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Abstract: The growing use of wearable devices has been stimulating research efforts in the de-
velopment of energy harvesters as more portable and practical energy sources alternatives. The
field of piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs), especially
employing zinc oxide (ZnO) nanowires (NWs), has greatly flourished in recent years. Despite its
modest piezoelectric coefficient, ZnO is very attractive due to its sustainable raw materials and the
facility to obtain distinct morphologies, which increases its multifunctionality. The integration of
ZnO nanostructures into polymeric matrices to overcome their fragility has already been proven to
be fruitful, nevertheless, their concentration in the composite should be optimized to maximize the
harvesters’ output, an aspect that has not been properly addressed. This work studies a composite
with variable concentrations of ZnO nanorods (NRs), grown by microwave radiation assisted hy-
drothermal synthesis, and polydimethylsiloxane (PDMS). With a 25 wt % ZnO NRs concentration in
a composite that was further micro-structured through laser engraving for output enhancement, a
nanogenerator (NG) was fabricated with an output of 6 V at a pushing force of 2.3 N. The energy
generated by the NG could be stored and later employed to power small electronic devices, ultimately
illustrating its potential as an energy harvesting device.

Keywords: energy harvesting; nanogenerators; ZnO nanorods; microwave assisted hydrothermal
synthesis; PDMS; micro-structuring

1. Introduction

The establishment of wearables has created new energy supply challenges. This
supply is mainly provided by batteries and capacitors, which despite delivering a high
output, commonly in a mW scale, are only able to do it for a limited time and with the
inconvenience of their bulkiness. Given that low power devices do not require such high
outputs, energy scavenged from the environment through energy harvesters can be a
viable alternative to batteries and similar devices. In fact, energy harvesters can scavenge
energy almost at any time without interruptions and through small devices that are more
compatible with wearables [1].

Piezoelectric materials can transduce mechanical energy into electrical energy through
strain induced piezoelectric polarization [1]. Several crystalline materials exhibit this
type of piezoelectric behavior, namely lead zirconate titanate (PZT) [2–5], gallium nitride
(GaN) [6], barium titanate (BaTiO3) [7–9], zinc tin oxide (ZnSnO3) [10–13], or zinc oxide
(ZnO) [6,14,15]. In terms of performance, piezoelectric ceramics (such as PZT and BaTiO3)
have the best output, although their brittle nature limits the device regarding mechanical
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stresses [16,17]. From all piezoelectric materials, PZT is by far the most widely employed,
presenting a high d33 value of 593 pC N−1 [18], while ZnO nanoparticles (NPs) present a
lower d33 value (≈10 pC N−1) [13,19,20]. However, the lead content in PZT is highly toxic,
and therefore hazardous for the environment [21], which motivates the search for a more
conscious option based on a lead-free material. In line with this, ZnO appears as a good
alternative due to its easy fabrication, high abundance, and good performance [22,23].

In the case of the triboelectric effect, which results from the combination of triboelec-
trification (surface charges generation through the rubbing of two different materials) and
electrostatic induction, almost any pair of dissimilar materials can be employed to induce
charges mainly through friction [24]. At the nanoscale, these materials can be stimulated
by tiny physical motion and the excitation frequency can vary from a few Hz to thousands
of Hz, which is ideal for harvesting random energy from the environment [1].

Nanogenerators (NGs) revolutionized the field of energy harvesting and sensing,
while contributing to a sharp growth of publications and research collaborations in these
areas of research [15,24–30]. In 2006, Wang and co-workers demonstrated the use of
materials at the nanoscale, such as a ZnO nanowires (NW) array, to fabricate piezoelectric
nanogenerators (PENGs) [31]. This was a turning point for piezotronics, and 6 years
later a triboelectric nanogenerator (TENG) was developed [32]. The high potential and
capability of PENGs and TENGs can lead to many new instruments in different systems.
For example, NGs can be used in biomedical and rehabilitation devices as smart sensors,
or as a sustainable energy source [24,25,33–36].

Regarding the performance of NGs based on ZnO nanostructures, a wide range of
outputs has been reported [37–40]. The NGs’ performance is deeply related to the mor-
phology of the nanostructures, and structure of the electrodes and their material, since one
of the drawbacks of these devices is the difficulty in extracting the generated voltages [41].
For NGs based on composites of nanostructures and polymers, the nanostructures con-
centration should also be considered for the optimization of electric polarization, since an
excessively high NPs concentration may lead to partial cancelling of the electrical dipoles,
which reduces the output of the device [42,43]. For a NG configuration based on ZnO NWs
vertically grown on both sides of a substrate, with electrodes made of ZnO NWs coated
with gold and a matrix of polydimethylsiloxane (PDMS) surrounding the NWs, output val-
ues of 6 V/4 nA/0.39 nW cm−2 were achieved with a finger bending [41]. For another NG
using ZnO nanoflowers mixed with PDMS and multiwalled carbon nanotubes (MWCNTs)
sandwiched between two aluminum electrodes, an output of 75 V/3.2 µA/260 mW cm−2

was obtained by a person walking with slippers that had the depicted device inbuilt in
the soles [43]. These two examples illustrate the versatility of ZnO nanostructures and the
advantages of a composite in the overall device performance.

ZnO nanostructures with different morphologies were already synthesized, with dif-
ferent properties (electrical, optical, piezoelectric, etc.) observed for each morphology [44].
As an example, nanostructures with smaller sizes demonstrated a more efficient charge
transport and a wide band gap, due to the quantum confinement [45]. Another example is
the higher efficiency demonstrated by nanostructures with higher surface area (nanoparti-
cles and nanoplates/nanosheets) for sensing applications [46]. Hence, ZnO nanostructures
and thin films have a broad range of applications, from ozone sensors [47] to transistors [48],
photocatalysis [49,50], UV sensors [51–53], solar cells [54], Raman platforms [55], amongst
others. The high interest of ZnO nanostructures, particularly nanorods (NRs), for energy
harvesting applications [31,56–59], possibly fomented their synthesis though several meth-
ods [60–63]. One interesting method is the hydrothermal synthesis under microwave
radiation since it is a low-cost, low-temperature, and fast method, yet allowing a high yield
production of hexagonal wurtzite structures [46,64]. Despite the advantages, ZnO NRs
produced through this method have been essentially explored for UV sensors [46,51,65,66],
gas sensors [67–70], and photocatalysis [49,71,72], yet not for NGs.

A common approach to produce robust devices using NRs or NWs is their mixture
with a polymer matrix, such as polyvinylidene fluoride (PVDF), PDMS, and poly(methyl
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methacrylate) (PMMA), allowing the preservation of their original structure [40,73,74].
There are several examples of this approach in which the use of a composite showed good
results [37,42,75]. In TENGs, the micro-structuring of the film leads to an increase of the
devices triboelectric output, allowing a performance improvement [43,76]. The same type
of approach was recently employed in PENGs based on ZnSnO3 nanowires, which also
showed an enhancement of the piezoelectric properties [13]. Beyond the performance
improvement, a polymer matrix increases flexibility and fatigue resistance to mechanical
strain [1].

With the previous research as a starting point [13], this work presents the fabrication
of a NG based on a composite of ZnO NRs embedded in a PDMS matrix. With the aim
of enhancing the devices’ performance, the concentration of the NRs in the PDMS film
was studied and the composite was further micro-structured through laser engraving
technique [77]. The device showed a high stability under stress and over time and, as a
proof of concept, a high intensity light-emitting diode (LED) and a commercial household
thermometer were powered using the optimized device, testifying the NG’s capability
as an energy harvester. Furthermore, this work demonstrates that ZnO NRs synthesized
through microwave radiation assisted hydrothermal synthesis, instead of the conventional
synthesis methods, undoubtedly show a great potential for energy harvesting applications,
which proves that it is feasible to obtain functional NGs through low-cost, low-temperature,
and fast fabrication processes.

2. Materials and Methods

Acrylic molds were produced as described in a previous work [77], and used to micro-
structure the ZnO@PDMS composite, having aligned micro-cones cavities with a cavity
gap <100 µm. Briefly, a laser engraving machine (VLS3.50, 50 W, Universal Laser System,
Katy, TX, USA) with a CO2 laser beam, a lens’ focus length of 2.0 in, a focal spot diameter
of 127 µm, a power of 25 W and a speed of 0.1524 m·s−1 was employed to engrave acrylic
plates with arrays of symmetrical aligned crosses (100 µm) with a cross gap of 300 µm in
an area of 2 × 2 cm2.

The ZnO NRs were produced by hydrothermal synthesis assisted by microwave
irradiation, as described in reference [78]. Essentially, 3.3 g of zinc acetate dihydrate (ACS,
98–101.0%, Fisher Scientific, Hampton, NH, USA) were dissolved in 30 mL of de-ionized
water, and the solution was put in agitation. 9.6 g of sodium hydroxide (Labkem, Sevilla,
Spain) were added to the previous solution. The surfactant solution was produced by
mixing 300 mL of deionized water with 0.09 g of sodium lauryl sulfate (SLS, 95%, extra pure,
from Scharlau, Barcelona, Spain). Then 6 mL of the first solution were mixed with 15 mL
of the surfactant solution and 30 mL of 2-ethoxyethanol (Honeywell Research Chemicals,
Porto Salvo, Portugal). The final solution was transferred to 3 Teflon® vessels of 20 mL. The
vessels were then placed in a microwave (CEM-MarsOne, from CEM, Charlotte, NC, USA)
to be heated at 110 ◦C for 40 min (with a temperature ramp of 7 min and under a power of
600 W). The vessels were afterwards cooled down to room temperature and the ZnO NRs
were then washed by successive centrifugation at 4000 rpm for 5 min with propan-2-ol
(ALLRESIST GmbH, Strausberg, Germany) and deionized water, for about 10 times. The
NRs were finally dried at 84 ◦C for 6 h.

For the fabrication of the NGs, ZnO NRs were mixed with the PDMS elastomer (Dow
Corning, Midland, MI, USA) in a ratio of 15, 20, 25 or 30 wt %, and ethyl acetate from
Fluka-Honeywell (Portugal) (enough volume to promote the mixing of elastomer and
NRs). After mixing until evaporating most of the solvent volume, the curing agent (Sylgard
184, from Dow Corning, Midland, MI, USA) was added in a weight ratio to elastomer
of 1:10, and the mixture was mixed thoroughly before spin-coating at 250 rpm for 90 s,
with an acceleration of 100 rpm s−1, on two different substrates: commercial substrates of
polyethylene terephthalate (PET) with an indium tin oxide (ITO) thin film deposited on top,
PET/ITO (Kintec Company, Hung Hom, Kowloon, Hong Kong), resulting in unstructured
NGs; or acrylic molds (5 mm thick, from Dagol, Zambujal, Sesimbra, Portugal), resulting in



Chemosensors 2021, 9, 27 4 of 13

micro-structured NGs. The ZnO@PDMS films were partially cured at 60 ◦C for 10 min to
15 min before placing the PET/ITO substrate directly over the composite. After completing
the cure at 60 ◦C for 45 min, the micro-structured ZnO@PDMS film with the PET/ITO
substrate was peeled off from the mold and assembled with another electrode of PET/ITO
with kapton tape (DuPont, Wilmington, DE, USA). In both types of NGs, copper tape
(3M, Saint Paul, MN, USA) was used as an extension of each electrode. The main steps to
fabricate one micro-structured NG are illustrated in Figure 1a. Figure 1b illustrates a final
micro-structured NG with a micro-structuring area of 4 cm2.
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Figure 1. (a) Fabrication steps of a micro-structured nanogenerator (NG) based on a ZnO@PDMS composite. (b) Photograph
of a micro-structured NG.

A PANalytical’s X’Pert PRO MRD diffractometer (PANalytical B.V., Almelo, The
Netherlands) with Cu Kα radiation (10–60◦ 2θ range, step size of 0.033◦) was employed for
the structural characterization of ZnO NRs and ZnO@PDMS composites. The morphology
analysis of the ZnO NRs was performed with a Carl Zeiss AURIGA CrossBeam (FIB-SEM)
workstation (Carl Zeiss Microscopy GmbH, Oberkochen, Germany), while the morphology
and EDX analysis of the composite was performed in standard observation mode and EDX
mode, respectively, at 15 kV, using a tabletop SEM Hitachi TM3030Plus.

A home-made machine with a linear motor and a contact area of 0.3 cm2 was used
to deliver a mechanical stimulus of variable force (0.8 N to 4.1 N) at a frequency of 0.5,
1, 1.5, and 2 pushes per second (Figure S1). A digital oscilloscope (Tektronix TDS 2001C,
10 MΩ input impedance, from Tektronix, Beaverton, OR, USA) was used for voltage
measurements, while a potentiostat (Gamry 600, from Gamry Instruments, Philadelphia,
PA, USA) was employed for current measurements. The force applied by the home-made
machine was measured with a commercial force sensing resistor (Ref. SEN05003) from
Interlink Electronics (Camarillo, CA, USA).

3. Results and Discussion
3.1. Morphological and Structural Characterization of ZnO Nanorods and ZnO@PDMS Films

Figure 2a shows SEM images of a micro-structured ZnO@PDMS film. The film is
composed of an array of aligned cones with an average diameter of 300 µm, an average
height of 380 µm, and a gap inferior to 100 µm. The close-up views of the SEM images
clearly reveal the ZnO NRs homogenously dispersed throughout the PDMS matrix. To
verify that the structures were indeed ZnO NRs, the samples were analyzed through EDX,
as presented in Figure 2b, where the zinc element is more concentrated in the referred
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structures, as expected. Figure 2c shows the EDX data, highlighting the main elements
present in the ZnO@PDMS film: carbon and silicon (which integrate the PDMS polymeric
chains), zinc (which constitutes the ZnO NRs), and oxygen (present in both the PDMS
matrix and the NRs). Figure 2d,e show the SEM images of ZnO NRs, which have an average
length and diameter of (2.3 ± 0.7) µm and (0.4 ± 0.2) µm, respectively. The distribution of
lengths and diameters of the NRs can be found in the respective histograms from Figure S2.
Figure 2f presents the XRD diffractogram of ZnO NRs, ZnO@PDMS, and pure PDMS. The
peaks observable for the NRs are assigned to the hexagonal wurtzite ZnO structure, with
lattice constants of a = 0.3296 nm and c = 0.52065 nm. As expected, those peaks are also
present in the ZnO@PDMS composite, yet absent in pure PDMS.
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Figure 2. Morphological and structural characterization of the ZnO nanorods (NRs) and the
ZnO@PDMS composite. (a) SEM images of a micro-structured ZnO@PDMS film, with the insets
showing closer views of the film (where ZnO NRs are visible in the PDMS matrix). (b) EDX mapping
of the ZnO@PDMS film. (c) EDX data from the SEM image in (b). (d,e) SEM images of ZnO NRs. (f)
XRD diffractogram of ZnO NRs, ZnO@PDMS film, and pure PDMS. The identification of ZnO was
following ICDD card #36-1451.

3.2. Piezoelectric Characterization of ZnO Nanorods

In a previous work [13], piezoelectric force microscopy was employed in untreated
individual ZnO NRs for the characterization of their electromechanical properties, as
shown in Figure S3. The response is slightly above the noise level and leads to an effective
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piezoelectric constant of d33 = (9 ± 2) pm·V−1, in agreement with the values reported
for ZnO nanostructures [20]. Moreover, such work proved that the relaxed NRs do not
exhibit static surface charges, which could impact on their electromechanical response [13].
Thus, the findings demonstrate the piezoelectric properties of the individual NRs. The fact
that the NRs were obtained through microwave radiation assisted hydrothermal synthesis
and still present piezoelectric properties proves that this synthesis technique is feasible
to produce functional structures, with the advantages of being faster, low-cost, and using
lower temperatures.

3.3. Optimization of the ZnO Concentration in the ZnO@PDMS Composite

In order to produce NGs with the highest potential, it is important to evaluate their
performance with the ZnO concentration. In fact, several groups verified that with an
increasing mass of piezoelectric particles dispersed in a polymeric matrix there is an
output increase, yet beyond a certain mass value, the output starts decreasing [7,10,79,80].
Such occurrence may be explained by a possible electrical breakdown due to an excessive
nanoparticles concentration, an inefficient dispersion of the nanoparticles in the polymeric
matrix, which then prevents the alignment of electric dipoles in a large proportion [10,79],
or due to a degradation of electromechanical coupling effects, such as the deformability,
with increasing concentration [7].

Figure 3a presents the peak-to-peak voltage with the concentration of ZnO NRs in the
ZnO@PDMS composite. The composites were mechanically stimulated with a home-made
bending machine, adapted to exert a pushing force of 2.3 N at a frequency of 2 pushes
per second. There seems to be a trend of increasing voltage with the increase of ZnO NRs
concentration until 25 wt %, after which the output decreases for greater concentrations.
This observation is therefore in accordance to what was previously reported for composites
with other types of materials [7,10,79,80], with the current work being the first to verify
this effect in PDMS composites with ZnO NRs, to the best of the author’s knowledge.
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Figure 3. Performance of the ZnO@PDMS composites with the concentration of ZnO NRs. (a) Peak-to-peak open circuit
voltage for ZnO@PDMS composites with different concentrations of ZnO NRs. Each point is the average output of 2 to
6 identical devices. (b) Voltage output for an unstructured and a micro-structured NG with a ZnO NRs concentration of
25 wt %. All results were obtained with a mechanical stimulation performed by the home-made bending machine that
exerted a pushing force of 2.3 N at a frequency of 2 pushes per second.

Considering 25 wt % as the optimum concentration of ZnO NRs in the composite, two
types of NGs were fabricated to further explore and enhance the potential of the composite:
an unstructured one and a micro-structured one, with its micro-structuring being based on
micro-cones of 380 µm height, 300 µm diameter, and a gap inferior to 100 µm, as shown
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in Figure 2a. The output voltage for these two NGs in the same conditions as before is
shown in Figure 3b. The micro-structured NG shows a better performance, achieving a
peak-to-peak voltage of (6.00 ± 0.7) V, against only (0.87 ± 0.2) V for the unstructured
counterpart. Such enhancement in voltage, about 6 times, may be explained by two effects:
an increased efficiency in force delivery to the ZnO NRs due to the micro-structuring of
the composite, reinforcing the piezoelectric effect of the ZnO NRs (as it was verified for a
composite of ZnSnO3@PDMS in [13]), and an additional triboelectric effect that arises due
to the introduction of air gaps between the ZnO@PDMS composite and the ITO electrode
with the micro-structuring. However, it is not trivial to clearly distinguish the isolated
contribution of piezoelectric or triboelectric effects to the performance of the NG.

3.4. Electrical Characterization of ZnO@PDMS NGs

Given the best performance obtained with a micro-structured NG, this type of device
was further characterized regarding its performance for mechanical stimuli of different
frequencies, force magnitudes, and applied for long periods for fatigue tests.

Figure 4a illustrates the performance of the referred NG as a function of the stimulus
frequency for a constant force of 2.3 N. As expected, there is an increase in voltage output
with the frequency of the mechanical stimulus, as observed by other groups [81–85]. This
behavior may be explained by the fact that when the pushing stimuli is faster, the system
is unable to efficiently neutralize the induced charges, thus leading to accumulation of
residual charges [81].
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When the frequency of the stimuli is fixed at 2 pushes per second, the output voltage
of the NG increases with force, as shown in Figure 4b, which highlights the potential of
these devices not only for energy harvesting but also for force/pressure sensing. This
effect is also widely documented in other works [81,83,85–88] and may be explained by
two factors. Firstly, the piezoelectric effect that is present in the NGs. With an increase
of the intensity of the mechanical stimulus, the deformation applied to the crystalline
structure of the ZnO NRs increases as well, which induces a larger charge rearrangement
and thus translates into a greater piezoelectric signal. Secondly, due to triboelectric effect,
mechanical stimuli of increasing force induce a greater rubbing and increase the contact
area between the ZnO@PDMS micro-cones and the ITO electrode, thus inducing more
charges at their interface.
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Figure 4c shows the peak-to-peak voltage for a fixed pushing force of 2.3 N applied
at 2 pushes per second for 15,000 cycles. The micro-structured NG seems to have a
greater voltage with the number of pushing cycles, possibly due to charges accumulation
throughout the cycles. After being subjected to 15,000 pushing cycles, the micro-structured
NG shows a peak-to-peak voltage of (7.7 ± 0.1) V. This value proves the robustness of the
NG and its potential use in a daily life situation, where it is necessary to have a device able
to withstand a great number of cycles without a significant deterioration of its performance.

3.5. Proof-of-Concept of the NG

The micro-structured ZnO@PDMS NG was connected to several load resistances
(10 MΩ to 100 MΩ) to evaluate the output voltage and power density with a fixed pushing
force of 2.3 N at 2 pushes per second. As shown in Figure 5a, the peak-to-peak voltage
generated by the NG increases with an increasing load resistance. Regarding the power
density, despite reaching an apparent peak at 40 MΩ due to a slight power density decrease
for 50 MΩ and 60 MΩ, which is mainly explained by experimental errors, it hits a maxi-
mum peak approximately at 70 MΩ, steadily decreasing afterwards. Therefore, 70 MΩ is
considered to be the load that maximizes the power density at 4.8 µW cm−2.
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5 outputs. NG being used to charge a 10 µF capacitor to power up (b) a blue LED and (c) a digital
thermometer.
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To test the practicality of this NG, the device was connected to a full-rectifier bridge
and its DC output (for a pushing force of 2.3 N applied at a frequency of 2 pushes per
second) was used to charge a 10 µF capacitor. After charging for approximately 1 h, the
capacitor (roughly reaching 4 V and a stored energy of 80 µJ) was connected to a blue
LED (Ref. 017-1059 from Robert Mauser, Portugal; Video S1) or a digital thermometer
(Video S2) to power them up, as illustrated in Figure 5b,c. These results show that the
NG can generate enough energy to be stored and later used to power up small electronic
devices, proving its potential as an effective energy harvester.

4. Conclusions

This work reports the use of ZnO NRs, produced through microwave radiation
assisted hydrothermal synthesis, to fabricate energy harvesters. Specifically, the ZnO NRs
were mixed with PDMS to achieve a flexible composite suitable for robust NGs.

Even though the ZnO NRs were produced through a faster and low-cost method,
they still presented piezoelectric properties, namely a d33 of (9 ± 2) pm V−1, which
are expectable for these structures when produced through conventional methods, thus
validating the synthesis technique as a proper way to obtain piezoelectric and functional
structures.

The influence of the ZnO NRs concentration in the devices’ performance is clear. After
the optimization of the NRs concentration, micro-structuring was added to the composite
films, resulting in a great enhancement on the performance of the nanogenerators. The
micro-cones contributed to the performance improvement through two aspects: first,
the structuring increases the efficiency in force delivery to the ZnO NRs, increasing their
piezoelectric output; second, the structuring introduced air gaps between the composite and
the ITO electrodes, which is beneficial to potentiate the triboelectric effect. Nanogenerators
with a ZnO@PDMS micro-structured into micro-cones and a ZnO NRs concentration of
25 wt % presented a peak-to-peak voltage of approximately 6 V at a pushing frequency of
2 pushes per second with a pushing force of only 2.3 N.

The nanogenerators could withstand 15,000 pushing cycles without a performance
deterioration, which shows their robustness, being also able to charge a 10 µF capacitor
until storing approximately 80 µJ (after 1 h of pushing) for powering a blue LED or a
digital thermometer. With an external load of 70 MΩ, the nanogenerators could deliver
a power density of 4.8 µW cm−2. These results highlight the potential of these flexible
nanogenerators, with an easy, low-cost, low-temperature, and scalable fabrication process,
for energy harvesting and real-life applications such as powering of small electronic devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-9
040/9/2/27/s1, Figure S1: Photographs of the bending machine employed to exert a controlled
force on the NGs; Figure S2: Histograms for the (a) length, and (b) diameter of the ZnO NRs
produced synthesized through microwave assisted hydrothermal synthesis; Figure S3: Piezoresponse
characterization of ZnO NRs through piezoelectric force microscopy; Video S1: Powering a blue LED;
Video S2: Powering a digital thermometer.
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