

Supporting Information

Label-Free Electrochemical Biosensor Based on Au@MoS₂-PANI for *Escherichia coli* Detection

Pushap Raj¹, Man Hwan Oh², Kyudong Han^{2,*} and Tae Yoon Lee^{1,3,*}

- ¹ Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Korea; pushap143@gmail.com
- ² Department of Microbiology, College of Science & Technology, and Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea; lty816@hotmail.com
- ³ Department of Technology Education and Department of Biomedical Engineering, Chungnam National University, Daejeon 34134, Korea
- * Correspondence: jim97@dankook.ac.kr (K.H.); taeyoon.lee@cnu.ac.kr (T.Y.L.)

Figure S1. Powder XRD pattern of MoS2 nanosheets.

Figure S2. UV–visible absorption spectra of MoS₂ nanosheets dispersed in DI water, the inset showing a photograph of MoS₂ dispersed in DI water.

Figure S3. FT-IR spectra of MoS₂ nanosheets.

Figure S4. FT-IR spectra of MoS2–PANI composites.

 $Figure \ S5. \ Powder \ XRD \ pattern \ of \ MoS_2-PANI \ composites.$

Figure S6. CV spectra of the biosensor in the presence of *E. coli* in 5 mM [Fe (CN)₆]^{3-/4-}, 0.1 M KCl, and 0.1 M PBS buffer (pH = 7.4).

Figure S7. Change in the DPV current of the biosensor in the presence of different bacteria having a concentration of 10^5 CFU/mL. ($\triangle I = (I_0 - I)$, where I_0 is the current of biosensor in the absence of bacteria and I is the current of the biosensor in the presence of bacteria.).

Figure S8. DPV spectra of the biosensor electrode after 21 days of storage at 4 °C in 5 mM [Fe $(CN)_6$]^{3-/4-}, 0.1 M KCl, and 0.1 M PBS buffer (pH = 7.4).

Figure S9. Effect of regeneration on the DPV peak current of the biosensor to 10^4 CFU/mL of *E.coli* in 5 mM [Fe (CN)₆]^{3-/4-}, 0.1 M KCl, and 0.1 M of PBS buffer (pH 7.4).

Trans- ducer	Materials Used	Detection Technique	LoD (CFU/mL)	Working Range (CFU/mL)	Analysis Time	Sample Analysis	Ref.
Au elec- trode	rGO-CysCu	EIS	3.8	$10 - 10^{8}$	-	Water, juice and milk	S1
Graphene oxide paper	AuNPs	EIS	1.5×10^{2}	$\frac{1.5 \times 10^2 - }{1.5 \times 10^7}$	30 min	Food sam- ples	S2
GCE	Au-SiO ₂	CV	15	$3.2 \times 10^{1} - 3.2 \times 10^{6}$	40 min	Stool sam- ples	S3
Au elec- trode	Au-PANI	EIS	10 ²	10 ² -10 ⁷	10 min	-	S4
Au elec- trode	Reduced graphene oxide/poly- ethyl- enimine	DPV	10	10–10 ⁸	-	Blood and urine sam- ples	S5
Au-coated glass plates	Cysteine 3D-flower	CV and EIS	4.7	10–3 ×10 ⁹	5–40 min	-	S 6
FTO	ZrO ₂ -Ag- G-SiO ₂ and In ₂ O ₃ -G- SiO ₂	CV	10	10–10 ¹⁰	30 min	-	S 7
ITO/PET	benzaqui- nine	Colorimetry and CV	10 ³	10 ³ -10 ⁹	60 min	-	S 8
SPE	SiO ₂ NPs	CV	10 ³	$10^{6} - 10^{9}$	5-30 min	_	S9
GCE	Au@MoS2- PANI	CV, DPV and EIS	10	10–107	30 min	urine sam- ple	Current work

Table S1. Comparison of literature-reported E. coli biosensors and the proposed biosensor.

References:

S1. Sens. Actuators B, 238 (2017) 1060-1069.

S2. Biosens. Bioelectron., 49 (2013) 492-498.

S3. Biosens. Bioelectron., 49 (2013) 485-491.

S4. Sens. Actuators B, 171–172 (2012) 916-923.

S5. Sens. Actuators B, 260 (2018) 255–263.

S6. Biosens. Bioelectron., **61** (2014) 328-33.

S7. ACS Omega, **5** (2020) 22719–22730.

S8. Anal. Chem. 91 (2019) 7524-7530.

S9. Sens. Actuators B, **292** (2019) 314–320.