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Abstract: In recent years, mathematical modelling has known an overwhelming integration in
different scientific fields. In general, modelling is used to obtain new insights and achieve more
quantitative and qualitative information about systems by programming language, manipulating
matrices, creating algorithms and tracing functions and data. Researchers have been inspired by
these techniques to explore several methods to solve many problems with high precision. In this
direction, simulation and modelling have been employed for the development of sensitive and
selective detection tools in different fields including environmental control. Emerging pollutants
such as pesticides, heavy metals and pharmaceuticals are contaminating water resources, thus
threatening wildlife. As a consequence, various biosensors using modelling have been reported in
the literature for efficient environmental monitoring. In this review paper, the recent biosensors
inspired by modelling and applied for environmental monitoring will be overviewed. Moreover,
the level of success and the analytical performances of each modelling-biosensor will be discussed.
Finally, current challenges in this field will be highlighted.
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1. Introduction

During the last decade, Artificial Intelligence (Al) gained tremendous advances in
different applications. It has been used to solve complicated, nonlinear and dynamic
problems. Besides, it is considered as an alternative approach to conventional procedures,
or as a component of integrated systems to perform modeling, prediction, simulation and
optimization at high speed [1]. Al technologies principally refer to artificial neural
network (ANN), genetic algorithm (GA) and expert system (ES) chemometric methods.
These technologies have been applied to agriculture, climate, finance, engineering,
environment, education, medicine, nanotechnology and various disciplines [2—4]. In
general, Al can be considered as the ability of a machine to mimic functions that
characterize human thought in order to be able to perform very complex tasks. According
to Barr and Feigenbaum, Al is the part of computer science concerned with the design of
intelligent computer systems, i.e., systems that exhibit the characteristics associated with
intelligence in human behavior, understanding, language, learning, reasoning, solving
problems and so on [5-7]. Al technology systems have been gradually improved and have
emerged as a powerful and promising technique in developing reliable, low cost and
rapid intelligent biosensors to treat a large number of data sets, beyond the invariant
technique. Moreover, the integration of Al approaches with biosensors can fill the gap
between data acquisition and analysis, which can lead toeffective and accurate decision
making [8].

Environmental monitoring is one of the growing concerns in the world because of
the hazardous effects of pollutants on human health and ecosystems [9, 10]. The massive
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global contamination of atmosphere, water, and soil is mainly produced by industrial,
wastewater, and domestic effluents through pesticides, heavy metals, pharmaceutical
drugs and biotoxins which are considered as the most commonly observed environmental
pollutants [11,12]. Unfortunately, most of these contaminants are non-biodegradable with
high toxicity and a long half-life leading to bioaccumulation and increasing the risk facing
living organisms [13,14]. Therefore, environmental monitoring plays a key role in
preventing the dangerous effects of these contaminants. Traditionally, their assessment is
based on laborious techniques including high-performance liquid chromatography
(HPLC), gas chromatography (GC), capillary electrophoresis, mass spectroscopy, and thin
layer chromatography [15].Such methods require a huge number of experiments which
would be expensive, time consuming and lead to uncertain estimations [16,17]. Al
technologies are able to overcome problems of conventional mechanisms since they allow
complex mathematical formula computation with detailed information and without the
loss of precision [5]. Many efforts have been thus devoted to the integration of Al in
developing accurate biosensors for environmental pollutants. In addition, a large number
of studies have confirmed that Al technologies are good assistants for environmental
pollution control [18-21]. In view of the wide use of Al to monitor environments, this
review will first introduce environmental pollutants and their hazardous effects. Then,
we will present an overview of fundamental concepts of the recent Al technologies.
Finally, the last part will be dedicated to discussing the different applications of Al
methods in simulation, prediction, optimization, modeling and intelligent biosensing of
pollutants.

2. Major Environmental Toxic Substances and Their Effects

Nowadays, the whole world suffers from toxic substances, mainly produced by
human activities, the pharmaceutical industry, rapid industrialization, and unplanned
urbanization [22], and the textile industry and its dye-containing wastewaters is
considered as one of the major sources of pollution [23]. The wide use of chemicals may
cause cancer, chronic diseases and alter reproductive systems, in addition to damaging
developing brains even at low levels of exposure [24]. Natural and synthetic chemical
substances harmfully affecting the environment, ecosystems and human health are called
emerging pollutants (EP). Nguyen et al. classified environmental toxic agents into four
categories: toxins, pesticides, environmental polluting hormones and persistent organic
toxic chemicals (POTC), pharmaceuticals and personal care products (PPCPs) [25].

2.1. Pesticides

Pesticides are chemical substances that destroy weeds, pests, diseases, insects, etc.,
by disturbing the target physiological activities, causing dysfunction, and vitality decline
[26]. They are mainly used to regulate damages in order to maintain a high product
quality, ensure a high profit, minimize loses, and even to enhance the nutritional value of
food. However, it has been shown that 99.7% of pesticides go into the environment
contributing to pollution and only 0.3% will hit the target [27]. Because they have been
developed to destroy certain organisms, pesticides are highly toxic and harmful not only
for human beings, but they constitute a principal contamination source for the
environment, ecosystems, wildlife, aquatic systems and terrestrial species [28-30].

Some pesticides have a large range of targets, others are specific, and their names
depend on the targets for which they are synthesized (insecticides, fungicides, herbicides,
etc.) [26,31]. Classification of pesticides is mainly based on their chemical nature
(organochlorines, organophosphates); application requirement (agriculture, public
health, domestic); and target organism or targeted use (insecticide, herbicide, fungicide,
etc.) [32].

The highly extended use of pesticides has increased with the appearance of new
targets (new pests, new weeds). In parallel, lipophilicity, bioaccumulation, and the long
half-life of pesticides have been observed to lead to increased contamination of
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environmental factors (water, soil, air). This has also altered the food chain and ecosystem
balance causing hazardous health issues [32-34].Serious health risks have been detected
as a result of high exposure to pesticides mainly through residues in food and drinking
water. Many cause hypertension and cardiovascular disorders [35], others are
cancerogenic, neurotoxic, and act as endocrine disrupting chemicals [36].

2.2. Heavy Metals (HMs)

HMs are a group of metals and metalloids characterized by a high density (higher
than 4000 kg/m?) and a high toxicity even at low concentrations [37,38]. This class of
emerging pollutants comprises arsenic (As), lead (Pb), mercury (Hg), and cadmium (Cd).
Copper (Cu), selenium (Se) and zinc (Zn) are also trace elements that are considered as
heavy metals [39]. Most of heavy metals are produced by industrial processing, mining,
automobiles, pharmaceuticals, electroplating, organic chemicals, and other industrial
wastewater [40,41]. HMs cause huge damage to human life, plant metabolism,
ecosystems, aquatic systems, and the environment largely speaking [42].

Certain HVs are essential for our body at low concentrations, but they become
harmful by exceeding the permissible limit. Respiration, ingestion, and skin are the
principal body’s entry ways for HVs [39]. Heavy metals interfere with the body’s systems
by binding to specific enzyme/proteins and forming ‘free radicals’ which repress the
access of nutritional minerals by entering into competition with them. Thus, HMs can alter
some cellular functions, metabolism, and other substances that are essential to maintain
the organism’s balance [43]. Chronic exposure to heavy metals induces mutagenicity,
carcinogenicity and immunosuppression. Moreover, they may damage kidneys and liver
and alter the levels of different biomarkers and hormones [44]. For instance, high levels of
Pb affect hemoglobin synthesis, kidneys, and reproductive and nervous systems [45,46].
For living organisms, mercury inhalation is the most dangerous and toxic means of
exposure, and can cause severe disease especially to neural and renal systems [47].

The widespread presence of heavy metals in the environment leads to unnatural
growth change in plants, causing an acute problem of pollution in farming soil and quality
of production [38]. It has been demonstrated that oxidative stress and reactive oxygen
species are mainly produced by the high concentrations of Cu in plants [48,49]. A
significant rate of Pb in soil has also been associated with the altered morphology of
different plant species [50]. Moreover, a continuous high exposition of plants to Cr
influences the photosynthesis process by affecting carbon dioxide fixation, the activities
of enzymes, photophosphorylation and electron transport [51,52]. Furthermore, the
liberation of heavy metals into aquatic systems may result in various physical, chemical
and biological processes [53]. For instance, changes in physical condition may include
water pH, organic content of substrate and size of particles in water, thus affecting plants
by reducing species composition, diversity, and density [54-56].

2.3. Pharmaceuticals

In the last few decades, wastewater, drinking water, and superficial water have been
found to be highly contaminated by pharmaceuticals produced by households and
hospitals which are the most important sources of these substances’ emission [57].
Hormones, lipid regulators, pain killers, antibiotics, anti-cancer drugs, and other active
substances have been detected in different environmental situations [58]. Human
excretions are the major sources of these drugs; after their consumption, pharmaceuticals
are excreted unaltered (unchanged) and/or as metabolites [59,60].

Most active substances (such as quinolone, sulfonamide) have a low biodegradability
and cause hazardous effects on humans and the environment [61,62]. For instance,
cytostatic agents and immunosuppressive drugs are mutagenic, cancerogenic and
embryotoxic. Antibiotics and disinfectants are also dangerous because of their toxic
bacteria and risk of fostering resistance. Due to their important biological activity and
large use in agriculture, livestock and farming, antibiotics are widely contaminating soils,
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seas, and drinking water. Their negative effects make them one of the major contaminants
for the environment, water, and food [63]. Illicit drugs (medical substances are used only
for a medical aim; all non-medical uses of these drugs are forbidden by law) [64] are
classified as the latest group of emerging pollutants that mainly affect water and the
environment [65,66]. For example, cocaine, morphine, amphetamine, and MDMA (3,4-
methylenedioxymethamphetamine) have an important pharmacological activity. Their
dangerous impact on aquatic organisms and human health cannot be neglected [67].
These drugs are released in wastewater as unaltered drugs or active metabolites produced
by illegal laboratories or illicit consumption [68,69].Even at low concentrations, illicit
drugs can form a toxic complex with other organic compounds or therapeutic drugs
through pharmacological interaction that may cause hazardous effects for organisms
[70,71].

2.4. Biotoxins

Biotoxins can be defined as toxic substances or products generated by plants, animals
and microorganisms [72]. They are essentially produced by harmful bacteria, alga bloom
or fungi. Biotoxins are responsible for several disorders threatening humans and wildlife
through their carcinogenicity, mutagenicity, and toxicity [73-75]. The large propagation
of biotoxins globally threatens domestic and international trade. The FAO, and EU,US
have thus increased biotoxin limits to a strict maximum [76]. Mycotoxins, algal, bacterial,
and plant toxins are the major group affecting the environment [77]. Among them,
anatoxin-A (ATX), cylindrospermopsin (CYN), and microcystins (MCs) are the most
common toxin groups found in freshwater. We can cite also brevotoxin (BTX), okadaic
acid (OA), palytoxin (PTX), saxitoxin (STX) and others, which are principally classified as
marine toxins [78]. In addition, aflatoxins (AFs), fumonisins (FBs), ochratoxin A (OTA),
trichothecene, and deoxynivalenol (DON) secreted by Aspergillus and Penicillium are
highly toxic mycotoxins found in food and plants [79,80].

3. Advanced Analysis Techniques Based on Artificial Intelligence (AI)

The fifth-generation modeling system combines Al technology and computational
hydrodynamics to assist non-experimented users [81-83]. Numerical modeling is
described as a process aiming to transform knowledge (physical, biological, chemical
processes, etc.) into digital formats, to simulate behaviors and translate the results into
comprehensible formats [84]. AI mimics human intelligence on a machine in order to
improve its efficiency to solve problems using knowledge [85]. Nowadays, Al represents
a promising alternative to conventional techniques for complex problems in numerous
fields. Due to its symbolic reasoning, flexibility and explanation capabilities, Al is
qualified to process nonlinear problems. It is applied for identification, optimization,
prediction and forecasting [2]. Al comprises several technologies, such as Expert Systems
(ESs), Artificial Neural Networks (ANNSs), Genetic Algorithms (GAs), Fuzzy Logic (FL),
Problem Solving and Planning (PSP), Non-Monotonic Reasoning (NMR), Logic
Programming (LP) and others[86]. Some of these types are discussed in the present
review.

3.1. Expert Systems (ESs)

Also called Knowledge Based Systems (KBS), this consists of a computer program
that uses a knowledge base of human experts in solving problems [87]. This knowledge
allows experts to specify rules simulating the process of thinking by providing simple
plans to draw conclusions and solve problems. KBS can also be used for data
interpretation and selecting the right decision from a list of alternatives.

ES has three principal parts: a user interface to communicate with users; an inference
machine acts as a decision maker; and a knowledge basecollected from books, magazines,
and experts [88]. KBS has a wide range of applications since it is able to achieve a high
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level of performance in comparison to that of human experts [83]. For instance, ES can be
used to enhance medical diagnosis systems’ quality, particularly in term of precision
[89,90]. Figure 1 displays the principal components of the expert system.
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Figure 1. Architecture of expert system. Adapted from Maylawati et al. [91], and Salman
and Abu-Naser [88].

3.2. Genetic Algorithms(GAs)

GAs are one of the evolutionary algorithms using computational models of natural
evolutionary processes in developed computer-based problem-solving systems [92]. This
system imitates the process of natural genetics and biological mechanisms. It can be used
to optimize an objective function, comprehend model prediction and behavior, and
determine patterns and relationships, in addition to driving certain phenomena [93].

3.3. Chemometrics

Chemometric approaches are widely used in analytical chemistry, in particular
environmental studies, showing the potency of data processing techniques in this field.
Quantitative chemical analysis, environmental quality assessment monitoring, modeling,
and prediction of toxicological effects are the major areas of interest in chemometric
environmental studies [94,95]. The high potential of chemometrics resides in obtaining
reasonable analytical results from poor quality of data: low resolution, strong signal
overlapping, high level of noise, etc. [96]. Moreover, chemometric techniques improve
sensitivity and selectivity, and lower the detection limits of analytical tools. Data
description and visualization, detection of hidden relations between analytical signals and
sample parameters, discrimination, classification, regression, and prediction are also
performed using chemometric tools [97]. Furthermore, chemometrics suggest solutions
for complex problems by providing pattern recognition of chemical profiles of
environmental or food samples, frequently containing a number of markers to identify
[98].

There are many chemometric techniques, such as: Principal Component Analysis
(PCA), Partial least squares regression (PLSR), Cluster Analysis (CA), Linear Discriminant
Analysis (LDA), Random Forest (RF), etc. These techniques are classified as supervised or
unsupervised tools [99].

3.3.1. Unsupervised Methods

These are widely used in exploratory analysis of the global structure of a dataset, and
in finding trends and patterns within the dataset. In terms of classification or
discrimination of samples, these methods should not be misused. Principal Component
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Analysis (PCA), Hierarchical Cluster Analysis (HCA), and Partial Least Squares
Regression (PLSR) are the most frequently used [100].

Principal Component Analysis

PCA is considered as the most powerful and popular chemometric technique, and is
the basis of several other chemometric methods. This approach is a multivariate statistical
method usually used in exploratory data analysis [101]. In general, all the data intended
for processing are compiled in a matrix form (called X). Each row of this latter matrix
contains raw data (variables) in order to describe each studied sample. The PCA is the
decomposition of the X matrix with n rows (samples) and p columns (variables) into the
product of scores matrix T and transposed loadings matrix P plus residuals matrix E
(Figure 2). The scores are the position of the samples in the space of the principal
components (PCs) while the loadings are the contributions of the original variables to the
PCs [102]. In order to simplify structures and illustrate a large amount of data, PCA is
used to calculate a smaller number of possible meaningful linear combinations (PCs) from
a large number of variables [103]. Moreover, it permits the dimensionality reduction of
data without a significant loss of useful information; exploration of hidden data structure;
selecting the significant analytical signals; and clarifying the interrelation between
samples and variables [102]. In terms of quantitative analysis of multivariate data, PCA is
highly recommended as first instrument [104]. Compared to other multivariate regression
tools which are not widely applied, PCA is the most beneficial tool [104,105].
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Figure 2. Schematic representation of Principal Component Analysis where X: raw data, T: Scores
matrix, P: Loadings matrix, E: Residuals matrix. Adapted from Panchuk et al. [105] and Dupont et
al. [106].

Partial Least Squares Regression

PLSR is an approach that generalizes and combines features from PCA and multiple
regression to relate a descriptor matrix (called X) to a prediction vector/matrix (called Y).
Afterwards, these two matrices are projected to a new space in order to find the common
relations between them (X and Y), leading to a linear regression model. Thus, it aims to
predict or analyze a set of dependent variables from a set of independent variables or
predictors. In addition, PLSR is considered as a powerful linear regression method,
capable of handling collinear variables, and accepting a huge number of variables
[107,108]. PLS loadings are able to indicate a group of chemicals that co-vary with the
given sample properties; also, by attributing qualitive results, PLSR can be used for
discrimination [109,110].
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Hierarchical Cluster Analysis

HCA is a method that involves the assessment of similarities between the samples
based on their measured properties (variables). According to their adjacency in
multidimensional space, the samples are grouped in clusters, and the results are shown
in the form of dendrograms to facilitate the visualization of the relationships between the
samples [111]. This method is suitable for posteriori data explorations [112]. Unlike PCA,
HCA is frequently applied to determine similarities within several groups. These
similarities are calculated using different possibilities, such as the correlation coefficient,
the Euclidean distance, or the Mahalanobis distance [104].

3.3.2. Supervised Methods

Supervised techniques are based on the prior known data structures that are used to
mold patterns and rules in order to predict new data. The advantage of supervised
methods is the predictive capability of the models that can be easily used over a new
sample. Supervised techniques can be performed by linear methods such as Partial Least
Square Discriminant Analysis (PLS-DA), Linear Discriminant Analysis (LDA), or non-
linear methods for instance Random Forest RF and Support Vector Machine (SVM), etc.
[99,113].

Linear Methods

LDA uses the original variables as a basis in order to come up with a linear function,
which maximizes the ratio of between-class variance and minimizes the ratio of within-
class variance [114]. Since parameter optimization is not required, LDA is considered as a
fast and powerful method to use in discriminant analysis [115].

PLS-DA is a combination of PLS regression and LDA, and is considered as the most
popular supervised method used for classification in chemometrics [116]. By checking the
behavior of variables, PLS-DA is able to afford excellent insights into the origin of
discrimination. Furthermore, it can handle collinear data and is widely applied in
modeling and biomarker discovery [117].

Non-Linear Methods

Kernel based models have been used to transform non-linear problems in the original
data into a higher-dimensional feature space using particular functions called kernels.
Subsequently, the non-linear problem becomes linear and can be solved readily [118].
kernel Fisher discriminant analysis (K-FDA) [119], kernel PLS (K-PLS) [120], and kernel
OPLS (KO-PLS) [121] are kernel-based classification methods that have a high potential
in solving non-linear problems.

SVM is a kernel-based classifier used to define decision boundaries and separate
binary classes using support vectors [122]. This approach is centered on finding a
hyperplane that splits two classes perfectly. Whereas the thickness of the margins is
maximized, the distance of the plane to the data point is the closest for each class [123,
124]. SVM is more suitable for data of small sample sizes. However, SVM-based models
suffer from the lack of transparency, and variable importance is difficult to obtain. In
addition, this method does not provide a universal means of solving non-linear problems
[125].

RF is an extremely efficient classifier for high-dimensional data. It is an ensemble-
learning method that consists of a large number of classification and regression trees
(CART) [126]. Classification trees are constructed based on training samples selected from
the original samples by using a random resampling method with a replacement called
bootstrapping. This latter is executed several times to build a large group of simple CARTs
[127,128]. Compared to other classifiers, such as PLS-DA, RF has shown better
performance, and could be an alternative to PLS-DA [129].
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3.4. Artificial Neural Networks (ANNs)

A neuron is a cell that receives, manages, treats and delivers information using
biochemical reactions. The human brain is a network formed by more than 10 billion
interconnected neurons [130]. ANNs have been initiated as mathematical models
simulating the nervous system. Simplified neurons were first introduced by McCulloh
and Pitts, thus giving birth to neural networks [131].

Artificial Neural Networks can be defined as biologically inspired computer
programs aiming to mimic information processes in the human brain. They are considered
as a potential modeling technique, especially for data sets having a complex nonlinear
relationship between dependent and independent variables [132]. ANNSs are trained
through knowledge collected from experiences used as inputs, unlike other techniques
which perform specific tasks by simple implementation on a computer [133,134]. After
training, new patterns can be used for a specific goal such as prediction and classification
without a programming step [5]. Despite the fact that one neuron can execute simple
information processes, the main advantage of ANNs, making them a powerful
computational too], is in connecting neurons in a network [135]. Because of the billion
interconnections between neurons, ANNs can be easily used to recognize a large variety
of input patterns. According to Ferentinos et al., ANN systems allow high-quality, rapid
and high capacity of detection [136]. Moreover, they have been applied as a potential
method for monitoring and assessment of environmental pollution [136,137].

3.4.1. ANN Architecture

ANN:Ss are basically constructed of three layers; input, hidden and output layer. The
first is made of a set of neurons used to receive external data and represent it to the neural
network. In general, these inputs are normalized referring to the thresholds produced by
activation functions. The hidden layer, also called the intermediate or invisible layer, is
responsible for extracting patterns by analyzing processes and systems. The last layer of
neurons is responsible for producing and presenting the final output [138-140]. Each layer
is formed by artificial neurons called processing elements (PEs) that are interconnected,
with links to simulate synapses. Each link or weight represents an adjustable coefficient
used to moderate combination of input signals, transfer function and outputs [134,141].
Inputs are firstly multiplied by the weights, and then combined and passed through a
transfer function to generate the output of that neuron. As biological neurons, artificial
neurons can be excited or inhibited by the inputs. Excitatory inputs cause the summing
mechanism of the next neuron to add, while the inhibitory inputs cause it to subtract [135].
Sigmoid function is the most frequent transfer function used, while a learning algorithm
is used to adjust the weights in order to optimize the learning accuracy of the PE [142].

ANN can be composed of a single layer, leading to a simple neural network, or
multiple layers leading to a multilayer neural network. The simple neural network is
especially adapted for simple problems, while the multilayer neural network is
principally used for more complicated processes [142]. A simple artificial neuron and a
multilayered artificial neuron network schemes are illustrated in Figure 3 and Figure 4,
respectively.
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The treshold
level

Input layer  Weights

Figure 3. Architecture of a simple artificial neuron. Adapted from Agatonovic-Kustrin and
Beresford [137] and Abraham [142].

Neurons

Outputs

Input layer Output layer

Hidden layer

Figure 4. Architecture of a multilayered structure of artificial neural network. Adapted from
Abraham [142].

ANNSs'’ process and behavior are highly affected by neuron connection. Based on this,
ANN:Ss can also be categorized into two groups: feed-forward networks and feedback or

recurrent networks [143].

Feed-forward networks are considered as a static system; there are no loops (absence
of feedback) or connections from output to input neurons. The signals are transmitted in
one direction only from inputs to outputs. Therefore,outputs of the previous operation
are not memorized and the next one depends only on the input signals (memory-less)
(Figureb) [144,145]. This type of architecture can be structured as monolayer or multilayer

composed of one or more hidden neural layers [137,140].
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X1
X2
Yl
X3 Y2
X4 Hidden layer
Input layer Output layer

Figure 5. Feed-forward network structure. Adapted from Agatonovic-Kustrin and Beresford [137].

Recurrent (or feedback) networks are considered as a dynamic system where loops
are formed as a result of connections from output to input neurons(loops). In this case, the
outputs of neurons are used as feedback inputs for other neurons. Such a network system
memorizes the previous state, so that the next state depends not only on input signals but
also on the previous outputs (Figure 6) [135].

Input layer Output layer

Figure 6. Feedback network structure. Adapted from Agatonovic-Kustrin and Beresford [137].

Other architectures have also been also described in the literature, such as the Elman
network, adaptive resonance theory maps, and competitive networks. In general, the
architecture is selected based on the properties and requirements of the application [137].
In parallel, following the type of network and training algorithm, different activation
functions may be used: logistic sigmoid, linear, threshold, Gaussian or hyperbolic tangent
functions [146].

3.4.2. Learning Rules

After selecting the adequate network, a training step is required to produce the
desired outputs at the suitable time, hence the importance of adopting a restrictive
learning rule. Learning rules are different from ANN models; ANN models represent the



Chemosensors 2021, 9, 50

11 of 36

arrangement and the disposition of neural networks, while algorithms compute the
output. A learning rule is defined as any systematic adjustment of weights that minimizes
error function or maximizes a specified benefit function. This means the ANN's
recognizing abilities are based mainly on weighted links [147].

Two main rules can be adopted for training: supervised and unsupervised
algorithms [135]. Fully connected, supervised ANNs with back propagation learning rule
are the most popular, in particular for prediction and classification. In parallel, the
Kohonen or Self Organizing Map with unsupervised learning algorithm is highly used for
finding complex relationships among data [137].

Supervised algorithms: This rule is based on the relation between the inputs and
outputs of a training set. By using this type of algorithm, the network generates the
desired output for every input data. Errors between the obtained values and the known
ones in each output layer nodes are first calculated. Then, these errors are used by the
learning rule to determine proper weights giving suitable results and a high quality of
prediction [148]. It has been reported that the number of hidden neurons must be
optimized, otherwise a system failure can occur decreasing prediction abilities [137,148].

Unsupervised algorithms: This rule requires a training task to classify input patterns
into different categories according to the correlation between them [149]. It consists of an
auto-organized system, since features are selected by the system itself to categorize the
input data and achieve a specific classification. This system behavior implies competition
between neurons, co-operation, or both [137,142,148]. For competitive learning, among a
group of neurons, the one responding strongly to the input will inhibit the other neurons.
For co-operative learning, neurons of each category work together to enhance their
outputs [137].

Hybrid learning is a mixture of supervised and unsupervised learning, which are
combined to determine weights [140].

Reinforcement learning: This type is a variant of supervised learning based on the
correctness of network outputs. This learning rule requires a reward for a correct output
and a penalty for the wrong one [140,150]. Trial and error research and delayed reward
are the two major special features of reinforcement learning [142].

Error-correction rules: During the learning process, an error correction rule is used
to calculate the difference between the desired and the obtainedvalues. The aim is to
adjust the connection weights and gradually reduce this error [149].

Hebbian rule: Almost all neural networks’ learning techniques are considered as a
variant of the Hebbian learning rule, since it is the oldest learning rule based on the
observations of neurobiological experiments [151]. The interconnection of two neurons
has to be enhanced if the two neurons are stimulated at the same time. However, in the
case of a single layer, one of the interconnected neurons will constitute the input unit
while a second one forms the output unit [142].

3.4.3. Training and Testing Neural Networks:

The best way to ensure the efficiency of ANNSs is to execute a number of problems
with different characteristics. The adjustment process or training aim to adjust weights
and threshold to obtain output values close to the desired ones. The number of these
trainings is determined by the complexity of the samples. During training, some noises
can be added to enhance the system applicability in real samples [148]. Poor training data
generates an uncertain network, while an overtraining generates a system unable to make
execution outside of the training set. Other parameters have to be considered, such as the
number of nodes in the hidden layer which plays a key role in the network functionality.
Using many nodes in the hidden layer will increase the number of possible computations
of the algorithm, while just a few nodes in the hidden layer can prevent the algorithm
from learning. Therefore, the right balance needs to be picked [146]. In parallel, selecting
initial weights is crucial, in particular for multidimensional ones. This can be obtained by
testing different initial weight values to attain the desired results. Finally, the system
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performance is also affected by the learning rate since it controls the size of each step
[142,148].

3.5. Modern Computational Approaches:

These approaches are widely used to screen and classify the design/shape of
bioreceptors and forecast the resultant interaction. Since computational approaches are
based on computational calculations, they have anultra-sensitive and selective potential.
In this context, computational docking and molecular dynamics (MD) are two common
techniques based on numerous algorithms and used to predict the interrelation receptor—
ligand.

Computational docking is a promising approach aiming to enrich experimental
structural data on receptor-ligand interactions and optimize the conformation and the
quaternary structure of the formed complexes [152,153]. These techniques are based on
placing a small molecule in the specific binding site of its macromolecular target with an
estimation of the binding affinities [154]. The docking process involves two main
approaches; sampling and scoring, that can be coupled together or occur in different
stages [155]. Sampling is a search process that generates different possibilities of binding
orientations and/or conformations (i.e, modes) between two molecules within the
constraints of the receptor binding site. Scoring is the computation, using the score
between two molecules in a binding mode. Afterwards, the binding modes are ranked
according to their binding scores, and the best ones can be selected as the final docking
solutions (ligand conformation, orientation, and translation) [156,157].

Molecular dynamics is an established simulation tool in biomolecular study, offering
information about the hydrodynamic behavior [158,159]. It is based on modeling
molecular structure using potential-energy functions. In other words, MD simulations
involve the iterative numerical calculation of instantaneous forces present in the system,
a set of particles that move in response to their interactions according to a defined
equation, and the consequential movements in that system. This approach is principally
used to obtain data in the precision and evolution of molecular conformations, but also
kinetic and thermodynamics information [160]. Moreover, this dynamic simulation
method is used to clarify the interaction mechanism quantitatively and qualitatively [161].
In term of environmental monitoring, these computational techniques have been used to
redesign and model essential enzymes (organo-phosphatase) for pesticide hydrolysis, to
reactivate their unexploited catalytic potential, and to determine their mode of action
[162,163].

4. Application of Artificial Intelligence in Environmental Biosensing

Monitoring the environment via biosensors is based on two approaches; affinity-
based sensing where pollutants can be detected by a highly specific receptors, i.e.,
antibodies or aptamers which may come at a cost; and inhibition sensors, particularly
based on enzymes that are inhibited by pollutants [164]. The enzymatic approach is much
simpler and less expensive but the receptor may be affected by other pollutants,
influencing sensitivity and selectivity. Therefore, sensors based on more than one bio-
receptor have to be used for the simultaneous detection of different analytes. To achieve
this, the cross-disciplinary concept of Al is more than a necessity. Al-based biosensors are
based on three elements: information collection, signal conversion and Al-data
processing. Information collection refers to regularly monitoring physical, chemical,
biological, or environmental information using biosensors. The signal conversion aims to
generate an electric output, with a defined sensitivity, from the collected information.
Finally, Al-data processing comprises interface, data classification, data model and
analysis, and decision layer [165,166].
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4.1. Environmental Monitoring Based on Chemometric Methods

Chemometric methods are extensively used in environmental monitoring as they
permit the identification and description of the interrelations between environmental
factors. In addition, they clarify the potential impact of these factors on the environment
[167].

A chemometric approach was used to get a better insight into some trace metal
patterns. The concentrations of Cu, Zn, Mn, Fe, K, Ca, Mg, Al, Ba and B in 26 herbal drugs
were studied using flame atomic absorption and emission spectrometry, as well as
inductively coupled plasma atomic emission spectrometry. Afterwards, a PCA was used
to highlight the relation between the elements. Four significant factors were identified and
partly attributed to the significant influential sources and high mobility of some elements,
thus referring also to potential anthropogenic contamination. In this work, of all
chemometric methods the PCA is the most suitable because it allowed the identification
of factors that are substantially meaningful [168]. In contrast to the previous work which
was based on one chemometric technique, this research group used three chemometric
techniques (PCA, LDA and cluster analysis). In this study, they evaluated trace metal
concentrations (As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Sr and Zn) in spices (black
pepper, chili pepper, cinnamon, cumin, sweet red pepper and turmeric) and herbs (mint,
thyme and rosemary). They used an atomic spectroscopy for the determination of trace
metals, and chemometric evaluation for the classification study. As a result, herbs and
spices were classified into five groups by PCA and CA. Compared to the results obtained
by LDA, it was found that all group members determined by PCA and CA are in the
predicted group and that 100% of original grouped cases are correctly classified by LDA
[169]. Chemometric methods are also used to evaluate phenolic compounds. In this
context, phenolic and flavonoid compounds are identified in four unifloral honey types
using chemometric approaches (PCA and HCA). Moreover, the correlation among the
physico—chemical characteristics was also studied. The first three PCs explained more
than 83% of the variance with minerals showing the highest discriminating power while
HCA successfully classified all the unifloral honey samples. This work demonstrated that
it is possible to effectively classify honey by applying chemometric techniques (PCA and
HCA) [170].

Nowadays, near-infrared spectroscopy (NIRS) is combined with chemometric
techniques in order to monitor the environment [171]. A study reported the quantification
of pharmaceuticals in wastewater using Fourier transformnear-infrared (FT-NIR)
spectroscopy methodology. The samples were treated by chemometric techniques in
order to develop and validate the quantification models. The obtained results were found
adequate for the prediction ofibuprofen, sulfamethoxazole, 17p-estradiol
andcarbamazepinewith R? around 0.95 and residual prediction deviation values above
four. FT-NIR spectroscopy is not used as a direct analysis technique because it suffers
from the complexity of the spectra. For this reason the FT-NIR methodology is combined
with chemometrics, exploring a promising technology which is able to quantify a wide
range of organic compounds [172]. Since lichens are extremely sensitive to the presence of
substances that alter atmospheric composition, near-infrared (NIR) spectroscopy was
developed as a tool for discriminating between lichen samples exposed to air pollution.
In addition, PCA and LDA are used as chemometric methods to successfully discriminate
between samples from polluted and non-polluted areas. The PCA was applied in the NIR
spectra as a multivariate display method to visualize the NIR data. The LDA was carried
out to discriminate between lichens based on their exposure to pollutants. On average,
95.2% of samples were correctly classified, and 100.0% external prediction was achieved.
These results showed that NIR-spectroscopy based chemometric methods can be
considered as a potential reliable method to support traditional methods for the
discrimination between lichen samples according to their exposure to pollutants[173].
Another study based on NIR spectroscopy combined with chemometric techniques was
also described as a monitoring tool of exhaust air from poultry operation systems.
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Samples were collected from the exhaust air of two poultry houses using sophisticated
filter sampling protocols. This study aimed to monitor spectral differences caused by the
cleaning device, and to follow changes in exhaust air characteristics during a fattening
period. PCA, LDA, and FA were successfully used to classify the NIR exhaust air spectra
according to fattening day and origin. The results show that the dust load and the
composition of exhaust air significantly affect the NIR spectral patterns. These results
confirmed that the sample classification according to fattening days, raw and cleaned
exhaust air was possible by using chemometric methods [174]. These results demonstrate
the high potential of NIRS combined with chemometric techniques to monitor an
environment in a non-destructive, quick, and elegant way.

Chemometric approaches are also used to evaluate the influence of seasonal changes
in volatile organic compound concentrations [175], to rapidly classify heavy metal-
exposed freshwater bacteria [176], and to monitor air and water quality [177-180].

The combination of chemometrics and sensors is positioned to be a major
breakthrough in collecting meaningful data and forits depth of analysis in determining
trends and interrelationships [167,171,181,182]. In this context, Lamagna et al., used an
electronic nose to analyze samples that were collected above a river basin in Argentina.
This electronic nose consisted of 32 polymer sensors used to measure the concentration of
SOz and H:S in the air. The combination of PCA and the sensor was used to identify the
sampling sites that deviated significantly from a control sample of clean air. This
combination was able to identify a correlation that existed between polluted sampling
sites and the electronic nose response, indicating that this system could be used for
monitoring pollution in rivers [183]. Another study reported the use of a
potentiometricmultisensor systemin order to assess water toxicity in terms of the bioassay
with three living test organisms:Daphniamagna,Chlorella  vulgarisandParamecium
caudatum.Using a PLS regression from the obtained data, the prediction of water toxicity
with relative errors 15-26% was attainable. Further experimental work with larger data
sets is required to improve the performance of such “artificial bioassays” [184].

4.2. Environmental Monitoring Based on Artificial Neural Networks (ANNs)

Developing a biosensing system able to detect and quantify several targets
simultaneously represents a challenging tool in environmental monitoring. It has been
reported that various pesticides, including organophosphorus (OPs) and carbamate
insecticides, can inhibit cholinesterase activity. Based on this, several enzymatic inhibition
biosensors have been developed [185-192]. However, all have the difficulty in
discriminating between different inhibitors. To overcome this problem, biosensing
platforms have been conjugated with an ANN to find a pattern relating inhibitor
concentrations to the observed inhibition percentages, allowing thus an accurate
biosensing [193]. Table 1 summarize some application of ANN in environmental
monitoring.

Table 1. Summary of Artificial Neural Network (ANN)-based biosensing platforms applied to
pollutant detection.
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LR, and MC- MC-YR 0.26—
YR 19.78%

4.2.1. Pesticide Monitoring

Several intelligent biosensors based on the principle of acetylcholinesterase (AChE)
inhibition and chemometric data analysis using ANNs have been developed
[136,194,196,197,217,226].  Istamboulie et al. developed an amperometric
acetylcholinesterase biosensor based on ANNSs to selectively quantify and discriminate a
mixture of pesticides in real water samples using two constructed ANNs. They modeled
the combined response of two pesticides (chlorpyrifos oxon and chlorfenvinfos) using
sensors incorporating wild-type electric eel AChE and drosophila mutant AChE,
associated or not with a phosphotriesterase PTE. A satisfying prediction ability was
obtained with correlation coefficients better than 0.986 and a limit of detection of 0.02nM
for chlorpyriphos-oxon, and 0.15 nM for chlorfenvinphos [226].

This developed tool used two enzyme variants to detect only two pesticides.
Therefore, other biosensors have been described to reduce the number of enzyme variants
and detect more analytes. A further investigation was conducted by the same group to
generate an array of three biosensors formed by screen printed carbon electrodes and two
different AChE enzymes. The developed device was able to discriminate various
insecticides with high accuracy. In this work, ANNs were used in combination with the
enzymatic activity rate as analytical signal, rather than the inhibition percentage.The
simultaneous detection of the three insecticides mixtures (chlorpyriphos-oxon,
chlorfenvinphos, and azinphos-methyl-oxon) was achieved successfully by applying only
two AChEs from Drosophila melanogaster (wild-type and genetically modified). The
obtained results were very interesting in terms of sensitivity and precision with low error,
and correlation coefficient higher than 0.985. As compared to the previously discussed
work, this method is faster and simpler, allowing the detection of three compounds [196].
Based on the same principle and using a spectrophotometric assay with three different
enzyme systems, the detection of more than two pesticides has been carried out. This
system was successfully applied to resolve the three insecticides chlorpyriphos,
dichlorvos and carbofuran in real water samples, with high correlation coefficients of,
respectively, 0.916; 0.991; 0.959 [198].

Later, Bachmann and Schmid developed, for the first time, a highly sensitive screen-
printed amperometric multielectrode biosensor for the rapid quantification and
discrimination of paraoxon and carbofuran in insecticides mixture. They used four types
of native or recombinant AChEs as specific ligands by combining the AChE-multisensor
with feed-forward ANNs for quantitative inhibition analysis of the binary mixture. The
prediction errors were 0.9 mg/l for paraoxon and 1.4 mg/l for carbofuran with apparent
Michaelis-Menten constant, Km of 0.08 mM. This multi-sensor achieved a LOD of 0.2 ug/L
which is much lower than that obtained in other reports [195].

In another report, Schifer et al. described a high potential assay for the specific
detection of organophosphorus compounds and carbamates incorporating extensive
chemometric data analysis using soluble AChE in the microtiter plate method. In contrast
to the biosensors described above, this assay procedure is restricted to laboratory use only
[227].

Crew et al. went a step further and presented a portable analytical system integrating
an array of six AChE-based enzymatic biosensors in a novel automated device equipped
with an efficient ANN program. This analytical tool was used to successfully resolve a
mixture of 6 pesticides, dichlorvos, malaoxon, chlorpyrifos-oxon, chlorpyrifos-methyl-
oxon, chlorfenvinphos and pirimiphos-methyl-oxon from nM to mM concentration range,
in less than 6 min. In addition, the system was also validated for different sample matrices,
including water, food and vegetable extracts, without false positives or negatives (Figure
7) [228]. Finally, several reports have also described the ANN-assisted biosensing of
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Acetylthiocholine

CoPC-SPCE

AChE

dipterex, dichlorvos, methyl paraoxon, and omethoate [194,196,201,229]. A cell-based
biosensor incorporating ANNs was also established to classify pesticides into different
groups (pyrethroids, carbamates and OPs) [136].
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Figure 7. Schematic diagram explaining the principle of the reactions based on this amperometric biosensor. Adapted

from Crew et al. [228].

4.2.2. Heavy Metals Monitoring

In addition to pesticides, heavy metals biosensing constitutes a great challenge in
environmental monitoring. ANNs have been used for soil and water studies, such as
predicting contamination, measuring organic content and macronutrients, pollutant
infiltration properties and soil classification [205,206,214,230-234].

A sorption model was developed by Anaguet al. for the estimation of heavy metals
sorption from basic soil properties and evaluating the risks related to their apparition. In
this work, nine heavy metals have been targeted; Cd, Cr, Cu, Mo, Ni, Pb, Sb, T, and Zn.
The ANN models showed a high performance with a root mean square error (RMSE)
ranging from 0.04 ug.kg'(Cd) to 0.1ug.kg?(Cr) and a modelling efficiency (EF) ranging
from 0.79 (Cr) to 0.94 (Cd, Zn). By comparing these results to those based on multiple
linear regression (MLR), we can conclude that ANN models behave better than MLR,
where EF ranged from 0.03 to 0.13 [205].

ANNSs have also been combined with electrochemical biosensing platforms for HM
detection in the environment, by using various types of electrodes. For instance, an
electronic tongue approach based on polyvinyl chloride (PVC) membranes has been used
in the rapid and simple on-site monitoring of several heavy metals [210,235-237]. In this
context, a mixture of three heavy metals (Pb?, Cd?*and Cu?*) have been resolved using an
e-tongue (ANNSs) integrated with a membrane selective electrode. A limit of detection of
Img-L'was attained for the three targets with a good reproducibility. In addition, the
correlation was significant for the three ions, exceeding 0.975. Finally, this system showed
a good prediction ability when applied to contaminated soil samples [207]. Despite the
interesting resulting, this strategy is adapted only for three HMs. Therefore, another
group investigated the simultaneous detection of a mixture of four HMs by using the same
principle of potentiometric e-tongue and PVC membranes using ANNs. The method was
successfully applied for the quantification of low levels of Cu?, Pb%, Zn?, and Cd?* ions
from quaternary mixtures in soil, open-air waste streams and rivers with low root mean
squared error values (~1 mmol-L) [210].
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Besides PVC membranes, other electrodes have been used in ANN-based sensing of
heavy metals. A research group investigated the resolution of a mixture of Pb, Cr, Cu, Cd
and chloride ions by using a flow injection set-up method with multiple chalcogenide
glass chemical sensors (electrodes). For this, seven electrodes were constructed and the
output signals were analyzed using multivariate analysis method including artificial
neural networks. The detection limit for Pb was about 3 uM and about 1 uM for the other
metals. Besides, the chloride ions can be determined down to about 1 uM alone, and 20
uM simultaneously with other pollutants. The average error for metals resolution in the
scale from the detection limit went up to about 3 mM, with 10-15% for the metal mixture,
and about 30% for CI- [208]. In another report, a graphite epoxy composite electrode
wasused to detect a quaternary HMs mixture using a specific type of voltametric detection
method. In this work, for the first time, a three-sensor array was applied for the
simultaneous quantification of Cd (II), Pb (II) and Hg (II) ions in certified samples. They
used two graphite epoxy composite electrodes modified with carboxybenzo (CB)-18-
crown-6 and CB-15-crown-5, respectively, and an unmodified one. The crown ethers serve
as molecular collector with ability to selectively coordinate with the metal ions for
complex formation by means of ion-dipole interaction with metal ions. The expected and
the obtained results were very close and the achieved LODs and limits of quantification
(LOQs) were at levels of pg-L. These results confirmed that this biosensing array
provides a discrimination power to resolve HM mixtures [209]. Other studies devoted to
the application of crown ether-modified electrodes for the simultaneous determination of
individual/mixture HMs have also been reported [238-242].

Finally, electrochemical biosensing technologies based on ANNs seem to be
successfully adapted for the simultaneous detection of EP mixtures in the environment at
the ultra-trace level. Furthermore, these systems provide several advantages such as high
specificity, fast response time, portability, simplicity, and low cost,making them reliable
devices for EP monitoring [243,244].

4.2.3. Air and Water Quality Monitoring

Several approaches based on ANNs have been developed for modeling the
monitoring of air and water quality or of environmental systems in general [245-251]. In
this context, a statistical model was developed for the accurate forecasting of the Air
Pollution Index (API) in industrial and residential monitoring stations in Malaysia. For
this, the autoregressive integrated moving average (ARIMA), fuzzy time series (FTS) and
artificial neural network were employed. By comparing the obtained results with that of
ARIMA and FTS, the ANNs exhibited the smallest error in forecasting API values. This
method thus constitutesan effective way to control the air quality and for decision-making
processes [252]. Later, Wang et al. [253] studied the causal relationship between
urbanization and water quality indices, and used this as a support to predict the water
quality. Correlation and path analysis were used to identify the causal relationships,
followed by a back-propagation neural network to predict water quality. The obtained
coefficients of correlation were higher than 0.76 improving thus the performance of the
optimized model for predicting urban water quality with nonlinear variation. However,
this work was limited to simulation studies in calculating the API. Another report
describing experimental validation of modeling has been published. The authors
developed an electrochemical sensor array based on the inhibition of immobilized bacteria
for the preliminary detection of a wide range of organic and inorganic pollutants. The
objective of this work was based on heavy metal salts, pesticides, and petrochemicals
monitoring in water using three types of bacteria, namely Escherichia coli,
Shewanellaoneidensis, and Methylococcuscapsulatus. The response of each pollutant was
monitored with more accurate recognition using the ANNs. The obtained system was
capable of resolving all these pollutants at low concentrations (down to 0.1 uM) [254].
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4.2.4. Pharmaceuticals Monitoring

Several electrochemical biosensors assisted by ANNs have been developed for
therapeutic substances detection, in particular phenolic compounds mainly based on
tyrosinase (Tyr) and laccase (Lac) [255]. Gutéet al. developed an electrochemical biosensor
combined with ANNs to simultaneously detect different phenols (phenol, catechol and
m-cresol). A single graphite epoxy bio composite bulk-modified with Tyr was used in
combination with a sequential injection analysis (SIA) system. Departure information was
extracted via the whole voltammogram, and then ANNs were used for extraction and
quantification of each compound. The model of the three analytes shows a good
correlation coefficient: phenol 0.988; catechol 0.997; and m-cresol 0.993 [165]. In this study,
the authors compared the obtained results with that of a previous study reported by
Trojanowicz et al. [256], based on the same principle, by using only the steady-state
responses rather than the whole voltammogram. The authors confirm that the results of
this method were not performant with low correlation coefficients between expected and
predicted values. Therefore, they attributed this to the lack of the data afforded by the
system. Later, another biosensor based on the same principle and on three composite
electrodes bulk-modified with tyr, lac, and copper nanoparticles has been developed for
the simultaneous monitoring of catechol,m-cresol and guaiacol in wastewater. The
method was based on a voltametric bioelectronic tongue where the electrochemical
responses of the three composite electrodes were compressed by means of fast Fourier
transformation. Each voltammogram was compressed down to a number of coefficients
which were used as inputs to the ANN model. The system was also applied for the photo-
degradation monitoring of the three phenolic pollutants. This proposed approach
exhibited a good correlation coefficient with a RMSE of 1.50 for the training subset and
4.20 for the testing subset. These results showed the powerful potential of this approach
for the speciation of different phenolic compounds in wastewater and the monitoring of
its mineralization. Moreover, using this approach, a quantitative multi-determination of
a mixture of chemical species can be easily attainable with simple equipment, shifting the
complexity from the sensors to the software side [219]. Later, Boroumand et al. reported
the flow injection simultaneous kinetic determination of two isomers, Hydroquinone and
catechol. In this work, a simple FIA manifold equipped with double injectors and single
detection system was combined with a Bayesian Regularized Artificial Neural Network
for determining the targets in real samples. Detection limits of 0.05 and 0.07 mg-L-! were
obtained for HQ and CC, respectively [216].

4.2.5. Biotoxins Monitoring

The great potential of ANNs for resolving multivariate calibration problems has been
also explored for biotoxins analysis. For instance, Saidi et al. reported the rapid
determination of OTA by a spectrofluorimetric procedure-based ANN. The study
described the application of the ANN method to a set of spectrofluorimetric data obtained
from the analysis of wheat and rice samples contaminated with OTA. The obtained results
were significant with a correlation coefficient of 0.995 and a mean square error of 0.036
[79]. Another method using an electronic nose equipped with a 10-metal oxide sensor
array has been subsequently reported based on a set of data collected over five years. This
e-nose array allowed the rapid identification of aflatoxin B1 and fumonisins in maize
samples using three different statistical approaches: ANN, logistic regression, and
discriminate analysis. Notably, ANN gave better results than the other methods, with 78%
and 77% accuracy for AFB1 and FBs, respectively. In contrast to certain strategies [257],
the majority of the data set in this work were collected over five years and analyzed in
different ways providing, thus, a remarkable reliability [258].

Another model based on artificial neural network was developed to estimate blue-
green algae fluorescence for the year-round data collected in 2016-2017 from western Lake
Erie, USA. Eight input parameters including phosphorous, nitrogen, chlorophyll-a, air
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temperature, water temperature, turbidity, wind speed, and pH were used to run the
model. Five different learning algorithms were tested, and among these the Levenberg-
Marquardt algorithm gave the highest R? values of 0.98 and 0.72 for the eight and three
(phosphorous, nitrogen, and chlorophyll-a) input parameters, respectively. Based on this,
the best estimation of blue-green algae fluorescence was achieved using eight input
parameters while a weak correlation was obtained with the three input parameters. This
method allows the rapid and low cost prediction of blue-green algae by using simple
measurements [259].

4.3. Environmental Monitoring Based on Genetic Algorithm (GA)

Genetic algorithm plays an important role in environmental monitoring, particularly,
in optimizing the quality of the developed systems, improving thus the final results
[260].Table 2 summarize some application of GA in environmental monitoring.

Table 2. Summary of genetic algorithm (GA) applied to pollutants detection.

. Detectio Predictionerr Correlation
Biomarker Method LOD or Coefficient Reference
Fourier
transform
Malathion infrared + / 0.059 mg-mL~* 0.999 [261]

partial least
square (PLS)

Surface-
chlorpyrifos enhanced
contents Raman / 0.29 0.96 [262]
spectroscopy
(SERS) + PLS
. Spectrophoto Copper 0.0407
Zinc + Copper metry + PLS / Zinc 0.0865 0.999 [263]
COD, BODS, spectrophoto
TSS, P, TN, °SPeCOP / <4% / [264]
NO3 -N metric
Ochratoxin-A eifaf:::id OTA263x  OTA: 0.456
(OTA) and Raman 10~ g/L pugmL-1 OTA: 0.962 [265]
aflatoxin-B1 ? . AFT-B1 4.15 x AFT-B1: 0.441 AFT B1:0.972
§ spectroscopy . o
(AFT-BD)  resyaprs 10 g/L ug-mL

Karkraet al. have applied genetic algorithm to 24 water samples containing eight
different heavy metal ions (Cd, Co, Zn, Ni, Cu, Cr, Ag and Pb). The goal of this study
consisted in selecting the optimal electrode as well as the corresponding frequency
allowing the classification of heavy metal ions. Different electrodes including gold,
platinum, glassy carbon and silver nanoparticles were tested in combination with
different frequencies. Genetic algorithm was used to select the electrodes giving the best
combination. In parallel, GA provided the best clustering indexes, a similarity index of
0.599, Davies-Bouldin index lower than 0.112 and a sufficient value of dissimilarity index
which confirms the significant distance between the formed clusters. Based on this study,
various hazardous metal ions present in the tested water samples have been optimally
classified. However, this system is more complex as it uses multiple electrodes, thus
increasing the time and cost of fabrication [266]. Apart from HMs, genetic algorithm has
been also used for the monitoring of other pollutants. Carreres-Prieto et al. have
developed a spectrophotometry-based statistical model to estimate chemical oxygen
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demand (COD), biological oxygen demand at five days (BODs), total suspended solids
(TSS), phosphorus (P), total nitrogen (TN) and nitrate nitrogen (NOs-,N) of both raw and
treated water without the need for any pre-treatment or chemicals. Multivariate linear
regressions and machine learning genetic algorithm have been used to measure the
spectral response of wastewater samples based on the absorbance and transmittance in
the UVnear visible and visible 380-700 nm wavelength range. The obtained results have
shown that the multilinear regression models can estimate only COD and TSS of raw
water with less than a 0.5% error rate. In parallel, the models elaborated by means of GA
can predict the degree of five pollutants (COD, BODs, TSS, TN and NOsN) in both raw
and treated wastewater with an error rate below 4% [264]. In contrast to the previously
reported water quality assessment methods based on a single wavelength [267-270], the
use of genetic algorithm, in this work was based on multiple wavelengths (81
wavelengths). Therefore, it improved the estimation accuracy of the pollution load of
wastewater.

Other studies investigated the combination of Partial least squares (PLS) with genetic
algorithm to extract pertinent information and produce truthful models. Nowadays, the
PLS concept is applied by several researchers, according to Martens and Nea's algorithm
[271,272]. However, the choice of wavelength would critically affect the future predictive
ability of the model. To overcome this problem several selection methods have been
developed, e.g., artificial neural network [273], Tabu search [274], hybrid linear analysis
(HLA) [275], successive projection algorithm (SPA) [276], and genetic algorithm. In this
context, a simple, fast and accurate procedure for quantifying malathion has been
developed. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectra
were used to select a specific region for the quantitative analysis using partial least square
(PLS) and two wavelength selection methods: principal component regression (PCR) and
genetic algorithm. Then, the relative error of prediction was calculated: 3.536, 1.656 for
PLS and PCR-PLS, respectively, and 0.188 for GA-PLS, with correlation coefficient of
0.999. Based on this, we can say that GA can be considered as a helpful wavelength
selection method for better capability of prediction [261]. Later, genetic-algorithm-based
wavelength selection in multicomponent spectrophotometric determination by PLS was
developed to detect a mixture of zinc and copper without a pretreatment. The method
was based on the reaction between the analytes and a chromogenic reagent (2-carboxy?2'-
hyroxy-5'-sulfoformazylbenze (Zincon)) at pH 9. A series of synthetic solutions containing
different concentrations of copper and zinc were used to check the prediction ability of
the GA-PLS models. The root mean squares difference (the average error in the analysis)
for copper and zinc with GA and without GA were 0.0407 and 0.0865, 0.2147 and 0.3005,
respectively. Despite the high spectral overlapping observed between the absorption
spectra of the mixture components, the obtained results proved the high potential of this
approach to overcome the spectral interferences and detect simultaneously the cited ions
in natural, tap and waste waters. Another pertinent point is that the selected variables
clearly identify spectroscopically relevant regions, which demonstrated also the utility of
GA for feature selection in a spectral data set [263].

In a recent study, Sajadi et al. used modeling and simulation of chemical reactions to
construct a potentiometric AChE biosensor of Aflatoxin Bl by determining the optimal
reaction rate constants. Enzymatic reactions were simulated using COMSOL software
while reaction rates were optimized by ANN and GA. This method has shown satisfactory
results with Mean Absolute Percentage Errors equal to 0.7074%, 0.9458%, 0.7473% and
0.7492% for train, validation, test and total data sets, respectively, and correlation
coefficient higher than 0.999. As compared to the results obtained with other models used
for predicting AChE enzyme inhibition by AFB1 [277,278], these results showed that
trained Neural Network using Genetic Algorithm optimized reaction rates, exhibiting the
lowest MAPE [224].
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4.4. Environmental Monitoring Based on Expert System (ES)

In addition to genetic algorithm, expert systems are also used for environmental
pollutants monitoring. An expert system devoted to voltametric methods for determining
mercury (Hg), vanadium (V), and selenium (Se) has been developed. This work was an
improvement on a previously described expert system for the determination of Cu, Zn,
Cd, Pb, In, Ni, Co, T, Hg, V and Se, at trace levels [279,280]. The expert system was
developed using a knowledge engineering system, in order to guide the user to choose
the sample treatment and the most appropriate voltametric procedure for the
identification and the quantification of the three trace metals. Four techniques were
implemented: differential pulse polarography, anodic stripping voltammetry, cathodic
stripping voltammetry and adsorptive stripping voltammetry, using mercury drop
electrodes and a gold electrode. The authors demonstrated that the reported technique
constitutes a very useful and reproducible approach, in particular for non-expert users in
this field [281]. Based on ES, advanced mathematical techniques have also been designed
in order to manage water quality monitoring networks. These studies include the
development of a software tool for decision support, based on the application of fuzzy
logic techniques and using the experience and knowledge of experts in this field. This
system indicates water quality episodes from the behavior of variables measured at
continuous automatic water control networks, which can hardly be detected by discrete
sampling. Based on the recorded variables, the expert system provides different water
quality phenomena indicators. These latter may be associated with a high probability of
cause-effect relationship including human pressure on the water environment, urban
discharges, or agricultural diffuse pollution. These indicators will forecast and complete
manual sampling and laboratory analysis. Besides, this study demonstrated the ability of
the expert system based fuzzy-logic to synthesize complex information, interpreted only
by a few performant experts, and translated it into more understandable indicators for
non-expert users [282].

In the literature, few reports have described ES in environmental monitoring, which
can be explained by the necessity of deeper levels of understanding, interpretation, and
expertise in the overall processes. The lack of knowledge available for a process leads to
complex codification, in particular for activities that involve significant amounts of
pattern recognition, generalization, and use of analogy [283]. Since an increasing number
of researchers emphasize hybrid methods instead of single ones, more efforts should be
focused on the use of ES combined with other strategies to involve contextual perspectives
and develop high-quality models to monitor the environment [284,285].

4.5. Environmental Monitoring Based on Computational Approaches

In term of monitoring the environment, computational approaches have been
explored to develop/redesign new bioreceptors or to reactivate biocatalysts for reactions
of interest [152,162,286].

Computational approaches have been used to simulate a specific aptamer for
diazinon, by studying molecular behavior and complex stability. The best sequence
exhibiting a high affinity to bind Diazinon, was selected among twelve aptamers isolated
from SELEX experimentation. Initially, Jokar’s team used a docking technique as first
virtual screening to select the most frequent conformation of each aptamer. Then, the
docking results were used as inputs to molecular dynamics for a secondary screening. MD
allows the simulation of the quantity and quality of aptamer-diazinon interaction,
pointing out the conformational flexibility. In addition, it highlights the bonding
interactions between diazinon-aptamer complexes showing the important role of binding
energy in reinforcing this complex. Computational screening and analytical results
showed that G-quadruplex DNA aptamer (DF20) with its stable complex, low oscillation,
shifting toward folded states and high ratio of H-bond aptamer-Diazinon was the reliable
candidate for diazinon biosensing. Based on simulation results, a colorimetric biosensing
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platform was constructed for the ultrasensitive detection of Diazinon in the range of
0.141-0.65 nM with a LOD of 17.903 nM. Finally, the AuNPs-apta-sensing strategy was
validated using a computational molecular approach. These computational approaches
provide thus a promising alternative to laboratory experiments for receptor structure
screening and the prediction of interaction outcomes [152].

Computational techniques also have a great potential application in studies
redesigning the essential enzymes for OP hydrolysis and reactions that are not known to
be catalyzed by natural enzymes. In this context a computational method has been
developed to redesign a mononuclear zinc metalloenzyme for organophosphate
hydrolysis. This approach aims to repurpose the reactivity of metalloenzyme active site
functional groups for catalyzing new reactions. Based on this principle, Khareet al.
engineered a zinc-containing mouse adenosine deaminase to catalyze the hydrolysis of an
organophosphate substrate with a catalytic efficiency (kcat/Km) of ~10* M1-s7. In the high-
resolution crystal structure of the enzyme, all the conception residues adopt the designed
conformation except one residue. This computational enzyme design method could be
considered as a general approach for exploring untapped catalytic potential for new
reactivities [162]. Likewise, an optical biosensor for environmental monitoring has been
developed based on protein modelingand computational screening followed by
virtualmutagenesisanalyses. This approach was used for the engineering of functional
amino acids in the D1 protein of the photosyntheticelectron transferchain
ofChlamydomonas reinhardtii. These functions are able to detect two classes of pesticides,
triazineandurea. The resulting protein was subsequently used to develop an optical
biosensor for environmental monitoring with limits of detection between 0.8 x 10! Mand
3.0 x 10 M, depending on thetarget analyte (Figure 8) [287].

Diazinon captured by
G-Quadruplex

Add Diazinon

»

Aggregation of AgNPs

*

AgNPs  Aptamer NaCl  Diazinon G-Qua'druplex

Figure 8. A schematic representation of the principle of Diazinon colorimetric aptasensing.
Adapted from Jokar et al. [152].

Nanoparticles affect negatively living organisms(cytotoxic, neurotoxic, genotoxic,
etc.) and environmental ecosystems, and in that sense computational methods have been
used as an efficient tool to assess and evaluate the hazardous effects of toxic nanoparticles
[288]. Because of the high-cost and time-consuming of the experiments, the quantitative
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structure—activity relationship (QSAR) method is commonly used to predict the toxicity
of different nanomaterials by developing nano-QSAR models [289].

Finally, the application of computational approaches in environmental pollution
control is very limited in the literature. Further researches should be devoted to this Al
technology in order to develop more reliable and robust devices to monitor pollutants that
should not be underestimated [15,285].

5. Conclusions

Environmental pollutants such asheavy metals, pesticides, drugs, and biotoxins are
extensively dangerous for all aspects of being organisms, including health, food, energy,
etc. Monitoring systems traditionally used for these contaminants are limited by low
efficiency, high cost and time consumption [290]. This paper reviewed the important
applications and the recent progress in sensing strategies integrating artificial intelligence
as a tool for modeling environmental monitoring. Al-biosensors are considered as an
efficient analytical tool to detect the presence of one or more pollutants in complex
samples with high sensitivity and selectivity. Furthermore, the ability of Al-approaches
to learn by training and examples makes them flexible and powerful, and highly adapted
for real time systems. In this context, numerous studies based on the integration of various
Al technologies, including KBS, GA, and ANN, into numerical modeling systems have
been discussed [22,254,291].

Al-biosensors in the environmental field are limited, in terms of the lack of
applications in real samples comparing to medical applications. However, there are a few
state-of-the-art biosensors for environmental monitoring, used for in situ operations and
analytical performance. Therefore, there is a further challenge to develop improved and
sensitive Al-tools to detect pollutants. Finally, Al-biosensing will provide a new platform
for future innovation. In addition, considerable efforts are required to design reliable and
robust devices that will enhance pollutant detection.
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