

Figure S1. (A) Resistance of paper-based inkjet-printed electrode and (B) Cyclic voltammograms of silver electrode in 0.5 mol L^{-1} H₂SO₄ solution as function of printed layers number.

Supplementary Materials

Figure S2. Square-wave voltammograms obtained as function of the square-wave frequency variation using the paper-based silver sensor in the presence of 100 µmol L⁻¹ paraquat in 0.1 mol L⁻¹ Na₂SO₄ solution (pH 7.0). SWV conditions: a = 20 mV; $\Delta E = 5$ mV.

Figure S3. Square-wave voltammograms obtained as function of the pulse amplitude variation using the paper-based silver sensor in the presence of 100 μ mol L⁻¹ paraquat in 0.1 mol L⁻¹ Na₂SO₄ solution (pH 7.0). SWV conditions: f = 3 Hz; $\Delta E = 5$ mV.

Figure S4. Square-wave voltammograms obtained as function of the scan increment variation using the paper-based silver sensor in the presence of 100 μ mol L⁻¹ paraquat in 0.1 mol L⁻¹ Na₂SO₄ solution (pH 7.0). SWV conditions: f = 3 Hz; a = 60 mV.

Figure S5. Square-wave voltammograms obtained using the paper-based silver sensor for 50 µmol L⁻¹ paraquat in 0.1 mol L⁻¹ Na₂SO₄ solution (pH 7.0) in the presence of possible interferents. SWV conditions: f = 3 Hz; a = 60 mV; $\Delta E = 2$ mV.

Figure S6. Square-wave voltammograms obtained for the quantification of paraquat in different matrices using the paper-based silver sensor. Supporting electrolyte: 0.1 mol L⁻¹ Na₂SO₄ solution (pH 7.0). SWV conditions: f = 3 Hz; a = 60 mV; $\Delta E = 2$ mV.