD

The literature analysis shows that the films of MPcFx (x = 4, 8, 16) with M = Cu,
Co, Pd, Zn, VO are most widely used as active layers of sensors for ammonia detection.
It was shown that fluorine substituents decrease the electron density of the aromatic
ring and increase the oxidation potential of the MPc molecule [87]. As a result, fluoro-
substituted phthalocyanines exhibit a higher sensor response to reducing gases [88] such
as ammonia. Schollhorn et al. [76] were the first to show that hexadecafluoro-substituted
zinc phthalocyanine ZnPcF16 films prepared by vacuum evaporation exhibited a higher
sensitivity to gaseous ammonia and hydrogen than their unsubstituted analogues. Their
conductivity was measured during exposure to the reducing gases NH3 and H2 diluted in
N2. Later, Xingfa Ma and coworkers [77] compared the sensitivity of ZnPc and ZnPcF16
films to ammonia, trimethylamine and methylamine and found that fluorination led
to a significant improvement in sensitivity. ZnPcF16 films were shown to have good
selectivity and stability and to recover completely after purging with high-purity N2 at
room temperature.

More systematic studies of the sensor response of MPcFx (M = Cu, Co, Zn, Pd, VO,
Pb; x = 4, 16) films toward gaseous NH3 were carried out by our research group using a
chemiresistive method. The sensor response of MPcFx was compared with that of unsubsti-
tuted MPc films to reveal the effects of F-substituents and central metals on the sensing
performance (Table 2) [21,49,50,62,68]. The effect of F-substituents on the sensor response to
NH3 was studied using films of zinc, copper and cobalt phthalocyanine derivatives MPcFx
(x = 0, 4, 16) as examples [21] (Figure 4). It is important to mention that the introduction
of gaseous NH3 to the gas chamber leads to an increase in the resistance of MPcF4 films
(Figure 4a). This behavior was typical for p-type organic semiconductors and was also
observed for the films of unsubstituted metal phthalocyanines [89]. In contrast to MPc and
MPcF4, MPcF16 films demonstrate a decrease in their resistance upon interaction with elec-
tron donor NH3 molecules (Figure 4b). It is known that MPcF16 films demonstrate n-type
semiconducting behavior due to the effect of electron-withdrawing F-substituents [90].
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According to the mechanism of semiconductor sensors described in the literature [91,92],
the formation of charge-transfer complexes by coordination of O2 to MPc occurs at the
air/MPc interface and at grain boundaries, which leads to the formation of oxidized
MPc+ and O2− species [93,94]. When a p-type semiconductor gas sensor is exposed to the
reducing gases (e.g., NH3), the electrons injected into the material through the oxidation
reaction between the reducing gas and the O2− species on the semiconductor surface
decrease the concentration of holes in the layer, which in turn increases the resistance
of MPc film [95]. A schematic diagram of the sensing mechanisms of MPc sensors is
shown in Figure 3. When an n-type semiconductor is exposed to a reducing gas, ionized
oxygen anions are used to oxidize the reducing gas, and the released electrons inject
into the semiconducting core, which decreases the sensor resistance proportionally to
the concentration of reducing gas-analyte [92]. In the case of oxidizing gases (e.g., NO2,
Cl2) a surface adsorption mechanism is also used. In contrast to reducing gases, the
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doping of n-type semiconductor by NO2 leads to the capture of carriers, thereby reducing
their current [55].

Although observations of changes in the measured current of MPc sensing layers
exposed to NH3 and other analytes are explained by electron transfer, the interaction sites
in the phthalocyanine macrocycle or metal center are still a matter of discussion. According
to the data of most works, the most energetically favorable cite of NH3 and NO2 molecule
binding is the central metal of MPc molecules [96–99]. These conclusions were based only
on the quantum chemical calculations. At the same time, the experimental investigations
of the interaction sites are sporadic [10,100]. For example, Saini et al. [100] used Raman
spectroscopy and X-ray photoelectron spectroscopy (XPS) for investigation of interaction of
CuPcR4 (R=-OC4H7) with chlorine. They found a shift of the bands at 253 and 1529 cm−1,
which were attributed to the Cu-Nα stretching vibration and the vibration associated with
the cavity change in the phthalocyanine macrocycle, respectively, after interaction with
Cl2. That was in good correlation with the shift of Cu 2p peaks in XPS spectrum of the
exposed films. Thus, the studies revealed that central metal ions of CuPcR4 molecules
were the predominant sites of Cl2 absorption. Chia et al. [10] used in situ X-ray absorption
spectroscopy (XAS) to investigate the interaction of CuPc with NH3 and NO2 molecules.
In contrast to the previous case, the first derivative of XANES suggested low or a lack of
axial position coordination on the Cu metal center. On the other hand, the interaction on
the macrocycle was supported by the EXAFS. From the EXAFS of CuPc with NO2, the
interaction was suggested to be at the pyrrole moiety of the Pc macrocycle, while in the
case of NH3 on the benzo moiety or bridging atom. The experimental investigations of the
interaction sites in the case of fluorinated MPcs were not carried out.

It was also shown that the sensor response decreased in the order of MPcF4 > MPcF16 > MPc
(Figure 4). MPcF4 films showed the highest sensor response to ammonia among the
investigated phthalocyanines; their response was 3–10 times higher than that of MPcF16
films, and 30–70 times higher than that of MPc films. All films exhibited a reversible sensor
response at room temperature, with the response time of 10–25 s and recovery time no
more than 2 min [21].

The sensor response toward ammonia changed also in the same order for lead phthalo-
cyanine derivatives PbPcF4 > PbPcF16 > PbPc, and the sensors demonstrated completely
reversible sensor response at room temperature [49]. The effect of central metals on the
sensor response of MPcF4 and MPcF16 to NH3 was also investigated by our group. Figure 5
summarizes the data on the dependence of the sensor response of MPcF4 and MPcF16
(M = Cu, Co, Zn, Pb, VO) on NH3 concentration.
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on ammonia concentration.

Both in the case of tetrafluorinated and perfluorinated derivatives, the sensor response
decreased in the order Co > VO~Zn > Pb > Cu. The data for phthalocyanines of Co, Zn and
Cu were in reasonably good correlation with the results of quantum chemical calculations
of the binding energy between NH3 and phthalocyanine molecules as well as changes in
the values of effective charge on NH3 molecule.
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More detailed study of the performance of ZnPcF4-based sensor were performed by
Klyamer et al. [21]. ZnPcF4 films were shown to exhibit the detection limit of ammonia
0.1 ppm, and can be used for its selective detection in the presence of some reducing gases
and volatile organic compounds, namely acetone, dichloromethane, carbon dioxide and
ethanol (Figure 6). Moreover, the ZnPcF4 films can be used for the detection of NH3 in the
gas mixture simulating exhaled air (N2 76%, O2 16%, H2O 5%, and CO2 3%) and at relative
air humidity up to 70%.
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Figure 6. (a) Response of a ZnPcF4 film to ammonia (10 ppm), acetone (1000 ppm), dichloromethane
(104 ppm), carbon dioxide (104 ppm), ethanol (104 ppm). (b) Sensor response of a ZnPcF4 layer toward
ammonia in the concentration range from 1 to 4 ppm, in air (1) and in a mixture of gases with the
composition close to exhaled air of healthy people (N2, 76%; O2, 16%; H2O, 5%; and CO2, 3%) (2) [21].

Apart from the sensors to ammonia, MPcFx films are utilized as active layers of
chemiresistive sensors for the detection of hydrogen. For example, Parkhomenko et al. [68]
compared the sensor response of PdPcF16 films to hydrogen (1000−5000 ppm) with that of
PdPc films. It was found that the sensitivity of PdPc film to hydrogen was slightly higher
than that of the PdPcF16 film. VOPcF4 were shown to be also sensitive to hydrogen [50],
but, similarly to palladium derivatives, the sensor response of VOPcF4 film was slightly
less than in the case of unsubstituted vanadyl phthalocyanines films.

Fluorinated MPc-based organic filed effect transistors (OFET) or organic thin film
transistors (OTFT) with p–n heterojunction were also investigated for detecting various
gases and volatile organic compounds (Table 2). For example, Yang et al. [69] prepared
OFET structures with CuPcF16 as an n-type semiconductor and SiO2 as a dielectric, and
tested them as active layers of sensors for the detection of dimethyl methylphosphonate
(DMMP) and methanol in comparison with similar OFETs on the basis of p-type CuPc layers.
Other analytes, namely diisopropyl methylphosphonate (DIMP), H2O and nitrobenzene,
were also determined to check the sensor selectivity. It was shown that the responses
were of opposite sign for n-type and p-type OFETs for all five analytes. The authors
observed a difference in sensitivity to DMMP (68 ppm) and MeOH (1520 ppm): at the same
concentration, the n-channel OFET (CuPcF16) had the larger response to DMMP than the
p-channel analogue (CuPc), while the p-channel OFET had the larger response to MeOH
than the n-channel transistor (Figure 7).

Modulation of interfacial charge alignments by molecular engineering in organic
heterojunction devices is a promising strategy to improve their conductivity and sen-
sor sensitivity. Sensing properties of the heterojunction devices based on fluorinated
metal phthalocyanines are widely investigated. Wang [81] and Zhang [65], with their co-
authors, reported the results of investigations of an OTFT sensor with p–n heterojunction in
MPcF16/MPc thin films. A sensor device based on a ultra-thin TiOPc film as a bottom layer
and a CuPcF16 film as a top layer demonstrated an increased relative sensor response to
nitrogen dioxide below 5 ppm with a detection limit of up to 250 ppb at room temperature
(Figure 8) [81].
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Figure 7. (a) Chemical responses of n-channel CuPcF16 (a) and p-channel CuPc (b) ChemFETs to
DMMP in air and N2 at 25 ◦C. (c) The sensitivities of n- and p-channel ChemFETs to nerve agent
simulants (DMMP and DIMP) and other analytes: MeOH, H2O, and NB at 25 ◦C. The sensitivity is in
logarithmic scale. Reprinted from [69] with permission from AIP Publishing.
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Similar heterojunction organic thin film transistors based n-type CuPcF16 and p-type
CuPc were also utilized to detect NO2 [65]. The authors investigated the effect of CuPc film
thickness in the range from 5 to 20 nm on the devices’ performance. It was found that the
sensor with a CuPc film with a thickness of 15 nm had optimal sensing characteristics.

Bouvet and co-authors in the series of works [74,79,80] demonstrated that conducto-
metric gas sensing devices based on organic heterojunction between poor conducting and
high conducting organic semiconductors had high sensitivity and selectivity toward redox
gases (Table 2). The sensing devices benefited from the organic heterojunction effects, in
which opposite charges (e− and h+) were accumulated at the interface of a bilayer film
because of the work function difference between the semiconducting layers, enhancing the
charge carriers mobility along the interface. For this purpose, they used a combination
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of a CuPcFx (x = 8 or 16) film as a poor conducting layer and LuPc2 as a high conducting
layer in a bilayer heterojunction configuration [74,79,80] (Figure 9). It was found that the
n-MSDI on the basis of LuPc2 and CuPcF16 thin films exhibited a response to NH3 opposite
to that of a LuPc2 resistor, and the relative response was ca. seven times higher [74]. Apart
from this, it was less sensitive to the presence of humidity in air. The same group of
authors in their other work demonstrated that the modification of ITO substrate via elec-
trografting of 1,4-dimethoxybenzene led to an increase in the n-MSDI sensitivity from 1.5
to 3% ppm−1 in the range of 1–9 ppm, compared to n-MSDI without surface modification
(Table 2) [80]. This effect appeared to be due to the change in interfacial energy barrier
resulted from the modification of the electrode work function, because of the formation of
interface dipoles [101].
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The sensor performance of MSDI heterostructures based on LuPc2 and CuPcF16
towards 35 ppm of NH3 in an Ar atmosphere were also compared with that of CuPcFx
(x = 0, 8, 16) films [74].

It was found that LuPc2/CuPcF8 heterostructures had lower sensitivity to NH3 than
LuPc2/CuPc ones, while LuPc2/CuPcF16 heterostructures exhibited a completely reversed
response, and their sensitivity to ammonia drastically increased. Interestingly, CuPc/LuPc2
MSDIs showed an increase in current when exposed to ozone (90 ppb) and a decrease in
current when exposed to NH3 (35 ppm), indicating the p-type nature of the device. In
contrast, the CuPcF16/LuPc2 MSDIs revealed the opposite trend manifested in the n-type
nature of the device [74,102].

In their other work [78], Bouvet et al. fabricated organic heterojunction devices by se-
quential deposition of CuPcF16 on a glass substrate lithographically patterned with indium
tin oxide (ITO) interdigitated electrodes (IDEs) and two different types of porphyrin tapes
(pNiDPP and pNiDMP originated from Ni(II) 5,15-(diphenyl)porphyrin (NiDPP) and Ni(II)
5,15-(dimesityl)porphyrin (NiDMP) monomers, respectively). The investigated devices
revealed high response toward ammonia, fast sorption kinetics, stable baseline, and low
interference from relative humidity fluctuations. The device based on a CuPcF16/pNIDMP
bilayer structure exhibited sensitivity about 0.4% ppm−1 and LOD up to 228 ppb.

A summary of the data on the study of sensors based on MPcFx films obtained by the
PVD method shows that these films are mainly used for the detection of ammonia. It was
shown that they exhibited a quite low detection limit, reaching 0.1 ppm, and quick response
and recovery times. Apart from this, the detection of ammonia can be performed in the
presence of carbon dioxide and volatile organic vapors as well as in a humid atmosphere.
This makes MPcFx films promising candidates for the determination of low concentrations
(below 2 ppm) of ammonia as a biomarker of renal diseases [103,104] in exhaled air. The
analysis of the literature has shown that, currently, the work on the practical application
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of phthalocyanine films for the determination of biomarker gases is in its infancy, so the
development of research in this direction is of great interest for creating a new direction of
medical diagnostics.

On the other hand, the bottleneck for using MPcFx sensors to detect ammonia or other
analytes in complex gas mixtures, including amines and oxidizing gases such as Cl2, SOx
and NOx, is their low selectivity. To overcome this obstacle, it is common practice to create
sensor arrays that include sensor layers, which have different sensitivity to the analyzed
components of the gas mixture. Currently, no systematic studies of phthalocyanine-based
sensor arrays have been conducted. The inclusion of fluorinated metal phthalocyanines in
sensor arrays, together with unsubstituted phthalocyanines and/or phthalocyanines with
other types of substituents, could open up broad prospects for wider use of these materials.

3.2. Solution Processed Films

Films of metal phthalocyanine bearing fluoroalkyl or fluoroaryl substituents, which
are deposited by drop cast, spin coating and jet spray techniques, are also widely used
as chemiresistive sensors for the detection of toxic gases such as H2S, NO2 or NH3. For
example, films of phthalocyanines with various fluoroalkyloxy substituents were studied
in a series of works [52,57,58] as active layers of chemiresistive sensors for NO2 detection.
Dong et al. [55] prepared conductive films of a metal-free H2Pc(OCH2CF3)4 derivative
(Compound 8, Table 1) by a solution-based quasi-Langmuir-Shäfer (QLS) method, which
demonstrated stable and reproducible responses to electron-accepting NO2 gas in the
range of 100–500 ppb at room temperature. The authors suggested that the interaction
was based on weak intermolecular contacts rather than redox chemistry and the sensor
response could primarily be governed by two interior NH protons of H2Pc. They also
found that no obvious change in current was observed in the reaction of H2Pc(OCH2CF3)4
with H2S and NH3.

Wang et al. [58] fabricated self-assembled nanostructures on the basis of H2[Pc(OCH2C3F7)8]
and Zn[Pc(OCH2C3F7)8] (Compounds 10, Table 1) by the phase transfer method. Both nanos-
tructures demonstrated a decrease in conductivity upon exposure to electron-accepting
NO2 gas (50–900 ppb) and its increase during recovery (Figure 10, left figure), which was
consistent with the sensing behavior reported previously for n-type semiconductors. The de-
tection limit was 50 ppb and 100 ppb for the helical microribbons of H2[Pc(OCH2C3F7)8] and
nanowires of Zn[Pc(OCH2C3F7)8], respectively, depending mainly, according to the authors’
opinion, on their conductivity and ordered morphology of the resulting microstructures.

Later, Sun et al. [57] obtained similar results for thin films of fluoroalkoxy-substituted
phthalocyanines with longer perfluoroalkyl chains. They investigated the effect of the
method of film formation on their morphology and sensor properties and found that films
consisting of more evenly distributed crystallites were formed when deposited in a vacuum
compared to the drop-casted films. Vacuum deposition led to an increase in the conductivity
of the films and, as a result, to the sensor response to NO2. Both films demonstrated a
linear dependence of the sensor response on the NO2 concentration from 100 ppb to 1 ppm
with a noticeable increase in sensitivity from 7.54% ppm−1 for the drop-casted film to
12.05% ppm−1 for the film deposited in vacuum (Figure 10, right figure).

Phthalocyanines with fluoroaryl substituents were studied as sensing layer for the
detection of ammonia and NO2. Kaya et al. [51] prepared films of a CoPc derivative bearing
5-(trifluoromethyl)-2-mercaptopyridine substituents (Compound 12, Table 1) and tested
them as sensing layers against low concentrations of NH3 (0.3–50 ppm) by measuring
changes in the films’ conductivity at different humidities. The first oxidation potential of
the prepared CoPc was higher and the reduction potential was lower compared to similar
derivatives without non-fluorinated substituents, which made fluorinated phthalocyanines
more sensitive to the reducing analytes. The prepared sensor had a detection limit of
NH3 0.3 ppm, and allowed ammonia to be detected in the presence of VOCs and low
concentrations of CO2, but the presence of high CO2 concentrations led to the distortion of
the sensor response.
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Figure 10. (left) Time-dependent current plots for the microribbons of H2[Pc(OCH2C3F7)8] (A) and the nanowires of
Zn[Pc(OCH2C3F7)8] exposed to NO2 at varied concentration (B). Reprinted from [58] with permission from Elsevier.
(right) I-V curves measured on the drop-casted (DC) film and the film deposited in vacuum (VD) (A); the time-dependent
current plot of sensor as a function of the NO2 concentration in N2 atmosphere for the DC film (B), and the VD film (C); and
the sensor response varies linearly with NO2 concentration of the DC film and the VD film (D). Reprinted from [57] with
permission from Royal Society of Chemistry.

Duan et al. [52] tested films of a series of tetrasubstituted cobalt and metal-free phthalo-
cyanine derivatives with 4-trifluoromethylphenoxy groups in peripheral (MPc[β-O(4-CF3-Ph)4])
and non-peripheral (MPc[α-O(4-CF3-Ph)4]) positions of phthalocyanine ring (Compounds
6, Table 1) as sensors towards NO2, NH3 and H2S. They showed that the LOD of NO2
increased in the order of CoPc[β-O(4-CF3-Ph])4 (3 ppb) < H2Pc[β-O(4-CF3-Ph)]4 (30 ppb)
< CoPc[α-O(4-CF3-Ph)]4 (198 ppb) < H2Pc[α-O(4-CF3-Ph)]4 (250 ppb). The maximal sen-
sitivity of a CoPc[β-O(4-CF3-Ph])4 film to NO2 was explained by the governed role of
Co–NO2 coordination strength and the best conductivity of the films of this phthalocyanine
derivative. CoPc[β-O(4-CF3-Ph])4 films were found to exhibit the highest sensitivity and
the lowest sensor response to NH3 and H2S. It was interesting that, upon interaction with
oxidizing NO2, all four sensors exhibited a decrease in current, behaving as n-type semicon-
ductors. However, a positive current response was observed for CoPc[β/α-O(4-CF3-Ph)4]
towards electron-donating NH3, resulting from n-type charge carriers, while a negative
current response was observed for H2Pc[β/α-O(4-CF3-Ph)4] as a p-type material. Accord-
ing to the authors, that behavior was attributed to the lower levels of LUMO energies in
cobalt phthalocyanines compared to in the metal-free ones.

The analysis of the sensor properties of metal phthalocyanines with fluoroalkyl and
fluoroaryl substituents shows that their sensor performance is determined not only by the
type of substituents, but also by their position in phthalocyanine rings.

Apart from monophthalocyanines, bis- and tris(phthalocyaninato) rare earth com-
plexes are also used for application in chemiresistive sensors, however the works on
investigation of sensor properties of fluorinated bis- and tris-phthalocyanines are sporadic.
Zhao et al. [82] studied the solution-based films of two ambipolar (p-fluoro)phenoxy substi-
tuted tris(phthalocyaninato) rare earth semiconductors with gadolinium Gd2[Pc(OPhF)8]3
and terbium Tb2[Pc(OPhF)8]3 (Compounds 11, Table 1). Both films prepared by a quasi-
Langmuir-Shäfer (QLS) method revealed ambipolar semiconductor nature with a p-type
response toward ammonia and n-type response toward nitrogen dioxide. The ambipolar
behavior was associated not only with suitable HOMO and LUMO levels, but also with
different electronic induction effects of the investigated gases. Apart from this, the films
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of Tb2[Pc(OPhF)8]3 having J-type (edge-to-edge) packing mode and, as a consequence,
the larger specific surface area, displayed noticeably higher sensor response to both NH3
and NO2, compared to the films of Gd2[Pc(OPhF)8]3 with a stronger intermolecular π-π
stacking in the H-type (face-to-face) packing mode. Tb2[Pc(OPhF)8]3 films exhibited stable
and reversible response to NH3 in the concentration range of 1–25 ppm with the LOD as
low as 0.15 ppm.

Thus, the literature analysis shows that films of metal phthalocyanines bearing fluo-
roalkyl or fluoroaryl substituents, which are deposited by solution methods, are much less
studied compared to MPcFx ones. At the same time, the chemical versatility of substituted
phthalocyanines allows the introduction of various substituents, which can allow for a
wide variation in the sensitivity of compounds to analytes of different nature. Moreover,
the better solubility of MPcs with fluoroalkyl or fluoroaryl substitutes compared to MPcFx
derivatives provides the ability to produce inks and to use inkjet printing, which offers sev-
eral advantages over other methods for deposition of thin films, e.g., patterning capability,
reduction in waste, high speed, low cost, applicability to large areas and flexible substrates.

3.3. Hybrid Materials with Carbon Nanotubes

It is known that the synergistic combination of the properties of phthalocyanines
and carbon nanomaterials leads to the improvement of various properties of hybrid ma-
terials [105]. Along with other phthalocyanines, the examples of application of their
fluorinated derivatives in gas sensors are also described in the literature [106]. Sharma and
co-authors [63,64,83–85] prepared hybrid materials via non-covalent functionalization of
acid-treated multi-walled (MWCNTs-COOH) and single-walled (SWCNTs-COOH) with
MPcF16 derivatives (Figure 11, left image).
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The sensing layers of ZnPcF16/MWCNTs-COOH and CuPcF16/SWCNTs-COOH hy-
brids were shown to have high sensitivity to Cl2 with a detection limit of 0.06 ppb and 
0.27 ppb, respectively, and excellent recovery and reversibility (Table 2) [63,64,85]. The 
response was found to be 21.28% for 2 ppm of Cl2 with a response time of 14 s (Figure 11, 
right) for the hybrid material with ZnPcF16. 

To investigate how central metal affects the interactions between the phthalocya-
nine and single-walled carbon nanotubes and gas sensing properties of the prepared hy-

Figure 11. (left) TEM images of MWCNTs-COOH (a) and ZnPcF16/MWCNTs-COOH (b) hybrids. (right) (a) Response
histogram of a ZnPcF16/MWCNTs-COOH sensor for 1 ppm of Cl2, NO2, NO, C2H5OH, H2S, NH3 and CO at room
temperature; (b) Sensor response as a function of temperature for 1 ppm of Cl2 concentration; (c) Response curves of the
sensor for different doses of Cl2 at 150 ◦C; (d) Variation in the response of sensor with Cl2 concentration. Reprinted from [64]
with permission from Elsevier.

The sensing layers of ZnPcF16/MWCNTs-COOH and CuPcF16/SWCNTs-COOH hy-
brids were shown to have high sensitivity to Cl2 with a detection limit of 0.06 ppb and
0.27 ppb, respectively, and excellent recovery and reversibility (Table 2) [63,64,85]. The re-
sponse was found to be 21.28% for 2 ppm of Cl2 with a response time of 14 s (Figure 11, right)
for the hybrid material with ZnPcF16.

To investigate how central metal affects the interactions between the phthalocyanine
and single-walled carbon nanotubes and gas sensing properties of the prepared hybrids,
the same group of authors investigated MPcF16 with M = Co, Zn, and Cu [85]. The results
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demonstrated that the response decreased in the order of Co > Zn > Cu, indicating that
the central metal ions play an important role in the sensitivity to Cl2. CoPcF16/SWCNTs–
COOH sensor exhibited the highest sensitivity (82% for 2 ppm with LOD of 0.04 ppb),
excellent reproducibility and selectivity towards chlorine (Figure 12).
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In our recent paper [86], the sensor response of the layers of hybrid materials of
single-walled carbon nanotubes noncovalently functionalized with a fluoroalkyl substi-
tuted zinc(II) phthalocyanine (Compound 7, Table 1) was compared with that of the similar
hybrid modified with the nonfluorinated analogue to reveal the role of fluorinated sub-
stituents. It was found that the introduction of long fluoroalkyl substituents led to a
decrease in the functionalization degree; the amount of ZnPc-CF molecules adsorbed on
SWCNT walls was 1.5 times less than in the case of the hybrid modified with the nonfluo-
rinated phthalocyanine (ZnPc-CH). As a result, the sensitivity of ZnPc-CF-based sensor
to ammonia was two times less than in the case of SWCNT/ZnPc-CH, while its sensor
response was more stable in a humid atmosphere (RH 70%) (Figure 13).
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(10 ppm) measured at RH 5% and 70%. Reprinted from [86] with permission from Springer Nature.

These few examples show that hybrids of fluorinated phthalocyanines with carbon
nanomaterials (e.g., SWCNT, MWCNT and graphene derivatives) are also promising
materials as active layers of chemiresistive layers. The use of hybrid materials leads to an
increase in the conductivity of the sensitive layers, which avoids the use of expensive highly
sensitive electrometers, but the selectivity of hybrid-based sensors becomes less than in the
case of pure phthalocyanine films. At the moment, the limited number of studied hybrid
materials with fluorinated phthalocyanines does not allow us to make any conclusions
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about any correlations between their structure and sensor properties. Expanding the range
of fluorinated substituents in the phthalocyanine ring and obtaining hybrids by covalent
functionalization of nanotubes with fluorinated phthalocyanines may be a further way to
develop this scientific direction and improve the performance of sensor devices.

4. Other Types of Chemical Sensors

Apart from the sensors with electrical sensor response, the films of fluorinated metal
phthalocyanines are utilized in other types of chemical sensors. Among them, the most
popular are optical sensors and quartz crystal microbalance (QCM) ones (Table 3).

Table 3. Main characteristics of optical and QCM sensors on the basis of fluorinated metal phthalocyanines.

Active Layer Sensor Type Analyte Investigated
Range, Ppm LOD, Ppm Recovery Time, S Ref.

MPcF16
(M = Zn, Co, Cu, Ni) SPR NH3 100, 200 ppm n/a 15–30 [96]

CoPcF16 TIRE NH3 50–1000 n/a n/a [107]

ZnPc(OCH2CF2CHF2)8
(Compound 13, Table 1) TIRE Trimethylamine 10–300 20 n/a [56]

MPcF16, (M = Zn, Cu) QCM Toluene 500 n/a n/a [108]

TiLR4
TiLR8

(Compounds 14, Table 1)
(See Section 4.2.)

QCM

MeOH
n-Propanol
etylacetate

triethylamine
acetonitrile

DMMP
n-heptane

ethyl benzene
toluene o-xylene

C2Cl4
chlorobenzene

1000–5000
130–650
900–4500

10–50
950–4700

3–15
380–1900
70–350

240–1200
40–200

150–730
100–480

n/a n/a [54]

Compounds 15, Table 1 QCM

dichloromethane
(DCM),

chloroform, tetra-
chloroetylene,
chlorobenzene,

toluene, o-xylene,
p-xylene

0.1–300 (for DCM)

For Compound
15c (Table 1):
5 (for DCM)

0.05 (for
o-xylene)

90 [109]

Compounds described in
Section 4.2.

QCM
SAW DMMP 1.5–12 ppm

0.6 (for 1b)
0.8 (for 2c, see
Section 4.2.)

40 (for 1b) [110]

Compounds 16, Table 1 QCM Humidity 10–90% RH n/a ~60 [111]

Compounds 15, Table 1 QCM

methanol
propanol

acetonitrile
ethyl acetate

toluene
ethylbenzene

o-xylene
chlorobenzene

chloroform
trichloroethylene

n-heptane
trimethylamine

1000–5000
131–653
944–4719
902–4509
243–1213
69–345
40–198
95–477

2145–10,726
788–3939
385–1927
721–3606

144
34
58
36
13
3
2
3

10,030
60
37

n/a [33]

4.1. Optical Sensors

Surface plasmon resonance (SPR) [96] and spectroscopic ellipsometry in total inter-
nal reflection configuration (TIRE) [56] were known to be used as optical techniques to
study the sensor response of thin layers of fluorinated phthalocyanine derivatives. In our
previous work [96], an SPR technique in the Kretschmann configuration was utilized for
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the investigation of the sensor response of MPcF16 (M = Zn, Co, Cu, Ni) films deposited
on gold-coated glass substrates to ammonia at 100 and 200 ppm. This is a well-known
optical method for real-time monitoring of various molecular interactions (binding), their
mechanisms and kinetics. The sensor response is based on the changes in the refractive
index of the sensing layer, caused by the binding between an analyte in gas or solution,
due to the generation of the surface plasmons at a metal/dielectric interface in a specific
condition. The typical SPR curves, which are the dependence of reflected light intensity on
the internal angle of incidence, are shown in Figure 14 (left graph) for the pure gold-coated
substrate (a), the thin film of as-deposited CuPcF16 (b), and the film exposed to ammonia
(c). The kinetic curves of the sensor response of the MPcF16 thin films to NH3 (100 and
200 ppm) are presented in Figure 14 (right graph).
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Figure 14. (left) Surface plasmon resonance curves for (a) pure gold-coated substrate; (b) gold/as-
deposited CuPcF16 film; and (c) gold/CuPcF16 exposed by NH3 gas (200 ppm). (right) SPR response
curves of MPcF16 thin films toward gaseous NH3 (100 ppm and 200 ppm, respectively): (a) NiPcF16,
black; (b) CuPcF16, red; (c) CoPcF16, blue; (d) ZnPcF16, green. The SPR response curves were recorded
using the wavelength of 633 nm (He–Ne laser) at a fixed angle of incidence Θ = 44.2. Reprinted
from [96] with permission from Elsevier.

It was found that the sensor response decreased in the order ZnPcF16 > CoPcF16 ≥
CuPcF16 > NiPcF16. To obtain more insight into the interplay between microscopic structure
and sensor response of the films, the authors carried out the DFT calculations of the binding
energies of phthalocyanines with analyte molecules, and measured a shift of the selected
IR bands in MPcF16 spectra during the exposure to gaseous ammonia. It was shown that
the energies of MPcF16· ·NH3 complex formation, red shifts of wavenumbers of some IR
bonds, and refractive index changes appearing upon exposure ammonia correlated well
with each other.

A total internal reflection ellipsometry method (TIRE) was also employed as an
optical technique to examine CoPcF16 as an optical active layer for the detection of am-
monia [107] and zinc phthalocyanine with fluorinated n-propanol in peripheral positions
(Compound 13, Table 1) as an active layers for the detection of trimethylamine [56]. TIRE
combines the spectroscopic ellipsometry platform with the Kretschmann’s SPR geome-
try [112]. The experimental setup and principles of this method are described in more detail
in earlier publications [113,114]. The spectrum of Ψ(λ), which exhibits the amplitude ratio
of Ap/As between p- and s-components of polarized light, is similar to the conventional
SPR curve, while the spectrum of ∆(λ) is associated with the phase shift between p- and
s-components. According to Arwin’s modelling [112], the position of the sharp drop in the
∆(λ) spectrum is about 10 times more sensitive to adsorption of analyte molecules than the
Ψ(λ) spectrum.
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TIRE spectra of the spun films of ZnPc(OCH2CF2CHF2)8 (Compound 13, Table 1),
and its nonfluorinated analogue ZnPc(OCH2CH2CH3)8, before and after exposure to
trimethylamine are shown in Figure 15 as an example [56]. The change in the ∆(λ) spectrum
is much more pronounced than in the case of the Ψ(λ) spectrum. The change in the optical
parameters (Table 4) of the ZnPc(OCH2CF2CHF2)8 film and as a consequence its optical
response was found to be higher than for the film of nonfluorinated derivative. It was
shown that, similarly to the case of chemiresistive sensors, the optical response was higher
in the case of derivatives bearing fluorinated substituents, and the limit of trimethylamine
detection was 20 ppm.
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Figure 15. (a) Ψ(λ) and ∆(λ) TIRE spectra: (a) ZnPc(OCH2CH2CH3)8 in air (curve 1); after injection of trimethylamine 200,
250 and 300 ppm (curves 2, 3 and 4, respectively); after flushing with air (curve 5); (b) the film of ZnPc(OCH2CF2CHF2)8 in
air (curve 1); after injection of trimethylamine 20, 60, 100, 250 and 300 ppm (curves 2–6, respectively); after flushing with air
(curve 7). Enlarged sections of ∆(λ) spectra are shown on the top. Reprinted from [56] with permission from Elsevier.

Table 4. Thickness (d), refractive indexes (n) and extinction coefficients (k) for ZnPc(OCH2CH2CH3)8 and
ZnPc(OCH2CF2CHF2)8 films, before and after interaction with trimethylamine [56].

ZnPc(OCH2CH2CH3)8 ZnPc(OCH2CF2CHF2)8

Initial Film After Exposure with
Trimethylamine Initial Film After Exposure with

Trimethylamine

n (λ = 633 nm) 1.33 1.33 1.32 1.34
k (λ = 633 nm) 0.15 0.15 0.19 0.21

d, nm 19.4 19.7 18.9 20.9

The authors of [105] used a TIRE method to compare the sensor response of CoPcF16
films deposited at different substrate temperatures to ammonia. They found that the films
deposited at a substrate temperature of 220 ◦C exhibited the higher response, due to their
greater roughness and more developed surface [96,107].

In comparison to chemiresistive sensors, the optical ones on the basis of fluorinated
MPcs exhibit less sensitivity to investigated analytes. One of the possibilities for improving
their sensitivity is related to their supramolecular organization on the substrate surface. For
example, the preparation of nanostructured films in the form of nanofibers and nanowires
with a developed surface area [115] would increase the sensitivity of the sensor layers.

4.2. Quartz Crystal Microbalance Sensors

One more method, in which fluorinated phthalocyanines are used as sensing mate-
rials, is quartz crystal microbalance (QCM). QCM is an analytical tool sensitive to mass
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changes on the surface. Its principle of operation is based on the change in the mass of the
active substance on the surface of the converter during gas adsorption, which leads to a
change in the resonant frequency of the crystal in accordance with the Sauerbrey’s equa-
tion [116]. QCM sensors based on phthalocyanines, including fluorinated ones, were used
for detection of various analytes. For example, Kumar and co-workers [108] compared the
sensitivity of MPcF16 (M = Cu, Zn)-coated QCMs to toluene with that of the corresponding
unsubstituted and tert-butyl-substituted derivatives. It was shown that the introduction of
fluorine atoms decreased the sensitivity of metal phthalocyanines to toluene.

Harbeck et al. [109] tested a series of metal phthalocyanines bearing fluoroalkyloxy
substituents (Compounds 15, Table 1), which exhibited a good sensor performance toward
some volatile organic compounds (VOCs), both gaseous and dissolved in water. All
sensors demonstrated reversible sensor response to VOCs at room temperature and a linear
dependence on analyte concentrations (Figure 16).
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Figure 16. Transient signal of a QCM sensor with the film of octasubstituted CuPc derivative (Com-
pound 15c, Table 1) during exposure to samples containing o-xylene in concentration between 1 and
20 ppm (a) and resulting calibration curve (b). Reprinted from [109] with permission from Elsevier.

It was shown that the sensor response increased for all materials in the order dichloro-
methane < chloroform < toluene < chlorobenzene < tetrachloroethylene < p-xylene <
o-xylene. The maximal response was observed for octasubstituted phthalocyanine (Com-
pound 15c, Table 1) with the LOD of dichloromethane of 5 ppm and the LOD of o-xylene
of 0.05 ppm.

Phthalocyanines with similar fluoroalkyloxy-substituents as well as with fluoroaryloxy-
groups were studied in QCM sensors toward another set of volatile organic compounds
(methanol, propanol, acetonitrile, ethyl acetate, toluene, o-xylene, chlorobenzene, eriethy-
lamine etc.) [33]. Octasubstituted NiPc and ZnPc with fluoroalkyloxy groups, which
increase their polarity and polarizability, demonstrated the best sensor performance and
were shown to be very sensitive to polar compounds such as ethyl acetate or acetoni-
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trile. LODs, except for methanol, were below 100 ppm, and for some aromatic VOCs,
even below 10 ppm.

Similar tetra- and octasubstituted titanium phthalocyanines with -O-CH2CF2CHF2
groups in the benzene rings and different axial substituents (Compounds 14, Table 1;
Figure 17(1)) were tested as QCM sensors toward dimethyl methylphosphonate (DMMP),
MeOH, n-propanol, etyl acetate, triethylamine, acetonitrile and their mixtures [54]. The
principal component analysis (PCA) was used to treat the data on investigation of their
sensor response (Figure 17(2)). It was shown that, along with substituents in the phthalo-
cyanine ring, the type of the axial ligand had a pronounced effect on both sensor response
and selectivity to investigated analytes. The best value of the sensor response to dimethyl
methylphosphonate and fast kinetics were found for 1f and 2f compounds (Figure 17(1)). 1f
and 1g, as well as 2e and 2f, derivatives exhibited the best sensor response to triethylamine.
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The increased affinity of fluorinated phthalocyanines for polar compounds makes
them very suitable for sensors for polar DMMP and other organophosphate compounds.
Eleven different ZnPc and NiPc with different fluorinated substitutions (Figure 18a) were
used to study the sensor response to DMMP by QCM and surface acoustic wave (SAW)
methods, in order to choose compounds with the best sensor response [110]. It was shown
that the sensor response is influenced by the central metal, but to a much greater extent
by the nature and number of substituents. For this reason, all factors must be taken into
account when choosing compounds with the best sensor properties. Among the studied
compounds, the best sensor response to DMMP, measured by a QCM technique, was
observed for the derivatives 1b and 2c (Figure 18b) with the calculated LOD of 0.6 ppm
and 0.8 ppm, respectively. Interestingly, the sensitivity of the same compounds to DMMP,
studied by a SAW technique, was different (Figure 18c), which the authors explained
by the viscoelasticity of the materials and the inhomogeneity in the sensing layers. The
compound 1b had also the best sensor response to DMMP, but the response value for 2c
was less, and was comparable with other investigated phthalocyanine derivatives. In the
case of 1b, LOD was as low as 50 ppb both in dry and humid air.



Chemosensors 2021, 9, 133 23 of 29

Chemosensors 2021, 9, x FOR PEER REVIEW 23 of 30 
 

 

The increased affinity of fluorinated phthalocyanines for polar compounds makes 
them very suitable for sensors for polar DMMP and other organophosphate compounds. 
Eleven different ZnPc and NiPc with different fluorinated substitutions (Figure 18a) were 
used to study the sensor response to DMMP by QCM and surface acoustic wave (SAW) 
methods, in order to choose compounds with the best sensor response [110]. It was 
shown that the sensor response is influenced by the central metal, but to a much greater 
extent by the nature and number of substituents. For this reason, all factors must be taken 
into account when choosing compounds with the best sensor properties. Among the 
studied compounds, the best sensor response to DMMP, measured by a QCM technique, 
was observed for the derivatives 1b and 2c (Figure 18b) with the calculated LOD of 0.6 
ppm and 0.8 ppm, respectively. Interestingly, the sensitivity of the same compounds to 
DMMP, studied by a SAW technique, was different (Figure 18c), which the authors ex-
plained by the viscoelasticity of the materials and the inhomogeneity in the sensing lay-
ers. The compound 1b had also the best sensor response to DMMP, but the response 
value for 2c was less, and was comparable with other investigated phthalocyanine de-
rivatives. In the case of 1b, LOD was as low as 50 ppb both in dry and humid air. 

 
Figure 18. Chemical structures of phthalocyanines with R and R′ substituents (a). DMMP sensitiv-
ities of phthalocyanines having fluorinated and non-fluorinated substituents as obtained with 
QCM sensors in dry air (b) and SAW sensitivities (c) for the selected compounds. Adapted from 
[110] with permission from Elsevier. 

Ahmetali et al. [111] studied relative humidity sensing performance of fluo-
ro-substituted asymmetric zinc phthalocyanines substituted with 
3-hydroxy-3-methyl-1-butynyl, ethynyl, and 4-nitrophenylethynyl (Compounds 16, Ta-
ble 1) films, using quartz crystal microbalance (QCM). Results indicated that the value of 

Figure 18. Chemical structures of phthalocyanines with R and R′ substituents (a). DMMP sensitivities
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sensors in dry air (b) and SAW sensitivities (c) for the selected compounds. Adapted from [110] with
permission from Elsevier.

Ahmetali et al. [111] studied relative humidity sensing performance of fluoro-substituted
asymmetric zinc phthalocyanines substituted with 3-hydroxy-3-methyl-1-butynyl, ethynyl,
and 4-nitrophenylethynyl (Compounds 16, Table 1) films, using quartz crystal microbalance
(QCM). Results indicated that the value of sensor response and the response and recovery
times strongly depended on the thickness of the sensor layer, and the best characteristics
were obtained at the film thickness of 450 nm. The most useful sensor for the determination
of relative humidity was found to be the film of peripherally substituted unsymmetrical
ZnPc bearing nitrophenyl group (Compound 16c, Table 1).

Thus, the use of QCM sensors based on fluorinated phthalocyanines makes it possible
to detect not only oxidizing and reducing gases, but also VOCs, which play a critical role
in food quality control [117], explosives detection [118], and medical diagnostics [119].
The creation of E-noses, or cross-reactive sensor arrays on the basis of fluorinated ph-
thalocyanines, together with MPcs bearing other types of substituents, could open up
broad prospects for wider use of these materials for the detection of important analytes
in gas mixtures.

5. Conclusions

An overview of the current state of research in the field of applications of fluoro-
substituted metal phthalocyanines as active layers of gas sensors was provided in this
review. The literature analysis shows that both phthalocyanines with fluorine atoms
directly in the aromatic rings and phthalocyanines bearing fluoroalkyl and fluoroaryl
substituents are widely used for the preparation of active layers of gas sensors. In these
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compounds, fluorine demonstrates electron-withdrawing effects, molecule stability, and
enhanced chemical interactions.

In most publications, fluorinated phthalocyanines are usually compared with their
non-fluorinated counterparts to observe the degree of improvement in sensor properties.
Perfluorination and the introduction of some fluoroalkyl and fluoroaryl groups lead to a
decrease in HOMO and LUMO energy levels, facilitating electron injection. In addition, the
introduction of F-substituents into the phthalocyanine aromatic rings causes an increase in
charge carrier mobilities, thus improving the performance of sensing devices. Apart from
this, fluorine substituents decrease the electron density of the aromatic ring and increase the
oxidation potential of the MPc molecule. As a result, fluoro-substituted phthalocyanines
exhibit a higher sensor response to reducing gases such as ammonia.

Thin films of MPcFx (M = Cu, Co, Zn, Pb, Pd VO; x = 4, 16) derivatives have already
been systematically investigated as active layers for ammonia detection. It was shown
that among investigated MPcFx, phthalocyanines of cobalt and zinc demonstrated the
best sensing performance, with the limit of NH3 detection reaching 0.1 ppm in the case of
CoPcF4 and ZnPcF4 films. A similar tendency was also observed in the case of SPR sensors.
They can be used for the selective detection of NH3 in the presence of some reducing gases
and volatile organic compounds, namely carbon dioxide, acetone, dichloromethane and
ethanol, and even at high humidity. These properties make MPcFx films good candidates
for future applications as sensors for detecting ammonia in exhaled air, which is known
to be a biomarker of renal failure in nephritis, atherosclerosis of the renal arteries, toxic
lesions, and other kidney diseases.

Sensing layers of phthalocyanines bearing fluoroalkyl or fluoroaryl moieties are less
investigated than MPcFx, and questions about the effect of the number and the type of
fluorine-containing substituents on the sensor performance have not been sufficiently
answered, and may be the subject of future research, although some regularities can be
noted. At the same time, the chemical versatility of substituted phthalocyanines allows the
introduction of various substituents, which can allow for a wide variation in the sensitivity
of compounds to analytes of different nature. Moreover, the better solubility of MPcs with
fluoroalkyl or fluoroaryl substitutes compared to MPcFx derivatives provides the ability to
produce inks and to use inkjet printing, which offers several advantages over other methods
for the deposition of thin films. Similarly to MPcFx, chemiresistive sensors based on MPcs
with fluoroalkyl and fluoroaryl substituents demonstrate high sensitivity to ammonia with
the detection limit up to 0.15–0.3 ppm. They were also shown to demonstrate quite good
electrical response to NO2 with the detection limit of tenths of ppm.

QCM sensors based on MPcs with fluoroalkyl and fluoroaryl substituents are good
candidates for the detection of volatile organic compounds, which play a critical role in
food quality control, explosives detection, and medical diagnostics. Their octasubstituted
derivatives demonstrate the better sensor performance in comparison with their tetrasubsti-
tuted analogues, and they are shown to be very sensitive to dimethyl methylphosphonate
aromatic hydrocarbons with a detection limit at the ppb level.
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