
Supplementary Materials for

A Sensitive and Portable deep-UV Absorbance Detector with a Microliter Gas Cell Compatible with Micro GC

Sulaiman Khan^{1,2,4,5}, David Newport^{1,2,3} and Stéphane Le Calvé^{4,5}*

- ¹ School of Engineering, University of Limerick, Limerick, Ireland.
- ² Bernal Institute, University of Limerick, Limerick, Ireland.
- ³ Health Research Institute, University of Limerick, Limerick, Ireland. sulaiman.khan@ul.ie, david.newport@ul.ie
- ⁴ Université de Strasbourg, CNRS, ICPEES UMR 7515, F-67000 Strasbourg, France.
- slecalve@unistra.fr.
- ⁵ In'Air Solutions, Strasbourg France.
- * Correspondence: slecalve@unistra.fr

Figure S01. The rendered image of the 3D printed housing for HCW. Multiple housing/holders were 3D printed and installed on the optical breadboard to support and align the HCW.

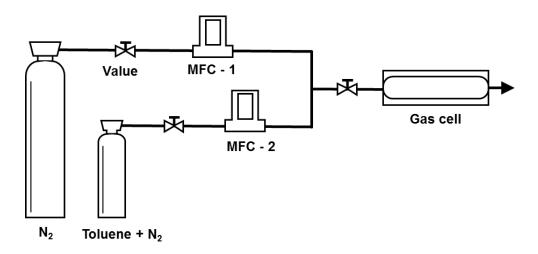



Figure S02. Gas generation setup for different concentrations of Toluene in N_2 . MFC- Mass Flow Controller.

Figure S03. The signal (absorbance) recorded for gaseous Nitrogen flow. The box represents the time window for calculating the noise (i.e., the standard deviation).