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Abstract: This paper reports on a feasibility study of electrochemical in-vitro detection of prostate
cancer biomarker PCA3 (prostate cancer antigen 3) in direct assay with specific RNA aptamer labelled
with a redox group (ferrocene) and immobilized on a screen-printed gold electrode surface. The cyclic
voltammograms and electrochemical impedance spectroscopy methods yield encouraging results
on the detection of PCA3 in a range of concentrations from 1 µg/mL down to 0.1 ng/mL in buffer
solutions. Both anodic and cathodic current values in cyclic voltammograms measurements and
charge transfer resistance values in electrochemical impedance spectroscopy experiments correlate
with the PCA3 concentration in the sample. Kinetics studies of the binding of the PCA3 to our aptamer
demonstrated high specificity of the reaction with a characteristic affinity constant of approximately
4·10−10 molar. The results of this work provide a background for the future development of novel,
highly sensitive and cost-effective diagnostic methodologies for prostate cancer detection.

Keywords: prostate cancer; RNA transcript PCA3; aptamer; electrochemical biosensor; cyclic voltam-
mograms; impedance spectroscopy

1. Introduction

Prostate cancer (PCa) is considered one of the most common types of cancer in the UK,
Europe, US and worldwide and is the second leading cause of mortality among men after
lung cancer [1–3]. PCa is usually detected in elderly men, with a proportion of cases being
observed in middle-aged men between 40 to 50 years old [1,4,5]. The cancer is slow-growing
and asymptomatic; hence, its early stage detection is challenging for clinicians. Clinical
symptoms are similar to benign prostatitis, making it challenging to distinguish between
the two accurately [6]. Because of the lack of effective and timely diagnostics, the prognosis
of PCa is generally poor, which is due to the high risk of metastatic development [6,7].
Early diagnosis of PCa can reduce mortality rates and increase the opportunity for effective
medical interventions. Therefore, the development of reliable diagnostics at the early stages
of PCa is of high importance [8,9].

Current diagnostics of PCa are based on the detection and quantification of total
serum prostate-specific antigen (PSA) in blood followed by (if PCa suspected) digital rectal
examination and imaging studies [10,11]. The so-called PSA test was introduced in the late
1980s and led to a dramatic improvement in PCa diagnostics [7]. However, limitations in its
use are related to its lack of specificity as high PSA concentrations may not always be cancer-
related [12]. Elevated PSA levels can also be attributed to several benign conditions such as
benign prostatic hyperplasia (BPH) or infection [13]. Additionally, tumours may develop
before the concentration of PSA increases [12]. False-positive PSA tests have led to both
overdiagnosis and eventually overtreatment; of large populations of men who undergo
needless prostate biopsies, which is used as the gold standard diagnosis method in clinical

Chemosensors 2021, 9, 59. https://doi.org/10.3390/chemosensors9040059 https://www.mdpi.com/journal/chemosensors

https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com
https://orcid.org/0000-0002-2505-123X
https://orcid.org/0000-0001-5177-8574
https://doi.org/10.3390/chemosensors9040059
https://doi.org/10.3390/chemosensors9040059
https://doi.org/10.3390/chemosensors9040059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/chemosensors9040059
https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com/article/10.3390/chemosensors9040059?type=check_update&version=1


Chemosensors 2021, 9, 59 2 of 11

practice [10,14–16]. Hence, identifying alternative specific prostate cancer biomarkers and
developing methods for their detection in the early stage of the disease is required [17,18].

A promising wide range of PCa biomarkers, such as TMPRSS2: ERG gene fusion,
PSMA 11, RNA urine biomarker (DD3PCA3) and PCGEM 1, have all been identified as
being over-expressed in prostate tumours [19]. The differential display code 3 (DD3PCA3)
gene, also known as prostate cancer antigen 3 (PCA3), was discovered in 1999 [20] and it is
one of the specific markers for malignant PCa [21–23]. The PCA3 gene expresses a 3992
nt long non-coding RNA (lncRNA) known to be elevated in prostate cancer [20]. PCA3
levels can predict prostatic biopsies’ outcome, especially in combination with other PCa
biomarkers such as PSA and can reduce the likelihood of false-positive results [24–26].
PCA3 is detectable in; blood, urine collected after DRE and standard urine tests; these
characteristics of PCA3 make it an ideal biomarker for non-invasive early diagnostics of
PCa [27].

Typically, the detection of PCA3 has been performed using RT-qPCR amplifica-
tion [28,29]. Currently, the detection of PCA3 in post-DRE urine samples is part of the
Progensa test developed commercially and approved in the USA for clinical use [30]. The
Progensa assay is based on detecting both PSA and PCA3 markers using quantitative
nucleic acid amplification with high sensitivity and specificity [31]. However, such a test is
time-consuming and expensive. The development of PCA3 biosensors for express, accurate
and cost-effective diagnostics of PCa is a subject of high importance. Substantial progress
in biosensors’ development for cancer diagnostics (including prostate cancer) has been
made. [32,33]. Recent developments in electrochemical biosensing involving nano-carbon
materials, i.e., carbon nanotubes, graphene, graphene oxide, allow a substantial enhance-
ment in the sensitivity of detection [32–36]. A comprehensive review of recent applications
of nano-carbon materials in biosensing [32] demonstrated the detection of several cancer
biomarkers in low concentrations down to fM level. Electrochemical detection of PSA
with a LOD of 13 pg/mL has been reported [33]; however, the detection of PCA3 was
not mentioned in this study. Electrochemical biosensors are particularly attractive for
biomedical applications because of their unique combination of high sensitivity, low cost
and simplicity of use.

The optical detection of PCA3 at concentrations between 200 fM to 5 nM using
graphene-oxide nanoparticles modified with short oligonucleotides specific to sections of
PCA3 has been reported in [37]; however, the specificity of such detection was not assessed.
Both electrochemical [38] and optical [38,39] detection of a short PCA3 ssDNA sequence
mimicking the real lncRNA sequence of PCA3 was recently attempted. The reported
detection limits were 83 pM for impedance spectroscopy, 2 nM for cyclic voltammograms
and 0.9 nM for UV-vis absorption spectroscopy [39]. However, the detection of lncRNA
PCA3 was attempted only qualitatively. These sensors could distinguish between PCA3
extracted from different cell lines containing high, low and negligible concentrations of
PCA3 [38,39].

In this study, we focus on the further development of electrochemical sensors for the
detection of PCa biomarkers. One specific problem of electrochemical biosensing, i.e., the
need for redox chemicals in the tested solution [33], can be resolved using redox-labelled
aptamers as bioreceptors. Aptamers are artificial, relatively short DNA- or RNA-based
constructs with a particular nucleotides sequence designed to bind specific targets from
small organic and inorganic molecules to large biomolecules such as proteins [40,41].
The combination of high selectivity and stability with low cost of synthesis and easy
modification with various functional groups makes aptamers attractive for a wide range
of applications [40–42]. For example, labelling aptamers with electrochemically active
redox groups makes them particularly attractive for electrochemical biosensing [42]. The
approach is based on changes in the secondary structure of the aptamer upon binding
the target molecule. Conformational change brings the redox label closer to the electrode
resulting in a subsequent increasing in charge transfer. This approach has been successfully
adapted for electrochemical detection of mycotoxins, particularly ochratoxin A, in food
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analysis [43] and has been applied to the detection of heavy metal ions (Hg2+ and Pb2+) in
water [44] and the in-vitro detection of dopamine [45].

Here, we use a novel high affinity CG-3 RNA-based aptamer specific to 277 bases of
the PCA3 transcript [46]. The aptamer is labelled with ferrocene allowing the detection
of a 277 nt fragment of lncRNA from PCA3. The results are of interest to fundamental
science since the outcomes resulting from changes in secondary structures of both the
PCA3 and aptamer during binding are not known. Our observations are a step towards
the long-term aim of developing a novel, accurate, simple and cost-effective diagnostic tool
for prostate cancer.

2. Materials and Methods
2.1. Step-by-Step Fabrication of Aptasensor

The CG-3 RNA-based aptamer specific to 277-bases of PCA3 transcript was func-
tionalized by thiol and ferrocene groups on 3′ and 5′ termini, respectively and were
acquired from Sangon-Biotech, China. The sequence of nucleotides of the CG-3 aptamer
5′-AGUUUUUGCGUGUGCCCUUUUUGUCCCC-3′ is known to bind to a 277 nt section
of PCA3 transcript [46] as schematically shown in Figure 1.
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Figure 1. Binding of the CG-3 RNA-aptamer (red balls and line) to a subsection of PCA3 consisting of 277 bases from the
lncRNA transcript (blue balls and line). Image reproduced from [46].

The aptamers were immobilized on the surface of gold screen-printed electrodes by
the following procedure outlined schematically in Figure 2. The aptamer stock solution
(a) was diluted to 1 µM with HEPES binding buffer (HBB) pH 7.2–7.6 supplemented with
1 mM of 1,4-dithiothretiol (DTT) and 3mM of MgCl2 (HEPES buffer was purchased from
Thermo Fisher Scientific; all other chemicals used were purchased from Sigma Aldrich,
UK). DTT is used to break the disulfide bridges between two aptamers, subsequently
releasing the 3′ thiol (-SH) end groups, (b) the free thiol groups allow covalent binding of
the aptamers to the surface of screen-printed gold electrodes. Before immobilization, the
aptamer liquid samples were activated (c) by rapid heating to 95 ◦C for 1 min, followed
by 1 min cooling at 4 ◦C in a thermocycler (Prime TC3600). Immobilization was carried
out by casting an aptamers solution onto the surface of screen-printed gold electrodes; the
samples were then incubated for 4 h at room temperature in a humidity chamber (d).

Unreacted aptamers were removed from the electrode surface by several rinses with
non-folding buffer (HBB). The screen-printed gold electrodes with immobilized aptamers
were kept at 4 ◦C in HBB to prevent the aptamers from coiling. The 277 nt target analyte
fragment of lncRNA PCA3, was acquired from CiteAb, Bath, UK. Solutions of PCA3 resus-
pended in phosphate buffer saline (PBS) pH 7.2–7.4 at concentrations from 1000 ng/mL
down to 0.1 ng/mL were used in electrochemical measurements.
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Figure 2. The step-by-step fabrication of aptasensor: (a) purchased aptamers; (b) aptamers split in HEPES binding buffer
containing DTT and MgCl2; (c) reactivated aptamers following theromcycling; (d) aptamers immobilized on Au electrodes
with the 5′ redox labels away from the surface; (e) conformational changes of aptamer configuration following PCA3
binding and resulting in a subsequent increase in charge transfer.

2.2. Electrochemical Measurements

Three-electrode DropSens gold screen-printed assemblies with Ag/AgCl reference
electrode were used for cyclic voltammograms (CV) measurements using a DropSens,
Metrohm potentiostat STAT8000P. ‘ Voltage range from −0.5 to 0.5 V was used in CV
measurements with the step of 10 mV and a scan rate of 10 mV/s. CV cycles were recorded
3 times until the current readings were stabilized. In addition to cyclic voltammetry, the
time dependencies of cathodic current at −0.2 V were recorded on electrodes exposed to
PCA3 of different concentrations.

Electrochemical impedance spectroscopy (EIS) measurements were carried out on
interdigitated DropSens gold screen-printed electrodes having 50 fringes with a spacing
of 5 µm using a 4000 A EG&G impedance analyzer. The AC signal of 50 mV ampli-
tude (without DC off-set) with the frequency varied from 0.1 Hz to 1 MHz was used in
these measurements.

Both CV and EIS measurements were carried out on electrodes with immobilized
aptamers immersed in PBS pH 7.2–7.4 containing different concentrations of PCA3 from
0.1 ng/mL to 1000 ng/mL; measurements of buffer alone were used as a reference. Negative
control measurements were carried out using bovine serum albumin (BSA) of 100 ng/mL
concentration in PBS.

3. Results and Discussion
3.1. CV Measurements

Typical CVs recorded on electrodes with immobilized aptamers exposed to different
concentrations of PCA3 are shown in Figure 3a. Characteristic peaks of anodic current (at
about 0.15–0.2 V) and cathodic current (at about 0.25–0.3 V) are associated with the redox
activity of the aptamer’s ferrocene label. These results are very similar to CVs observed in
previous research involving aptamers labelled with ferrocene [40–42]; moreover, unlabelled
aptamers did not show such electrochemical behaviour [41]. The amplitudes of both anodic
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and cathodic currents can be seen to rise with the increasing concentrations of PCA3
(Figure 3b).
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Figure 2b shows the dependencies of relative changes of both cathodic and anodic
currents on PCA3 concentration, which can be used as calibration curves. The CV curve for
zero concentration of PCA3 was used as a reference. The level of noise in CV measurements
was estimated as 5% of the signal level. The observed increase in the current correlated with
the increase in PCA3 concentration can be explained by the charge transfer enhancement
between the ferrocene labels and the electrode due to changes in the aptamer secondary
structure on binding to the 277 nt fragment of lncRNA PCA3. This process is schematically
shown in Figure 2e. As one can see, the calibration curves are not linear and most-likely
represent the lower part of a standard sigmoid curve. Within the concentration range used
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here, saturation was not reached. The limit of detection (LOD) can be seen to be below the
lowest PCA3 concentration of 0.1 ng/mL used in our experiments.

The LOD values were estimated by linear extrapolation of the calibration curves to
the triple noise level, e.g., 0.015 in relative changes. As can be seen, the cathodic current
measurements appeared to be more sensitive (LOD ≈ 0.04 ng/mL) as compared to those
of anodic current (LOD ≈ 0.08 ng/mL). In both cases, the sensitivity is very high and
approaching ppt levels. The achieved high sensitivity here in detecting PCA3 is very
similar to the sensitivities of other electrochemical aptasensors reported earlier [43–45].
Negative controls test on binding BSA to anti-PCA3 aptamers were carried out but showed
no response.

3.2. EIS Measurements

Typical results of electrochemical impedance spectroscopy (EIS) are shown in Figure 4a
as dependences of the absolute value of the imaginary part of impedance (Z′′) against the
real part (Z′) known as Nyquist plots. The data points in each curve correspond to different
AC signal frequencies; the arrow shows the frequency increase from 0.1 Hz to 1 MHz.
The observed almost ideal semi-circular pattern is typical for systems without diffusion
limitation in receptor-analyte interactions [47], which applies to our samples containing
a monolayer of aptamers immobilized on the surface of gold electrodes. Therefore, the
simplified equivalent circuit model without diffusion impedance, shown as an inset in
Figure 4a, can be used to model EIS measurements’ results [47].

The impedance (Z) of the simplified equivalent circuit can be calculated as:

Z = Z′ − jZ′′ ; Z′ =
RDL

1 + ω2R2
DLC2

DL
+ RS ; Z′′ =

ωR2
DLCDL

1 + ω2R2
DLC2

DL
, (1)

where Z′ and Z′′ are, respectively, real and imaginary parts of impedance, RDL and CDL are
respectively the resistance and capacitance of a double layer on the surface of the electrode
and RS is the bulk resistance of solution.

At low frequencies

(ω → 0 ) Z′0 = RDL + RS and Z′′0 = 0 , (2)

while at high frequencies,

(ω → ∞ ) Z′∞ = RS and Z′′∞ = 0. (3)

Therefore, the characteristic parameter of interest, e.g., a double layer resistance RDL,
can be calculated without performing the EIS data fitting as:

RDL = Z′0 − Z′∞ (4)

In practice, Z′0 and Z′∞ are taken as the values of Z′at lowest (0.1 Hz) and the highest (1
MHz) frequencies, respectively. The dependence of RDL on PCA3 concentration is given in
Figure 4b. The decrease in RDL with the increase in PCA3 concentration correlates well with
the DC current increase in CV measurements and confirms the concept of electrochemical
apta-sensing outlined in Figure 2e.

A substantial decrease in the RDL in EIS measurements caused by binding PCA3 to
aptamer in comparison with somewhat small changes of both the anodic and cathodic
currents in CV measurements led to the conclusion that EIS measurements are more
sensitive than CV measurements. The low detection limit of the EIS method could be
estimated by plotting 1/RDL against the PCA3 concentration; this graph is shown as an
inset in Figure 4b. The EIS measurements allowed the evaluation of RDL with an accuracy
of about 1 Ω. Using the value of RDL ≈ 1 k Ω at zero concentration of PCA3 as a reference,
the noise level of 1/RDL can be estimated as ∆(1/RDL) = ∆RDL

R2
DL

= 10−5(S) or 0.01 mS,
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which practically a zero level. The intercept of the linear approximation of 1/RDL vs. CPCA3
graph at low concentrations yields the LOD value of 0.03 ng/mL. Our data demonstratethat
the EIS method is more sensitive as compared to the CV method.
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3.3. Study of the Kinetics of PCA3 to Aptamer Binding

The kinetics of binding PCA3 lncRNA to the aptamer layer on the surface of the
gold electrode was studied by recording time dependencies of cathodic current at a fixed
potential of −0.2 V over different concentrations of the aptamer. Typical time depen-
dencies of absolute values of changes in cathodic current |∆Ic| =

∣∣∣Ic − Ire f
c

∣∣∣ for different
concentrations of PCA3 are shown in Figure 5. The fitting of the recorded data to the
rising exponential function allowed the evaluation of the time constant (τ) at different
concentrations of PCA3. These data were used in the further analysis for quantification of
the affinity of apatmer-PCA3 binding.
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A differential equation can describe the PCA3-aptamer binding for Langmuir absorp-
tion [48], which is suitable in our case of adsorption of analyte molecules on a monolayer
of binding centres:

dn
dt

= kaC(N − n)− kdn (5)

The first term of the Equation (5) describes the adsorption of analyte molecules of
concentration C[M] on the available binding sites with the concentration N− n, where N is
the concentration of binding sites on the surface and ka

[
mol−1s−1] is the rate of adsorption.

While the second term in (5) describes the desorption of analyte molecules which is propor-
tional to the concentration of adsorbed molecules (n) and the rate of desorption kd

[
s−1].

Another approximation used in the binding kinetics analysis is applying a single binding
site assumption to a complex binding process between the aptamer and PCA3 which in-
volves interactions between several nucleotides. However, the proposed approach has been
successfully used in similarly complex systems of antibody-antigen interactions [48,49]
and in our previous works on aptamer-based biosensors [45,50].

The solution of Equation (5) is a rising exponential function given as [48,49]:

n = N
kaC

kaC + kd
[1− exp(−t/τ)] (6)

where the characteristic time constant τ is given as:

τ =
1

kaC + kd
(7)

Equation (6) could be expressed in terms of sensor responses R and Rmax instead of n
and N

R = Rmax
kaC

kaC + kd
[1− exp(−t/τ)] (8)

The data fitting can be done by plotting the dependence of 1/τ on the concentration
of the analyte (C), which is a linear function [45,46]:

1/τ = kaC + kd (9)
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The values of the adsorption and desorption rates (ka and kd) can be found as the
gradient and intercept of 1/τ (C) dependence. Then, the association constant can be
calculated as KA

[
molar−1] = ka/kd, while the affinity constant KD[M] = 1/KA = kd/ka.

Such calculations were performed for the kinetics curves in Figure 5 and the linear
plot of 1/τ vs. C is given as an inset in Figure 5 along with the evaluated parameters. The
resulted values of the association and affinity constant for binding of PCA3 to the aptamer
KA ≈ 2.5·109 M−1 and KD ≈ 4·10−10 M, respectively, indicate a very high specificity of
this reaction. The strength of the binding means that it is practically irreversible since the
probability of PCA3 binding is 2.5·109 larger than the probability of its desorption. The
obtained values of KA and KD for PCA3-specific aptamer are similar to other aptamers’
values specific to ochratoxin A [50] and dopamine [45].

4. Conclusions

The results of a feasibility study of electrochemical detection of lncRNA PCA3 prostate
cancer marker in buffer solution using specific redox-labelled aptamer are encouraging. It
demonstrates that a simple concept of electrochemical aptasensing based on changes in the
charge transfer between the aptamer redox label and the electrode during the aptamer-to-
target binding is applicable for detecting large biomolecules such as PCA3. Both the cyclic
voltammograms and impedance spectroscopy methods allowed the detection of PCA3 in
concentrations from 1 µg/mL down to 0.1 ng/mL. The detection sensitivity is high, with
the LOD values being 0.03 ng/mL for the EIS method and 0.04–0.09 ng/mL for the CV
method. These results are equivalent to 0.26 pM and 0.35–0.78 pM, respectively, assuming
the size of the PCA3 fragment of 277 nt [43] to be approximately 87 kDa. The kinetic
study of binding PCA3 to our aptamer allowed the evaluation of the affinity constant at
4·10−10 molar which is indicative of a highly specific binding reaction such as observed
between antigen-to-antibody interactions. Negative control experiments (e.g., adsorption
of BSA) showed no response.

The obtained high sensitivity of PCA3 detection in the sub-nanomolar range is close to
the values reported in [34–36] and is believed to be sufficient for detecting PCA3 prostate
cancer biomarker in urine. Another advantage of using redox-labelled aptamers is that
the authentic urine samples can be tested without adding redox chemicals to the mixture.
Potentially, the electrochemical detection of PCA3 in urine could be adapted for prostate
cancer diagnostics instead of currently used methods, e.g., ELISA-based PSA blood tests
and PROGENSA assay based on PCR amplification of both PSA and PCA3 markers. To
achieve this ambitious goal a large amount of work must be carried out. Our current
research plans include detecting PCA3 in a complex matrix such as urine containing other
biomolecules that can be expanded further to testing actual urine samples from anonymous
prostate cancer patients. Detection of other biomarkers associated with different stages of
prostate cancer could also be explored.
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