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Abstract: Simultaneous and timely assessment of growth and water status-related plant traits is
critical for precision irrigation management in arid regions. Here, we used proximal hyperspectral
sensing tools to estimate biomass fresh weight (BFW), biomass dry weight (BDW), canopy water
content (CWC), and total tuber yield (TTY) of two potato varieties irrigated with 100%, 75%, and 50%
of the estimated crop evapotranspiration (ETc). Plant traits were assessed remotely using published
and newly constructed vegetation and water spectral reflectance indices (SRIs). We integrated
genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS) models to predict the
measured traits based on all SRIs. The different plant traits and SRIs varied significantly (p < 0.05)
between the three irrigation regimes for the two varieties. The values of plant traits and majority
SRIs showed a continuous decrease from the 100% ETc to the 50% ETc. Water-SRIs performed better
than vegetation-SRIs for estimating the four plant traits. Almost all indices of the two SRI types had
a weak relationship with the four plant traits (R2 = 0.00–0.37) under each irrigation regime. However,
the majority of vegetation-SRIs and all water-SRIs showed strong relationships with BFW, CWC, and TTY
(R2≥ 0.65) and moderate relationships with BDW (R2≥ 0.40) when the data of all irrigation regimes and
varieties were analyzed together for each growing season or the data of all irrigation regimes, varieties,
and seasons were combined together. The ANFIS-GA model predicted plant traits with satisfactory
accuracy in both calibration (R2 = 1.0) and testing (R2 = 0.72–0.97) modes. The results indicate that
SRI-based ANFIS models can improve plant trait estimation. This analysis also confirmed the benefits
of applying GA to ANFIS to estimate plant responses to different growth conditions.

Keywords: ANFIS; biomass; data driven; genetic algorithm; proximal remote sensing; spectral
indices; tuber yield

1. Introduction

Limited freshwater supplies are a serious problem worldwide, particularly in arid and
semiarid countries, where accessible reservoirs are decreasing due to increased agricultural
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and urban development, population growth, low precipitation, and competing demands
from industry [1–3]. Under arid and semiarid climates, moisture stress is a critical factor
affecting crop growth and final productivity. In addition, climate change and global
warming sharply increase evaporation rates. Hence, depletion of freshwater resources and
increased drought are a severe threat to global food security [4,5].

The potato (Solanum tuberosum L.) is one of the world’s most economically relevant
plant species. It is the fourth most important food crop globally behind rice, wheat,
and maize [6]. In developing countries, it is an affordable and rich source of starch that
can be cultivated under a wide range of climatic conditions. Additionally, global potato
production increased by 21% from 1991 to 2007 [7], which indicates its importance as a
staple food crop. Although the potato is one of the most water-efficient use crops, it is
very sensitive to water deficit stress due to there being no balance between the size of root
system and foliage characteristics. Therefore, insufficient water supply for this crop causes
a considerable reduction in final tuber yield and quality. Several studies have reported
that exposure of potato plants to deficit water stress especially during tuber bulking and
ripening growth stages can lead to over 50% reduction in tuber yield [8–13].

In general, water deficit stress limits the growth and development of plants by af-
fecting several normal physiological and biochemical functions at the whole canopy, leaf,
tissue, and cellular levels. The disturbance in plant functions subsequently translates into a
substantial reduction in several morpho-physiological attributes, including chlorophyll
content, water content, photosynthetic efficiency, stomatal conductance, leaf expansion,
green leaf area, biomass accumulation, and formation of sink organs. The reduction in
these growth attributes ultimately leads to significant losses in potato tuber yield and
quality [12,14–17]. Therefore, accurate estimation of water requirements for potato plants
through early detection and monitoring of the traits related to plant growth and water status
changes could be an effective way to better irrigation scheduling decisions and help farmers
reach the targeted yield and profit goals under deficit irrigation water regimes [12,14,18–21].
Increasing crop productivity to meet the increased food demand requires advanced irriga-
tion water management techniques [22–24] that rely on a deep understanding of crop traits
responses to environmental stresses [25]. Unfortunately, the classical plant-sampling tech-
niques used to detect and monitor growth and water status traits are laborious, destructive,
tedious, and not feasible on a large-scale. Therefore, it is fundamental to develop quick,
non-destructive, and large-scale techniques to monitor plant morpho-physiological traits
and advance precision agriculture irrigation practices in regions with water scarcity [12,18].

The use of proximal remote sensing technologies based on canopy spectral reflectance
is increasing and this approach is becoming one of the main strategies for managing the
irrigation schedule [26–29]. Proximal remote sensing can detect the spectral reflectance
from the plant canopy from visible (VIS) to shortwave infrared (SWIR) light spectrum
wavelengths (350 to 2500 nm). Hence, this tool is effective to rapidly and non-destructively
monitor changes that take place in various vegetative and biochemical plant characteris-
tics [12,18,30–34]. However, to employ the canopy spectral reflectance data and translate it
into valuable information on plant characteristics, several studies report the use of spectral
reflectance indices (SRIs), which incorporating specific wavelengths from VIS, red-edge,
near-infrared (NIR), and SWIR. These SRIs were used to track the changes in biochem-
ical and biophysical plant attributes, including leaf pigments, photosynthetic efficiency,
stomatal conductance, biomass accumulation, leaf area index, water status, and grain yield.
Because the spectral signatures of the canopy at NIR wavelengths (from 750 to 1300 nm)
are highly influenced by several internal leaf structural factors such as leaf cuticles, intercel-
lular air spaces, and the relationship between palisade mesophyll and spongy mesophyll,
several specific wavelengths from this region were used to create effective water-SRIs such
as normalized water indices (NWIs) and used it as indirect indicators of the plant water
status [12,31]. Although the wavelengths in the VIS region (400–700 nm) does not have
water bands, the spectral signatures of the canopy at specific wavelengths in this region
could be indirectly used to assess plant water status via detecting the effects of dehydration
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on leaf pigments [35,36]. Therefore, several studies have employed the photochemical
reflectance index (PRI), which includes two wavelengths from VIS region (531 and 570 nm),
as a good indicator for crop water stress detection [37–40]. Al-Gaadi et al. [18] found
that potato yield was associated with the soil adjusted vegetation index (SAVI) and the
normalized difference vegetation index (NDVI); with the coefficient of determination (R2)
values of the relationship between observed and predicted tuber yield based on these
indices ranged from 0.39 to 0.65 in center pivot irrigated fields. Romero et al. [12] reported
that the SRIs combining the VIS, red-edge, and water bands wavelengths from the NIR
region were strongly correlated with different potato traits, including plant water content,
leaf area index, foliar area index, and relative growth rate of potato tubers across different
irrigation regimes. Different models of the SRIs that formulated based on wavelengths
from VIS, red-edge, and NIR regions explained most of the variation in yield between
soybean genotypes grown under different water regimes [23].

Although SRIs are easy to calculate, they represent relationships of reflectance values
at a very few wavelengths (two to three wavelengths) across the full spectrum. The low
number of wavelength makes SRIs very sensitive to factors that affect canopy spectral
signatures and less efficient in estimating plant traits across different growth conditions
(i.e., cultivars, treatment, crop phenological growth stages, and year) because they used very
limited of the information contained in hyperspectral data. Furthermore, the majorities of
regression analyses to assess plant traits are based on single index and discard the majority
of published SRIs. Therefore, there are compelling reasons for incorporating various SRIs
in a single index to improve the plant traits analysis and prediction capacity.

Recently, data driven modeling (DDM), including the adaptive neuro-fuzzy inference
system (ANFIS), has boosted the creation and application of novel computational resources
to different fields of research. ANFIS focuses on the analysis of the data that characterizes
the system being studied. It uses models that can be defined without detailed knowledge of
the physical behavior by identifying links between the system’s parameters (input, internal,
and output variables) [41]. ANFIS uses a large number of input parameters to improve the
prediction of target measurements. This approach incorporates the fuzzy inference system
(FIS) into the adaptive network architecture, benefiting in a single framework from both
artificial neural networks (ANN) and fuzzy techniques. [42,43]. One of ANFIS’ primary
advantages over fuzzy systems is that it solves the fundamental problem of specifying the
membership function parameters and acquiring a set of fuzzy if-then rules [44,45]. DDM
was widely used for estimating and predicting different crop traits. For instance, ANN and
support vector machine regression (SVMR) were used to predict plant water status, growth,
and contents of chlorophyll, nitrogen, phosphorus, and potassium [14,46–48]. However,
the integration of different techniques, such as genetic algorithms (GA), ANN, and FISs,
has not yet been used to predict plant traits. Here, we tested the performance of ANFIS
to predict traits of two potato crop varieties grown under different irrigation regimes and
over two growing seasons.

ANFIS was linked to a GA to pinpoint the optimal root mean square error (RMSE)
values and to create a powerful computational methodology in case of each output. Recent
studies have used GA in plant tissue culture to reduce computational volumes. GA
uses an intelligent approach focused on bio-inspired operators such as selection, crossover,
and mutation to achieve optimal solutions to one of the well-known evolutionary computer-
based optimization algorithms [49,50].

The primary objectives of this study were (i) to quantify the effects of different irriga-
tion regimes on different plant traits related to growth, production, and water states of two
potato varieties, (ii) to remotely assess the different plant traits of each potato crop variety
across all irrigation regimes, for each irrigation regime across two varieties, and across all
conditions (irrigation regimes, varieties, and growing seasons) using different SRIs; (iii) to
evaluate the performance of ANFIS-GA models based on all SRIs to predict the different
plant traits across all conditions.
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2. Materials and Methods
2.1. Experimental Site, Conditions, Design, Agronomic Practices, and Irrigation Treatments

Two field experiments on drip-irrigated potato crops were conducted from February
to May during the 2019 and 2020 growing seasons at the Research Station of the University
of Sadat City, Egypt (30◦2′41.2” N and 31◦14′8.2” E). The experimental site conditions
were characterized by an arid climate with mild cold winters and warm summers. Table 1
shows the detailed climatic parameters of the Sadat city region during the experimental
periods. The soil at the experimental site is a sandy loam texture (69.8% sand, 22.3% silt,
and 7.9% clay), with a bulk density, electrical conductivity (EC), field capacity, wilting point,
and available water content of 1.45 g cm−3, 1.15 dS m−1, 0.2785 m3m−3, 0.1465 m3m−3,
and 0.1320 m3m−3, respectively. In addition, the salinity of water used for irrigation was
within normal, with an EC of 1.20 dS m−1.

Table 1. Agro-climatological data for the study area recorded at the Sadat city region (latitude of 30.04◦ and longitude of
31.23◦) and amounts of water applied for each irrigation regime in the 2019 and 2020 growing seasons.

Year Month Tmax
◦C Tmin

◦C U2 ms−1 RH % Rs
MJm−2d−1

Rn
MJm−2d−1

Applied Water (mm)

100% ETc 75% ETc 50% ETc

February 20.40 9.70 0.94 34.64 3.42 1.95 66.30 49.73 33.15
2019 March 23.50 11.60 0.85 35.32 4.61 2.63 195.4 146.55 97.70

April 28.30 14.60 0.72 25.37 6.12 3.45 275.7 206.78 137.85
May 32.00 17.70 0.64 25.19 6.86 3.910 54.60 40.95 27.30

Total 592 444 296

February 21.00 7.30 1.20 40.00 4.10 2.40 74.40 55.80 37.20
2020 March 28.30 9.40 1.70 30.70 5.20 2.96 194.60 145.60 97.30

April 28.50 11.80 1.60 26.50 6.40 3.70 282.10 211.60 141.05
May 31.60 15.30 1.80 24.50 6.82 3.88 55.30 41.50 27.65

Total 606 455 303

Tmax, Tmin, U2, RH, Rs, and Rn indicate maximum temperature, minimum temperature, average wind speed, relative humidity, mean solar
radiation, and mean net solar radiation, respectively.

The experiments in both growing seasons were laid out in a split-plot design with
four replicates. Three irrigation regimes and two potato varieties (Arizona and Bellini)
were evaluated in this study. The irrigation treatments and two varieties were distributed
randomly in the main plots and the sub-plots, respectively.

To apply the different irrigation regimes, the drip irrigation system was divided into
four main sectors, with each sector representing one replicate. All irrigation regimes and
potato varieties were represented within each sector. Irrigation regimes and varieties were
randomly distributed in each sector. The irrigation system within each sector consisted of
eight polyethylene lateral drip lines for the main plots (Twin-wall IV, 16 mm in diameter),
with four lateral drip lines assigned to each variety for the sub-plots. The lateral drip lines
(30 m long and with emitters spaced 0.30 m apart) were placed along each variety row,
separated 0.75 m. To control water flow to the lateral drip lines, each lateral drip line was
equipped with a manual T-shape valve at the connection with the sub-mainline (50 mm
in diameter) (Figure 1). The drippers had a discharge rate of 4 L h−1. The sub-plot area
within each irrigation regime was 90.0 m2. Healthy potato tubers of uniform size from
each variety were planted around each dripper on February 1, 2019, and January 30, 2020,
and were dug out on May 10 on both growing seasons.

All treatments received 75 m3 ha−1, 200 kg ha−1, and 300 kg ha−1 of composted animal
manure, phosphorous, and sulfur, respectively. The total dose of these fertilizers was
applied to the soil during the preparation for planting. Phosphorus and sulfur fertilizers
were applied in the form of single furrow-banded calcium superphosphate (15.5% P2O5)
and elemental S, respectively. Nitrogen fertilization was done by applying 400 kg ha−1 of
ammonium nitrate (33.5% N) in four equal doses. The first dose was applied during soil
preparation, while the other three doses were applied at 30, 45, and 60 days after planting
through the fertigation system. Potassium fertilization was done by applying 100 kg ha−1

of potassium sulfate in two equal doses. The first dose was applied during soil preparation,
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while the second dose was applied through the fertigation system with the third dose of
the nitrogen fertilizer.
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To ensure full germination and good seedling establishment, all plants were fully
irrigated at 4-day intervals during the first 25 days after sowing. Subsequently, the plants in
each irrigation regime were irrigated according to the irrigation treatments described below.

The three irrigation regimes tested in this study were 100%, 75%, and 50% of the
estimated crop evapotranspiration (ETc). The FAO CROPWAT software v.8 was used
to determine the irrigation time and calculate the amount of water applied for the full
irrigation regime (100% ETc). This software estimates the reference evapotranspiration
(ETo) using the modified FAO Penman-Monteith equation reported by Allen et al. [51].
The different daily climatic parameters collected from the nearest meteorological station
(Table 1) were applied to this equation to estimate the ETo in mm day−1. The potato crop
coefficient (Kc), which reflect the ETc to ETo ratio, was adjusted based on wind velocity



Chemosensors 2021, 9, 55 6 of 25

and relative humidity data measured at a 2 m height. The ETo and Kc values were applied
to the following equation to calculate the water requirement for the 100% ETc treatment:

ETc = ETo × Kc. (1)

The 100% ETc value was reduced to 75% ETc and to 50% for the other two tested
treatments. The water volumes applied for each irrigation regime are presented in Table 1.

2.2. Spectral Reflectance Measurements

The diffuse reflection characteristics of potato canopies were measured at the bulking
growth stage using a passive bi-directional reflectance spectroradiometer (Handy Spec
Field®, tec5, Oberursel, Germany). Measurements were done under cloudless conditions,
within ±12 h of solar noon, at nadir orientation, and approximately 0.8 m above each
variety’s canopy. The passive reflectance sensor has two units. The first unit is connected
to a diffuser to measure the light radiation as a reference signal, while the second unit
captures the spectral reflectance from the canopy at 302–1148 nm of the light spectrum and
with spectral resolution of 2 nm band width using an optical fiber sensor. The aperture of
the optical fiber was 12◦, covering a field view with a diameter of approximately 23 cm.
During data collection in the field, the sensor outputs were co-recorded in parallel to the
GPS coordinates. The actual sensor output was co-referenced and recorded. Readings of
ten scans were taken within each subplot, while the values obtained were later averaged to
a single value per sub-plot. The canopy reflectance was derived by correcting readings from
the spectrometer unit with a calibration factor obtained from a gray reference standard.

2.3. Plant Trait Measurements

At the bulking growth stage and after the spectral reflectance data were collected,
biomass fresh weight (BFW) and biomass dry weight (BDW) were determined for 20 plants
randomly harvested from the ground level at the middle two lateral drip lines of each
sub-plot and within the scanned area. The harvested plants were immediately weighed to
record BFW. The harvested plants were then cut into small pieces, dried at 70 ◦C for 72 h,
and weighed to record BDW. BFW and BDW data were applied to the following equation
to obtain the percentage of canopy water content (CWC):

CWC (%) = (BFW − BDW)/BFW. (2)

At harvest time, total tuber yield (TTY) per ha was obtained by hand-harvesting an
area of two lateral drip lines 15 m in length (22.5 m2). Then, the tubers were weighed and
the TTY per ha was expressed as Mg ha−1 based on the harvested area.

2.4. Selection of Newly Constructed and Published Spectral Reflectance Indices

Based on the canopy spectral reflectance data, 14 indices commonly used in published
studies and 6 indices newly constructed in this study were selected, and their performance
for estimating measured plant traits (BFW, BDW, CWC, and TTY) was evaluated. Indices
were selected based on their sensitivity to changes in biomass accumulation, leaf pigmenta-
tion, leaf/tissue structure, and plant water content. Formula for calculation and references
for published indices are listed in Table 2. The newly developed indices were constructed
based on contour maps established using the pooled data of irrigation regimes, varieties,
replications, and years (n = 48). They were then selected based on the hot spot regions of
the coefficients of determination (R2), which show the relationship between plant traits
and all possible combinations of two individual wavelengths in the entire spectrum range
(302–1148 nm) (Figure 2). The results of contour maps found that the best R2 regions
were identified when the wavelengths within VIS and red-edge regions on the horizontal
axis were combined with the wavelengths within VIS, red-edge, and NIR regions on the
vertical axis, as well as when the wavelengths within NIR region on the horizontal axis
were combined with the wavelengths within VIS and NIR regions on the vertical axis
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(Figure 2). Therefore, the newly developed SRIs were constructed based on VIS-vs.-VIS,
VIS-vs.-red-edge, VIS-vs.-NIR, red-edge-vs.-NIR, and NIR-vs.-NIR wavelengths.

Table 2. Full name, abbreviation (abv.), and formula of the different published and constructed spectral reflectance indices
(SRI) tested in this study.

Spectral Reflectance Indices (abv.) Formula

Published SRIs

Photochemical reflectance index (PRI) (R531 − R570)/(R531 + R570)
Green normalized difference vegetation index (GNDVI) (R780 − R550)/(R780 + R550)

Normalized difference vegetation index 1 (NDVI-1) (R800 − R680)/(R800 + R680)
Normalized difference vegetation index 2 (NDVI-2) (R900 − R680)/(R900 + R680)

Red-edge chlorophyll index1 (CI1) R800/R740 − 1
Red-edge chlorophyll index1 (CI2) R740/R550 − 1

Structure-insensitive pigment index (SIPI) (R800 −R445)/(R800 + R680)
Dry Zea N Index (DZNI) R575/R526

Modified chlorophyll absorption reflectance index (MCARI) (R700 − R600) − 0.2 × (R700 − R550)/(R700/R 670)
Simple ratio based on 890 and 715 nm R890/R715

Water index (WI) R900/R970
Normalized water index 2 (NWI-2) (R970 − R850)/(R970 + R850)
Normalized water index 3 (NWI-3) (R970 − R920)/(R970 + R920)
Normalized water index 4 (NWI-4) (R970 − R880)/(R970 + R880)

Constructed SRIs

Development of water index(DWI1000-952) R1000/R952
Development of water index(DWI1100-734) R1100/R734
Development of water index(DWI1140-500) R1140/R500
Development of water index(DWI782-970) R782/R970
Development of water index(DWI758-1100) R758/R1100
Development of water index(DWI940-1016) R940/R1016

The different contour maps were drawn using the lattice package in R statistics v. 3.0.2
(R Foundation for Statistical Computing, 2013). The new indices were formulated based
on ratio form, while the published indices were formulated based on both ratio form and
normalized difference form (Table 2).

2.5. Statistical Analysis
2.5.1. Adaptive Nuro-Fuzzy Inference System Modeling

The ANFIS is a FISs that is formulated as a feed-forward neural network. The ben-
efits of a fuzzy system can thus be combined with a learning algorithm [52,53]. ANFIS
hypothesizes the Fuzzy Inference System (FIS) by using different output or input data and
typically modifies its membership criteria by using a backpropagation algorithm. Figure
3 shows a schematic diagram of the ANFIS methodology used to predict different plant
traits in this study. The ANFIS model was integrated with the different SRIs listed in Table
2 to predict BFW, BDW, CWC, and TTY values. The ANFIS model was developed and
trained using a GA based on a population algorithm. The developed GA-ANFIS models
were performed using Matlab. Figure 4 illustrates the ANFIS structural design with a
multilayered feed-forward configuration that is linked to an incoherent x and y input
network. It is essential to mention that the FIS consists mainly of 5 functional blocks. The
Sugeno model has a rule base with the formulas [54,55]:

Through putting a = A1 and b = B1 we have f1 = p1 × a + q1 × b + r1 (3)

Through putting a = A2 and b = B2 we have f2 = p2 × a + q2 × b + r2 (4)
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Specifically, fi is the output within the inconsistent zone indicated by the fuzzy princi-
ple, Ai and Bi are the membership values, a and b are indirect identifying functions, and
pi, qi, and ri are the consequential restrictions that are modified within the forward pass
within the learning algorithm.
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If the fuzzy sets Ai and Bj,’s membership functions are µAi and µBi correspondingly,
as illustrated, the five layers involving ANFIS are defined:

For layer number 1, the throughput Q1,i, is calculated as follows.

Q1,i = µAi(x), where i = 1 and 2 or Q1,i = µBi−2(x) where i = 3 and 4 (5)

with a and b being the inputs to the ith node, and Ai or (Bi − 2) is regarded as a component
derived by past occurrences. For the bell-shaped membership function, µAi is calculated
with the equation:

µAi = e
1
2 (

x−ci
ai

)
2

i = 1, 2 (6)

where ai and ci are sigma and central represent the membership function parameters.
Rule layer with a fixed nod that multiples the signals coming into the system and send

the product out. Each output represents the firing strength of the rule:

Q2,i = wi = µAi (x) µBi (y) for i = 1 and 2. (7)

Each node in layer number 3 is a circle labeled N and calculates the ratio of the
ith rule’s firing strength to the sum of all rule’s firing strengths to fulfill the demand of
normalized firing strengths:

Q3,i = wi =
wi

w1 + w2
, i = 1 and 2 (8)

In layer number 4, which has parameters termed as resultant parameters, the nodes
are adaptive nodes. The output of each node in this layer includes a set of a linear
amalgamation of inputs magnified by normalized firing power:

Q4,i = wi fi = wi (pi x + qi y + ri) (9)

The single node in this layer is circle node labeled ∑ that computes the overall output
as the summation of all incoming signals, i.e.,

Layer number 5 has a single node that computes the overall output:

Q5,i = ∑ wi fi =
∑i=1 wi fi

∑i=1 wi
. (10)

In this study, ANFIS was utilized to excerpt the relationship of SRIs and plant traits
and classify them as fuzzy “if-then” regulations. The postulate part of fuzzy “if-then” rules
included SRIs data. The consequent part includes BFW, BDW, CWC, and TTY. A fuzzy
system of the Sugeno type was applied with a linear output membership function and a
standard bell input membership function.

2.5.2. Genetic Algorithm

The fundamental principles of GAs which are based on Darwinian principles of se-
lection, mutation, and recombination (crossover) in the operator were set forth by John
Holland in the 1970s [56,57]. GA is a heuristic algorithm that can find exact or approximate
results in optimization or search problems. The GA analysis begins with a randomly gener-
ated chromosome population linked by genetic operators to optimize solution evaluation
by generating iterations of fitter chromosomes [58]. The selection process is mostly used
to choose chromosomes with superior reproduction fitness values in the genetic pool or
to create unique offspring then roulette wheel selection was applied and this process is
maintained until an acceptable compliance value or unique solution is reached.

In this study, the GA algorithm was employed to solve the single-objective optimiza-
tion problem and used for updating two ANFIS parameter types: premise parameters
and consequent parameters. Premise parameters correspond to the function of gauss
membership described as {ai} in Equation (6). In all membership functions, the cumulative
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number of premise parameters is equivalent to the summation of the parameters. Conse-
quent parameters are those used in the defuzzification layer, shown in Equation (9) as {pi,
qi, ri}. These parameters are optimized with GA to reduce the error between the ANFIS
output and the measured data to a minimum. A block diagram showing this structure is
in Figure 3. A root mean square error (RMSE) function obtained with Equation (11) is used
for determining the error value of the solution. The RMSE indicates the absolute fit of the
model to the data sets (how closer the experimental data is to the predicted values of the
model). It tests the optimal absolute value, with the best match being shown by smaller
RMSE values. RMSE is given by the following formula:

RMSE =

√√√√∑n
i=1

(
Poi − Pf i

)2

n
. (11)

Po represents the observed values, Pf represents the predicted values by the model,
and n is the length of data series.

We applied all 20 SRIs as the input for training an ANFIS with GA to estimate the four
plant traits of interest. To create the models, the measured datasets were randomly divided
into the two sets of progressions, i.e., 70% training and 30% testing datasets. There were
eight membership functions for each input; a total of 160 functions were composed. Two
premise criteria were used in each of the membership functions. Therefore, 320 parameters
were successfully optimized. During the network learning process, the optimal selection
of the parameters related to the membership functions was achieved using the GA with a
population size of 100, a crossover rate of 0.8, and a mutation rate of 0.01.

Finally, the performance of the two models was evaluated using the following criteria:
coefficient of determination (R2), Nash-Sutcliffe coefficient (E), RMSE, and mean absolute
deviations (MAD).

2.5.3. Data Analysis

Plant trait (BFW, BDY, CWC, and TTY) and selected SRIs data were subjected to
an analysis of variance (ANOVA) appropriate for a split-plot design, with the irrigation
regimes as the main factor and variety as the split factor. A combined ANOVA was ap-
plied to analyze the differences among irrigation regimes and varieties across the two
growing seasons, the Shapiro–Wilk test was used for the normality distribution of the
residuals and the Bartlett’s test for the homogeneity of variances. Irrigation regime, vari-
ety, and their interaction were considered fixed effects, while replicate, growing season,
and their interaction were considered random effects. The mean differences among the
tested three irrigation regimes for each variety were compared using Duncan’s test at a
p ≤ 0.05 significance level. This statistical analysis was performed using SPSS (v. 12.0, SPSS
Inc., Chicago, IL, USA). Additionally, a simple linear regression of the relationship between
the selected SRIs and the different plant traits under each irrigation regime (n = 16), each
variety (n = 24), each season (n = 24), and across two seasons (n = 48) was performed using
Sigma Plot (v. 11.0, SPSS, Chicago, IL, USA). The significance level of the coefficients of
determination (R2) for these relationships was set at the 0.05 probability level.

3. Results and Discussion
3.1. Response Plant Traits of Potato Varieties to Different Irrigation Regimes

In general, the assessment of plant traits that related to dry matter accumulation and
water status can inform better irrigation management decisions and help overcome the
negative impacts of irrigation water shortage on crop productivity. For example, BDW
is an important plant trait widely used for detecting photosynthetic efficiency and crop
growth status under particular growing conditions [59,60]. BFW and CWC reflect the
immediate plant water status response to water stress conditions [29,61]. Therefore, fre-
quent assessment of these plant traits could be critical for enhancing potato production
under irrigation water shortage through better irrigation scheduling and scaling prac-
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tices [12,62,63]. In this study, the four plant traits (BFW, BDW, CWC, and TTY), showed
significant differences (p < 0.05) between three irrigation regimes and this was true for both
potato varieties. The highest values for these traits occurred with the full irrigation regime
(100% ETc). The 75% ETc and 50% ETc treatments resulted in decreases in BFW of 24.0%
and 48.0%, BDW of 6.4% and 18.0%, CWC of 3.6% and 10.1%, and TTY of 13.3% and 36.7%,
respectively, when compared with the 100% ETc treatment (Table 3). This decrease was
similar in both varieties (Table 3). These results indicate that these plant traits, particularly
BFW and TTY, could be used as direct indicators to evaluate the responses of potato plants
to different irrigation water regimes as well as to determine water stress resistance in this
crop plants [12,15,16].

Table 3. Comparison of mean values of biomass fresh weight (BFW) biomass dry weight (BDW),
canopy water content (CWC), total tuber yield (TTY), and twenty spectral reflectance indices (SRIs)
of potato crops under three irrigation regimes for each potato variety across two seasons.

Parameters
Arizona in Two Seasons Bellini in Two Seasons

100% ETc 75% ETc 50% ETc 100% ETc 75% ETc 50% ETc

BFW(Mg ha−1) 18.69a 14.21b 9.52c 19.17a 14.56b 10.18c
BDW(Mg ha−1) 2.79a 2.63a 2.33b 2.99a 2.78b 2.41c
CWC(Mg ha−1) 0.85a 0.82b 0.76c 0.84a 0.81b 0.76c
TTY(Mg ha−1) 44.04a 38.76b 28.42c 41.52a 35.42b 25.72c

PRI −0.07b −0.088c 0.021a −0.067b −0.060b 0.019a
GNDVI 0.593a 0.524b 0.233c 0.567b 0.637a 0.264c
NDVI-1 0.759a 0.638b 0.446c 0.736b 0.820a 0.471c
NDVI-2 0.762a 0.643b 0.480c 0.733b 0.823a 0.501c

CI1 0.123a 0.107b 0.082c 0.088b 0.141a 0.088b
CI2 2.557a 1.960b 0.517c 2.359b 3.022a 0.618c
SIPI 0.806a 0.723b 0.416c 0.783b 0.847a 0.450c

DZNI 1.205b 1.250a 0.963c 1.198b 1.179a 0.968b
MCARI 4.823a 4.966a 2.971b 5.703a 4.596b 3.105c

R890/R715 1.999a 1.739b 1.505c 1.859b 2.206a 1.574c
WI 1.099a 1.083b 1.018c 1.109a 1.096a 1.023b

NWI-2 −0.046b −0.039b 0.0104a −0.057c −0.044b 0.0077a
NWI-3 −0.044c −0.038b −0.015a −0.047b −0.044cb −0.017a
NWI-4 −0.049b −0.042b −0.003a −0.056c −0.048b −0.006a

DWI1000-952 0.984c 0.991b 1.021a 0.976c 0.988b 1.016a
DWI1100-734 0.781b 0.801b 1.036a 0.738b 0.771b 1.029a
DWI1140-500 2.294a 2.069b 1.235c 2.223b 2.393a 1.267c
DWI782-970 1.072a 1.055a 0.921b 1.124a 1.063b 0.927c
DWI758-1100 1.491a 1.408b 1.039c 1.558a 1.539a 1.055b
DWI940-1016 1.034a 1.022b 0.980c 1.048a 1.032b 0.985c

Means within irrigation regimes for each variety followed by the same letter are not significantly different from
one another based on Duncan’s test at a p ≤ 0.05 significance level. The full names of the abbreviations of SRIs are
listed in Table 2.

Previous studies have reported that exposure of potato plants to water deficit, espe-
cially during sensitive growth stages, resulted in a significant reduction in traits closely
associated with growth performance and water status, which ultimately led to lower final
tuber yields in both quantity and quality [64–69]. Cantore et al. [65] found that the reduc-
tion in potato tuber yield could reach 25.9 and 63.6% at 50% of full irrigation and rainfed
conditions, respectively, when compared with the full irrigation treatment. However,
Bohman et al. [17] found that the water requirement for potato crops could be decreased
by 15% without a significant reduction in TTY. Yuan et al. [70] reported that the marketable
tuber yield of potato significantly increased with increasing irrigation regimes. They also
suggested that when using a pan evaporation factor as a guideline for irrigating potato
crops under regulated environmental conditions, irrigating potato plant at a pan Kc factors
less than 0.75 resulted in a significant reduction in TTY. These results and our finding
further confirm that because there is a close relationship between the plant traits associated
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with the status of plant growth and water content as well as plant production and soil
moisture status, the simultaneous and frequent assessment of such plant traits could play
an important role in improving irrigation water management through determine irrigation
thresholds and better irrigation scheduling. However, the success of irrigation scheduling
depends on methods that allow quick, easy, and non-destructive frequent evaluation of
large-scale fields; these methods will be explored in detail below.

3.2. Performance of SRIs for Assessment of Different Measured Plant Traits

Exposure of plants to abiotic stress leads to substantial changes in biophysical and
biochemical characteristics of vegetation canopies. This generates substantial changes in
the spectral signatures reflected from the canopy at specific wavelengths within the VIS,
NIR, and SWIR regions of the spectrum [12,29,71]. Previous studies reported that several
wavelengths within the VIS, red-edge, and NIR regions are more sensitive to changes
in plant biomass accumulation and water content of several field crops under diverse
environmental conditions [12,71–73]. El-Hendawy et al. [71] found that VIS (532, 557, and
693 nm), red-edge (733, 737, 738, 748, and 750 nm), and NIR (751, 769, 814, 1061, and 1066
nm) wavelengths are strongly correlated with the shoot dry weight per square meter, water
content of aboveground biomass, and final grain yield of 30 spring wheat recombinant
inbred lines under full and limited irrigation regimes. Gutierrez et al. [73] also reported
that the water absorption wavelengths in the NIR region are well correlated with the leaf
water content of wheat plants under drought stress because they can penetrate deeply into
the canopy. Zhang et al. [72] also found that the wavelength intervals of 553–556, 689–720,
755–842, 950–970, 1013–1034, and 1055–1075 nm have significant relationships with the
leaf water content of cotton grown under saline conditions. Therefore, previous studies
have successfully explored canopy spectral reflectance values at specific and effective
wavelengths and formulated simple SRI, which ultimately be used as indirect indicators to
assess different plant traits accurately.

Our results showed that the published and newly developed SRIs showed signifi-
cant differences (p < 0.05) between the three irrigation regimes for both potato varieties.
Additionally, the values of all tested SRIs showed a continuous decrease from the 100%
ETc to the 50% ETc treatments; the opposite was true for PRI, normalized water indices
(NWIs), and developed water index (DWI1000-952 and DWI1100-734), which they continuous
increased with decreasing irrigation regimes (Table 3). These findings indicate that water
deficit stress leads substantial changes in the spectral reflectance of the canopy at the VIS,
red-edge, and NIR regions of the spectrum. Likewise, Romero et al. [12] reported that the
spectral reflectance of canopy of potato plants at water wavebands regions (940–970 nm)
before irrigation was slightly higher than after irrigation. This may explain why the indices
based on the water wavebands were increased with decreasing irrigation regimes. This
result further confirmed that SRIs based on specific wavelengths from the three regions of
spectrum (VIS, red-edge, and NIR wavelengths) could be reliable for assessing different
plant traits under different irrigation water regimes. The reason for this may be that the
wavelengths in the VIS region are related to plant pigment status, vigor, photosynthetic
capacity, and other factors that are fundamental for crop growth and production capacity.
Additionally, VIS wavelengths were also found to be sensitive to changes in the plant
traits related to plant water status such as relative water content, equivalent water thick-
ness, and leaf water potential, as seen in wheat and soybean under different irrigation
regimes [3]. The red-edge wavelengths have been used as an indirect stress indicator in
plants growing in adverse conditions. This is likely because the spectral reflectance at
specific wavelengths in this region carry important information about plant vigor, health,
and biomass [48,74,75]. NIR wavelengths are mainly affected by properties of internal leaf
structures, including intercellular air spaces, the arrangement of cells within the mesophyll
layer, the ratio between palisade and spongy mesophylls, and intercellular air and wa-
ter spaces [73,76–79]. The water absorption wavelengths in the NIR region can penetrate
deeper into the leaves and, thus, spectral reflectance at these wavelengths is highly sensitive
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to plant water status [73,80]. Therefore, these findings reflect that the tested SRIs that based
on specific wavelengths from VIS, red-edge, and NIR regions could be effectively to assess
the different plant traits related to growth, production, and water status under different
growth conditions, which tested in the sections below.

3.3. Ability of SRIs for Assessment of Plant Traits under Different Growth Conditions

SRIs are usually categorized into two types: vegetation and water-SRIs. Most vegetation-
SRIs are constructed from wavelengths in the VIS and red-edge regions. This type of
SRIs are effective for tracking the changes that take place in the photosynthetic efficiency,
pigment content, plant vigor, green leaf area index, biomass accumulation, and other
characteristics related to the growth and health of vegetation canopy [12,49,74,81–84].
Water-SRIs, which incorporate wavelengths from red-edge and NIR regions, are sensitive
to changes in the leaf biochemical characteristics and water status and are thus effec-
tive to estimate plant parameters associated with aboveground biomass and plant water
status [3,12,19,61,73,85]. In this study, we investigated the relationships between measured
plant traits and vegetation-SRIs (Top 10 indices in Table 4) or water-SRIs (bottom 10 indices
in Table 4) for each variety across irrigation regimes (n = 24). The results showed that
the majority of indices of the two types of SRIs were more effective for estimating BFW,
CWC, and TTY than BDW; this was true for both varieties (Table 4). Water-SRIs performed
better than vegetation-SRIs for estimating all measured traits. Water-SRIs correlated well
with BFW, CWC, and TTY (R2 = 0.65–0.87) and moderately with BDW (R2 = 0.39–0.53) for
both varieties. This result is because the spectral reflectance properties, particularly the
NIR region, depended in part on the amount of water stored in the leaf cell. Additionally,
the water wavebands in this region have ability to penetrate deeper into the canopy and,
therefore, may detect the plant traits related to plant water status more accurately than
other kinds of SRIs [3,72,73,80].

Table 4. Determination coefficients of the relationship between different SRIs and biomass fresh
weight (BFW), biomass dry weight (BDW) canopy water content (CWC), and total tuber yield (TTY)
of two potato varieties subjected to different irrigation regimes across two years (n = 24).

SRIs
Ariazona Bellini

BFW BDW CWC TTY BFW BDW CWC TTY

Vegetation-SRIs

PRI 0.57 0.35 0.66 0.64 0.65 0.44 0.76 0.75
GNDVI 0.79 0.38 0.85 0.76 0.50 0.40 0.59 0.58
NDVI-1 0.77 0.40 0.74 0.71 0.40 0.33 0.47 0.46
NDVI-2 0.75 0.38 0.72 0.68 0.35 0.30 0.42 0.41

CI1 0.59 0.22 0.63 0.47 0.00 0.02 0.01 0.01
CI2 0.78 0.34 0.83 0.70 0.41 0.34 0.51 0.49
SIPI 0.82 0.42 0.85 0.79 0.51 0.40 0.60 0.58

DZNI 0.59 0.36 0.67 0.65 0.65 0.44 0.77 0.76
MCARI 0.51 0.27 0.62 0.52 0.70 0.44 0.76 0.73

R890/R715 0.65 0.22 0.65 0.49 0.15 0.16 0.20 0.20

Water-SRIs

WI 0.74 0.43 0.74 0.78 0.71 0.51 0.76 0.75
NWI-2 0.71 0.42 0.72 0.76 0.75 0.52 0.80 0.78
NWI-3 0.74 0.43 0.73 0.77 0.67 0.50 0.73 0.72
NWI-4 0.72 0.43 0.72 0.77 0.73 0.52 0.79 0.76

DWI1000-952 0.79 0.40 0.83 0.81 0.73 0.49 0.78 0.73
DWI1100-734 0.72 0.42 0.75 0.79 0.73 0.53 0.79 0.77
DWI1140-500 0.85 0.46 0.87 0.81 0.65 0.42 0.65 0.65
DWI782-970 0.69 0.39 0.71 0.74 0.79 0.53 0.83 0.79
DWI758-1100 0.78 0.41 0.82 0.80 0.69 0.53 0.75 0.73
DWI940-1016 0.78 0.41 0.80 0.79 0.74 0.53 0.77 0.76
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More than 50% of vegetation-SRIs exhibited strong relationship with BFW, CWC,
and TTY (R2 ≥ 0.65) for the Arizona variety, whereas most had a weak to moderate
relationship with the same three traits for Bellini; the exceptions were PRI, dry Zea N index
(DZNI), and modified chlorophyll absorption ratio index (MCARI), which showed a strong
relationship with those plant traits (Table 4). These results indicate that, because the genetic
variability in drought tolerance depends on various mechanisms, the ability of different
SRIs for estimating plant traits may also be highly genotype-dependent. In addition, the two
tested varieties likely have significant differences in the ability to maintain an adequate
leaf water status under drought stress, explaining why water-SRIs were more accurate in
estimating the measured plant traits than the vegetation-SRIs. Similarly, Gutierrez et al. [73]
reported that water-SRIs showed consistency and higher relationships with wheat grain
yield than the vegetation-SRIs under diverse environmental conditions. The weak efficiency
of most vegetation-SRIs for estimating plant traits in Bellini variety might be related of less
degradation of chlorophyll content in this variety under the deficit water stress. Indeed,
Romero et al. [12] found that leaf chlorophyll content increased significantly in response to
drought stress in several potato varieties. Therefore, vegetation-SRIs that detect chlorophyll
and nitrogen contents such as PRI, MCARI, and DZNI are better to estimate plant traits in
Bellini (Table 4).

Regarding the relationships between plant traits and SRIs for each irrigation regime
(n = 16), almost all indices of the two SRI types had a weak relationship with the four plant
traits (R2 = 0.00–0.37) under each irrigation regime (Figure 5). However, the majority of
vegetation-SRIs and all water-SRIs showed strong relationships with BFW, CWC, and TTY
(R2 ≥ 0.65) and moderate relationships with BDW (R2 ≥ 0.40) when the data of all irrigation
regimes and varieties were analyzed together for each growing season (n = 24) or the data
of all irrigation regimes, varieties, and seasons were combined together (n = 48) (Figure 6).
These findings indicate that the methodological conditions of canopy spectral reflectance
measurements could influence SRI efficiency in indirect estimating the measured plant
traits. Our results also confirmed that to improve the fit between SRIs, either vegetation or
water, and plant traits, measurements of all different growth conditions of canopy spectral
reflectance should be used. Combining the data removes the adverse impact of high
leaf area index (LAI), high biomass accumulation, and soil background reflectance on the
canopy spectral properties [3,31,86]. For example, high LAI and high biomass accumulation
under full irrigation may lead to SRIs saturation, particularly at early growth stages. Under
severe stress conditions that significantly decrease the LAI, the canopy spectral reflectance
can be influenced significantly by soil background reflectance due to exposure of a large
amount of bare soil [28,86,87]. Consequently, once the adverse effects of these factors
were removed by using combined SRIs data across all growth conditions, the indirect
assessment of plant traits improved. Previous studies on soybean and wheat crops have
also reported that the relationships between SRIs and several plant traits improved when
the data from different growth conditions (irrigation, growth stages, and varieties) were
used [3,19,29,73,88]. For example, El-Hendawy et al. [3] and Garriga et al. [73] reported
that SRIs correlated better with wheat plant traits when multiple irrigation treatments were
used instead of only one. Elmetwalli et al. [29] also found that different SRIs were more
effective for estimating plant traits related to growth and water states when the data were
combined across irrigation regimes for individual growth stages or vice versa.
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3.4. Performance of ANFIS Models to Predict the Measured Parameters

Although simple SRIs combining only two to three specific wavelengths and are
widely used to indirectly estimate plant traits, the canopy spectral signatures are mixed
or affected by soil background reflectance or vegetation saturation. This can alter the
relationship between these indices and plant traits, as discussed above. Therefore, com-
bining various SRIs in a single index can enhance the accuracy of plant trait assessment
and prediction [3,19,89]. In this study, all 20 SRIs were applied to ANFIS with GA in order
to estimate the four plant traits. Once the best-performing ANFIS model was selected
through ANFIS training, the forecast values of the selected performance were estimated
and the predicted and measured values were compared. Measured data plotted against the
predicted BFW and BDW values as well as against the predicted CWC and TTY is presented
in Figures 7 and 8, respectively. Table 5 presents the performance of the proposed ANFIS
model based on the calculated performance criteria: R2, RMSE, MAD, and E. The RMSE
and MAD values for all predicted output traits were 0, and R2 and E were 1, indicating
that the ANFIS model produced accurate results. The ANFIS model had a small drop in
performance quality (R2, RMSE, and MAD) from the training to testing periods for all four
plant traits. However, the drop was significant for CWC, which had a negative E value
(Table 5). A more discriminating insight emerges in Figure 8, which displays the difference
between predicted and measured CWC values for the testing period. The overall results
indicate that the proposed ANFIS models based on all SRIs can improve the accuracy
plant trait estimates. Moreover, the results confirmed the benefits of applying the GA to
ANFIS modeling to increase accuracy. Few agriculture studies have used ANFIS models
based on spectra data to assess plant growth, crop water status, and yield in field crops.
Odabas et al. [90] successfully used ANFIS to assess the effects of water and salt stress
on the spectral reflectance of hypericum leaves. Abyaneh et al. [91] found that ANFIS
models produced reasonable predictions of water requirements using garlic crop ETc values
measured with a lysimeter. Several studies have used DDM models (ANN and SVMR) for
estimating different plant traits. Poblete et al. [92] found that an ANN based on spectral
wavelengths (550, 570, 670, 700, and 800 nm) could predict the stem water potential of Vine,
with an R2 ranging from 0.56 to 0.86. In addition, Osco et al. [47] found that the early stages
of water stress in lettuce plants can be defined with high precision with an ANN approach
applied to spectra bands from 325 to 1075 nm. Our work adds new insights into the use of
ANFIS to predict plant traits base on SRI data.

Table 5. Performance criteria of ANFIS models for measured parameters including biomass fresh
weight (BFW), biomass dry weight (BDW), canopy water content (CWC), and total tube yield (TTY)
of two potato varieties subjected to three irrigation regimes across two growing seasons.

Parameters
Performance Criteria

R2 RMSE MAD E

Training
Series

BFW 1.00 0.00 0.00 1.00
BDW 1.00 0.00 0.00 1.00
CWC 1.00 0.00 0.00 1.00
TTY 1.00 0.00 0.00 1.00

Testing Series

BFW 0.97 2.91 1.99 0.46
BDW 0.72 0.24 0.17 0.49
CWC 0.83 0.07 0.05 −2.11
TTY 0.90 4.27 3.16 0.86

R2, RMSE, MAD, and E indicate coefficient of determination, root mean square error, mean absolute deviations,
and Nash-Sutcliffe coefficient, respectively.
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Figure 7. Comparison between training series (a,c) and testing series (b,d) for biomass fresh 
weight (BFW) and biomass dry weight (BDW) of two potato varieties using the developed 
ANFIS model. 
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Figure 8. Comparison between training series (a,c) and testing series (b,d) for canopy water content (CWC) and total 
tuber yield (TTY) of two potato varieties using the developed ANFIS model. 
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4. Conclusions

The results of this study indicated that the ability of different SRIs (vegetation- and
water-SRIs) for assessing different plant traits dependent on varieties, irrigation regimes,
and the combinations between both conditions. Overall, water-SRIs were better than
vegetation-SRIs for assessing plant traits, particularly BFW, CWC, and TTY, for the two
varieties and across all irrigation regimes. However, both types of SRIs failed to assess
all plant traits under individual irrigation regimes across the two varieties. Furthermore,
both types of SRIs provided a more accurate estimate for the four plant traits when SRI mean
values were calculated across all treatments (irrigation regimes, varieties, and seasons).
The ANFIS models integrated with GA provided a precise estimate of the four measured
traits in the training and testing models (R2 was 1.00 in the training models and from 0.72
to 0.97 in the testing models). Finally, this work’s main conclusion is that combining ANFIS
model results with proximal remote sensing can provide a useful tool for predicting potato
crop traits. Our models are simple and can be used in non-destructive and large-scale
approaches to quickly and accurately predict plant morpho-physiological traits and inform
precision agriculture irrigation practices in regions with water scarcity.
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