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Abstract: In this study, carbon screen-printed sensors (C-SPEs) were functionalized with a high
reactivity carbonaceous material (HRCM) to measure the ascorbic acid (AA) concentration in fresh-
cut fruit (i.e., watermelon and apple) with a low content of vitamin C. HRCM and the functionalized
working electrodes (WEs) were characterized by SEM and TEM. The increases in the electroactive area
and in the diffusion of AA molecules towards the WE surface were evaluated by cyclic voltammetry
(CV) and chronoamperometry. The performance of HRCM-SPEs were evaluated by CV and constant
potential amperometry compared with the non-functionalized C-SPEs and MW-SPEs nanostructured
with multi-walled carbon nanotubes. The results indicated that SPEs functionalized with 5 mg/mL
of HRCM and 10 mg/mL of MWCNTs had the best performances. HRCM and MWCNTs increased
the electroactive area by 1.2 and 1.4 times, respectively, whereas, after functionalization, the AA
diffusion rate towards the electrode surface increased by an order of 10. The calibration slopes of
HRCM and MWCNTs improved from 1.9 to 3.7 times, thus reducing the LOD of C-SPE from 0.55 to
0.15 and 0.28 µM, respectively. Finally, the functionalization of the SPEs proved to be indispensable
for determining the AA concentration in the watermelon and apple samples.

Keywords: graphene; screen-printed sensors; multi-walled carbon nanotubes; ascorbic acid; LOD;
diffusion rate; fresh-cut produce

1. Introduction

The scientific community has long recognized the concentration of ascorbic acid (AA)
as an effective indicator of quality depletion in fresh-cut produce, since it is an effective
radical scavenger of ROS produced by oxidative stress and quickly changes according to
non-optimal post-harvest conditions [1–3]. Previous works have focused on monitoring
systems built to alert producers or sellers of small variations in the AA concentration
caused by unexpected interruptions in the cold chain. Such a variations can have different
kinetics in minimally processed fruit and vegetables, but an AA decay always corresponds
to a decline in their nutritional value, even in correct storage conditions [1,3–8].

Electrochemical sensors have been demonstrated to be reliable for real-time AA
detection, and for the evaluation of the oxidative stability and nutritional quality of fruit
and vegetables [9,10]. Among them, screen-printed sensors (SPEs) combine the robustness
and high repeatability of the measurements and can be easily used in uncomfortable
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environments by unskilled personnel [8]. Unfortunately, carbon electrodes do not always
have the necessary requirements to achieve certain objectives; this was the case in [11],
where the authors were not able to completely separate the AA and the polyphenol signals
and had to resort to the use of fullerenes and nanotubes to increase the sensitivity and
specificity of the working electrode [12]; or as in [13], where carbon nanotubes (CNTs) were
used to obtain a lower-potential electrocatalytic detection and, hence, a higher selectivity by
minimizing the contributions from co-existing electroactive constituents in glucose analysis.

The decay of AA in fresh-cut produce is rapid and, if the cold chain is not respected,
its concentration can vary from a minimum of 15% up to over 60% of the initial value
in just 24 h, depending on the reason that led to the deviation from the correct storage
conditions [4,8]. The most extreme AA variations can be monitored in real time with
carbon screen-printed sensors (C-SPEs) if the AA concentration of fresh produce is high [8],
but when it is low, after a few days of storage, the AA oxidation recorded current can
be confused with the background noise of the sensor. In such a situation, C-SPEs show
limitations due to the fact of their high limit of detection (LOD), the AA low diffusion
rate (D) towards the working electrode, and the need for a sufficiently diluted sample
to be analyzed. The LOD of a sensor is an analyte concentration that is large enough
to produce a current signal larger than the background noise, the current recorded in
the absence of the analyte [14]. The LOD depends on the roughness of the working
electrode, which changes according to the material from which it is made or with which it
is functionalized [15–17]. The diffusion rate can vary according to the concentration of the
analyte or to the different applied potentials, and it can be increased by functionalizing
bare carbon sensors with different nanomaterials [18–20]. Clearly, such a functionalization
will increase the electroactive area of the carbon sensors [19,21].

Although the literature and the market offer a wide variety of nanomaterials that
could obviate the aforementioned limitations of C-SPEs, the sector to which this work is
addressed needs a low-cost material. Single-walled and multi-walled carbon nanotubes,
with a surface area which ranges from 150 to 1500 m2/g, have high adsorption capacity
and rapid desorbability, being excellent candidates for sensing applications [22]. They can
be covalently or non-covalently functionalized with several organic molecules that provide
a more selective interaction with analytes [23] to promote electron-transfer reactions with
enzymes and to fabricate sensors and biosensors with improved performances [24–27].
Their applicability for measuring AA content, phenolic compounds, and for the screening
of total antioxidant capacity [11,12,28,29] has been proved. But they are not low cost.

Graphene, on the other hand, represents one of the most used materials as an electrode
modifier that dramatically improve the performance of several electrochemical systems. It
promotes a rapid electron transfer that facilitates accurate and selective detection of various
molecules including AA [30]. Graphene is made from graphite that comes in the form of
overlapping layers held together by the weak intermolecular Van der Waals interactions.
This makes it easily flaky in a direction parallel to the crystalline plane. Graphene’s
properties were well summarized in a recent review [31], but the reported properties refer
to an almost “ideal” material, completely free of structural defects, and extremely expensive
and difficult to produce [32]. Recently, however, production techniques have progressively
improved, reducing costs and the complexity of the process, and they have given rise to
several chemically modified graphenes, classified as “graphene-like materials” [33]. They
do not have the same performances as Geim’s and Novoselov’s graphene [34,35], since they
make use of cheap graphite as a raw material and, therefore, contain a number of impurities.
Graphene-like materials include not only single-layer graphene but also microtubules
of graphene, graphene oxide, reduced graphene oxide, graphene nanosheets, graphene
nanoribbons, and graphene dots, either single- or multi-layered with dimensions [33,36].
They are considered to be the most promising nanomaterials for electrochemical sensing
applications, not only for their low cost but also due to the defects created on the graphene
oxide layers that provide graphene oxide’s unique properties such as excellent conductivity,
large specific surface area, and electrocatalytic activity [37–40]. Screen-printed graphene
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electrodes have attracted attention in electrochemical sensing for their application in real
samples analysis [41], such as the simultaneous determination of AA, uric acid, and
dopamine [42]; the highly sensitive detection of parathion [43]; herbicide residues [44];
analysis of water contaminants [45].

In this paper, we followed up on our previous research, where the concentration
of AA was determined in fresh-cut produce with high contents of vitamin C by means
of C-SPEs [8]. Here, similar C-SPEs were functionalized with a patented high reactivity
carbonaceous material (HRCM) in order to improve the performances, electroactive area,
LOD, and diffusion rate of the C-SPEs to overcome the aforementioned limitations and
to measure AA concentration in fresh-cut fruit with low contents of vitamin C. HRCM
and the functionalized surface of the working electrodes were characterized by SEM and
TEM images. The performances of the HRCM-SPEs were evaluated by cyclic voltammetry
(CV), constant potential amperometry (CPA), and chronoamperometry and compared to
those of C-SPEs and MW-SPEs functionalized with multi-walled carbon nanotubes. Finally,
the ability of the modified and unmodified SPEs to measure the AA concentration in
watermelon and apple samples was tested. Both species, according to the literature [46–49],
contain low concentrations of AA.

2. Materials and Methods
2.1. Reagents

All chemicals were of analytical grade and used as received without any further
purification. Solutions were prepared with Milli-Q water (Millipore, Inc. (Burlington, MA,
USA); Ω = 18 MΩ/cm). L-ascorbic acid (99.5%) (Code: 95209-CAS: 50-81-7) was purchased
from Merck (Italy); stock solutions of AA were prepared daily in phosphate buffer (PBS)
at pH 6.2 and used to carry out CVs, CPA, and chronoamperometries. The phosphate
buffer saline solution was made using NaCl (137 mM), KCl (2.7 mM), Na2HPO4 (8.1 mM),
and KH2PO4 (1.47 mM) from Sigma and then adjusted to pH 6, which is close to pH 5.6
of watermelon juice and compatible with most fruit and vegetables used in the fresh-cut
sector. The N,N-dimethylformamide (DMF) and MWCNTs (Code: 724769-CAS: 308068)
were purchased from Sigma–Aldrich (Merck, Italy).

2.2. HRCM and MWCNT Characterization

The HRCM used in this work was provided by Graphene H.R.C.M s.r.l. (Graphene
Hrcm S.r.l. via di Vigna Murata, 1, 00143, Rome-Italy). It was thermochemically derived
from graphite with a patented procedure as reported in Patent US 7842271B2 of 30/11/2010
indicated as “Mass Production of Carbon Nanostructures” [50].

The morphological investigation of native HRCM was provided using an SEM inves-
tigation performed with a Leica Electron Optics 135 VP SEM instrument (LEO Electron
Microscopy Ltd., Cambridge, UK) at an acceleration voltage of 15 kV with a 50 pA current
probe at a working distance of approximately 22 mm. The samples were sputter-coated
with a gold layer in rarefied argon with an Emitech K550 sputter coater (EM Technologies
Ltd., Kent, UK) with a current of 20 mA for 180 s.

The morphological investigation of MWCNTs, as they were received from Merck, was
conducted via an SEM investigation performed with a Zeiss EVO LS 10 environmental
scanning electron microscope (ESEM) in a high vacuum mode with a secondary electron
detector. The samples were sputter-coated with gold in an Agar Automatic Sputter Coater
B7341 sputter coater unit.

Transmission electron microscopy (TEM) images of the HRCM were also acquired
using an FEI TECNAI 200 operating at 200 kV working with a field emission electron
gun. Before TEM analysis, a few milligrams of powders were dispersed into DMF by
ultrasonication for 3 h. Afterwards, the DMF solution was dropped onto copper grids
(300 mesh), and the solvent was left to evaporate for 30 min before the measurements.
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2.3. Functionalization and Morphological Characterization of SPEs

The screen-printed sensors used in this work were purchased from GSI Technologies
(311 Shore Drive Burr Ridge, IL, USA-www.GSITech.com, accessed on 5 February 2019).
Before proceeding with the functionalization of the working electrode (WE), the following
preliminary operations were carried out:

- The HRCM was micronized with an ultracentrifugal mill RETSCH ZM 200 (RETSCH
GmbH Retsch-Allee 1-5 42781 Haan Germany) for 1 min at 201.24 g (6000 rpm with
rotor radius = 0.5 cm) in order to break the agglomerates and reduce the particles size
to <40 µm;

- The HRCM and MWCNTs were suspended in DMF in accordance with [51], and the
following suspensions were obtained: 5, 10, and 50 mg/mL of MWCNTs/DMF and 5
and 10 mg/mL of HRCM/DMF;

- The suspensions were ultrasonicated at a frequency of 45 kHz for 3 h by an ultrasonic
cleaner (USC 1200 DVWR international bvba, sprl B-3001 Leuven);

- Before the deposition of the HRCM and MWCNTs, the surface of the WE of a group
of SPEs was activated by 10 cycles of CV at an applied potential (Eapp) from −1.4 to
+1.7 V at a scan rate of 100 mV/sec in a 0.1 M sodium bicarbonate solution [52] to
promote nanostructuring. A second group of sensors was instead nanostructured
without activation of the transducer.

The functionalization of the C-SPEs with HRCM and MWCNTs was carried out using
the drop-casting method as previously described [31], where 2.5 µL of HRCM and MWCNT
suspensions were dispersed over the carbon WEs. Then, HRCM-SPEs and MW-SPEs were
dried in a thermostatic stove (Memmert standard series, EN.CO. Srl, Spinea (VE), Italy) at
40 ◦C for 45 min to facilitate the solvent evaporation and the adhesion of the HRCM and
MWCNTs to the WE.

An SEM morphological investigation of the WE of SPEs, before and after function-
alization, was performed. Sensors were coated with gold in an Agar Automatic Sputter
Coater B7341 sputter coater unit and examined with a Zeiss EVO LS 10 ESEM in the high
vacuum mode with a secondary electron detector.

2.4. Electrochemical Characterization of SPEs

AA oxidation on the WE surface of the C-SPEs, HRCM-SPEs, and MW-SPEs was
studied by CV, constant potential amperometry (PCA), and chronoamperometry (CA). All
experiments were carried out with a QuadStat four-channel potentiostat (eDaQ QuadStat,
e-Corder 410 and Echem software, eDAQ Europe Poland).

A preliminary electrochemical characterization of the WEs was obtained by CV of
2 mM AA, performed from −1 V to +1 V (vs. Ag/AgCl pseudo-RE) at a scan rate of 0.1 V/s,
to choose the working potential for calibrations and AA detection in the fresh-cut samples.
Additional CVs were carried out from −0.2 V to +0.8 V in order to study the mechanism of
AA oxidation and to calculate the electroactive area (A) of the SPEs. To assess the impact of
scan rate on the oxidation process, the following rates were selected: 0.01, 0.025, 0.05, 0.075,
0.1, 0.125, 0.2, 0.25, and 0.4 V.

The chronoamperometric analysis for different AA concentrations (25, 50, and 75 µM)
was performed from 0 to +0.12 V (Eapp value used for CPA and sample analysis) by C-SPEs,
MW-SPEs, and HRCM-SPEs vs. Ag/AgCl pseudo-RE, in PBS, according to [53], in order to
analyze the decay of the current response and to estimate the AA diffusion rate (D) towards
the different WEs.

AA calibrations were carried out by CPA according to [8]: a first aliquot of 70 µL,
containing only PBS (used as supporting electrolyte), was deposited on the sensor surface
with a graduated micropipette in order to obtain a baseline. A positive potential of +120 mV
was applied vs. Ag/AgCl pseudo-RE. Once the baseline current was recorded, the PBS
drop was dried with absorbent paper without touching the surface of the sensor. Five
subsequent 70 µL aliquots of increasing AA (L-ascorbic acid (99.5%) from Merck, Italy)
concentrations (5, 10, 20, 50, and 100 µM) were deposited on and removed from the sensor
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surface using the same technique. The current values were read out every two minutes.
Additional AA calibrations in PBS at concentrations near the detection limit (0.25, 0.5, 0.75,
1, 1.5, 2, 2.5, and 5 µM AA) were performed with C-SPEs and the HRCM-SPE and MWSPE
with the best performances.

Additional experiments to study the effect of sample matrix on the AA current were
performed. Watermelon and apple juice samples were spiked with 5, 10, 20, and 50 µM of
AA (standard addition method). Seventy microliters of the spiked samples were deposited
on the WE surface of each SPE, and a linear regression analysis was performed on baseline
subtracted data. We performed this analysis in triplicate for all of the investigated SPEs.
The slopes of the thus obtained linear regressions were compared to the slopes of L-ascorbic
acid standard linear regression at the same concentrations.

2.5. AA Electrochemical Detection in Real Samples

Fresh-cut watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai, 1916) and apple
(Malus domestica Borkh., 1803 var. Golden delicious) samples were collected by Fresco
& Pronto S.r.l. (Selargius, CA, Sardinia, Italy), a company specialized in the production
of minimally processed fruit and vegetables. Fresh-cut fruit were processed following
the HACCP guidelines [54] and packaged in see-through resealable polypropylene trays
for foodstuffs. Samples were properly stored at 6 ◦C until the expiry date, 4 days from
processing. The juice for analyses was obtained by a cold extraction from 100 g of or
fresh-cut watermelon and 100 g of fresh-cut apple, using a DAYA juice extractor for home
appliances (power 200 W/centrifuge 60 rpm) (Consumer Electronics S.p.A., Legnano, Italy).

The AA detection was carried out immediately after processing (time 0) and at the
expiration date (day 4). A chromatographic determination of AA in watermelon and apple
samples was performed by HPLC method [55]. The obtained values were used to establish
a priori the dilution factor necessary to stay in the concentration range in which the sensor
response was linear. The electrochemical detection of AA was performed using QuadStat
with C-SPEs, HRCM-SPEs, and MW-SPEs. AA currents (nA) were obtained by simply
exposing the screen-printed sensors surface to 70 µL of watermelon (diluted 1:5 in PBS)
and apple juice (diluted 1:100 in PBS) as previously reported [8].

2.6. Statistical Analysis

Statistical analysis was performed by GraphPad Prism 5 for Windows software (Graph-
Pad Software, Inc., La Jolla, CA, 92037, USA). AA currents obtained by SPEs were expressed
in nanoamperes or microamperes and given as the mean ± standard deviation (SD) (n = 4)
of the absolute oxidation currents (nA or µA) or baseline subtracted currents (∆nA or ∆µA).
After in vitro calibrations, the AA currents were plotted vs. the AA concentration, and
the linear regression was calculated. The AA concentration in the watermelon and apple
samples were calculated and expressed as the molarity after correction of the dilution
factor. Micromolar values were then converted to mg/100 g in the form usually used on
food packaging.

In order to assure the similarity between data obtained by HRCM-SPEs or MW-SPEs
vs. C-SPEs, a Student’s t-test to compare means was performed. Differences among sensors
performance were compared by ANOVA using a unifactorial complete randomized block
design. Mean comparisons were calculated by Fisher’s least significant difference test
(LSD) at p ≤ 0.05.

3. Results
3.1. Morphological Characterization of HCRM and MWCNT and Functionalized SPEs

The native HRCM, as it was received from the company, and MWCNTs, as obtained
from Merck, appeared under the electron microscope in the forms shown in Figure 1.
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Figure 1. Scanning electron microscope (SEM) images of HRCM (A) and MWCNT (D) agglomerates
at different magnifications. EHT = voltage acceleration (kV); WD = working distance, the distance
between the sample surface and the final lens of the microscope; MAG = magnification, where X
corresponds to the magnification; SE1 indicates that the images were collected with the secondary
electron detector. Images (A) and (D) were taken by two different SEMs (see Section 2.2) but with the
same criteria so as to be comparable. Transmission electron microscopic (TEM) images of HRCM (B,C)
and MWCNTs (E,F) after 3 h of ultrasonication. Photographs were taken using an FEI Tecnai 200 TEM,
operating at 200 kV working with a field emission electron gun.

The SEM images, both of the HRCM and MWCNTs, show agglomerates of irregular
shapes. The HRCM appeared as superimposed two-dimensional sheets (Figure 1A), pre-
sumably of graphene, while the MWCNTs as aggregates of spherical structures (Figure 1D).
TEM images, taken after 3 h of ultrasonication, showed the structure of the two nanomate-
rials more clearly: in the HRCM samples, the systems, shown in Figure 1B,C, possessed
morphologic characteristics that typically occur in graphene-based compounds. Over-
laid 2D layers, typical of graphene, can clearly be observed together with inclusions of
other nanostructures similar to nanotubes, as indicated in the patent [50]. Conversely, in
Figure 1E,F, carbon nanotubes with a thickness of 15 nm can clearly be observed.

The screen-printed sensors used in this work consist of a 4 mm carbon WE, an Ag/AgCl
pseudo-reference electrode (RE), and a carbon auxiliary electrode (AE) (Figure 2A).
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Figure 2. C-SPE schematic drawing (A) with details of working, counter, and reference electrode ex-
posed areas. C-SPE (a–d), MW-SPE (e–h), and HRCM-SPE (i–n) environmental scanning electron mi-
croscope (ESEM) images of the WE surface at four different magnifications: (a,e,i) 100×, (b,f,l) 500×,
(c,g,m) 1000×, and (d,h,n) 5000×. EHT = voltage acceleration (kV); WD = working distance, the
distance between the sample surface and the final lens of the microscope; MAG = magnification,
where X corresponds to the magnification (KX = X × 1000); SIGNAL A = SE1 indicates that the
images were collected with the secondary electron detector.

The ESEM images of the WE of C-SPE are reported at 100×, 500×, 1000×, and 5000×
magnifications (Figure 2a,d). They show a homogeneous surface, without smudges or
imperfections that alter the amplitude of the transducer area, which can thus provide
repeatable current measurements, statistically not different from other identical sensors.

The ESEM images of MW-SPEs are shown in Figure 2e,h. The arrangement of the
nanotubes on the WE surface was non-homogeneous, so that aggregates and cavities of
different shapes and sizes are evident. It is clear that, even after 3 h of sonication, the
nanotubes tended to re-aggregate quickly.

The ESEM images of HRCM-SPEs are shown in Figure 2i,n. It appears that the
micronization and sonication of the HRCM led to a breakdown of the aggregates and the
exfoliation of the 2D layers of graphene. They arranged homogeneously on the surface of
the WE, without re-aggregating and forming cavities of different shapes and sizes. In this
case, the sonication led to a much better dispersion in DMF than the nanotubes.

Different to what was obtained in [52], activation via CV was not required. No
statistically significant difference was found between activated and non-activated SPEs.

3.2. Electrochemical Characterization of SPEs
3.2.1. Preliminary Investigation of the Voltametric Behavior of AA at Functionalized SPEs

The results of the AA cyclic voltammetries, before and after the functionalization of
the C-SPEs with the different suspensions of MWCNTs and HRCM, can be observed in
Figure 3.
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Figure 3. AA cyclic voltammograms with a scanned potential range (Eapp) between -1 and +1 V vs. Ag/AgCl pseudo-RE in
the absence (black line) and in the presence of 2 mM AA (blue line). Cyclic voltammetries were performed with the C-SPE,
HRCM-SPEs (functionalized with 5 and 10 mg/mL HRCM/DMF), and MW-SPEs (functionalized with 5, 10, and 50 mg/mL
MWCNTs/DMF).

The voltammograms show that AA was irreversibly oxidized in one step, where
two electrons were changing. They also show the effect of the functionalization of the
C-SPEs with the different suspensions of HRCM and MWCNTs and the different capacities
of the MW-SPEs and HRCM-SPEs to oxidize AA when Eapp changed. In the absence of
AA (black line), the voltammograms of the MW-SPEs and HRCM-SPEs differed from those
obtained from the C-SPEs, both for the shape and for the recorded current values. The data
showed that all the functionalized sensors were able to increase both the baseline and the
AA oxidation current (blue line) compared to the C-SPEs. Such an increase varied according
to the concentration of the suspension of HRCM or MWCNTs used for the nanostructuring.

Based on the performed voltammograms, and in accordance with previous results [4,56],
a potential of +120 mV was selected as the working potential for calibrations and AA
detection in the fresh-cut samples. This value was high enough for a correct reading of AA
and, as will be better discussed in Section 3.4., low enough to exclude a large number of
molecules that could influence the recorded currents in the real samples. In the histogram
of Figure S1 in the Supplementary Materials, the ∆current (the difference between the AA
oxidation current and the baseline current) at +120 mV was calculated for all sensors. Due
to the nanostructuring, both the HRCM-SPEs (9.337 ± 0.633 µA and 8.279 ± 0.631 µA with
the HRCM-SPEs functionalized with 5 and 10 mg/mL, respectively) and the MW-SPEs
(14.607 ± 1.244 µA, 19.915 ± 3.262 µA, and 26.483 ± 5.501 µA with MW-SPEs functionalized
with 5, 10, and 50 mg/mL, respectively) recorded significantly higher ∆current values than
the C-SPEs (1.137 ± 0.092 µA).

3.2.2. Study of the Mechanism of AA Electrochemical Oxidation on the WEs Surface

Following the analysis in the previous section, additional experiments to study the
mechanism of AA electrochemical oxidation on the WE’s surface and to calculate the
electroactive area of the SPEs were performed. The impact of the scan rate on the AA
oxidation process is shown in Figure 4, where cyclic voltammograms of 2 mM AA at
different rates are reported for the C-SPEs and for the HRCM-SPEs functionalized with
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5 mg/mL and MW-SPEs functionalized with 10 mg/mL (those which showed the best
performances according to the CVs of Figure 3).
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Figure 4. Cyclic voltammograms between a −0.2 and +0.8 V potential range (Eapp) vs. an Ag/AgCl
pseudo-RE, of 2 mM AA at C-SPEs, HRCM-SPEs, and MW-SPEs with various scan rates of 0.01,
0.025, 0.05, 0.075, 0.1, 0.125, 0.2, 0.25, and 0.4 V. CVs were performed with the C-SPE and HRCM-
SPEs functionalized with 5 mg/mL HRCM/DMF and MW-SPEs functionalized with 10 mg/mL
MWCNTs/DMF. A plot of the AA current (µA) versus the v1/2 (V/s) is reported in the lower right
part of the figure.

The observed peaks are the results of the AA oxidation. Considering the studied
potential scan rate ranging from 0.01 to 0.4 V/s, the anodic peak current depends linearly
on the square root of the scan rate. It is described by the following equations (2 mM AA,
Figure XD): C-SPE: Ip = 62.56 (v)1/2 + 7.51, r2 = 0.9517; HRCM-SPE: Ip = 68.36 (v)1/2 + 10.91,
r2 = 0.9620; MW-SPE: Ip = 66.12 (v)1/2 + 15.39, r2 = 0.9766.

These equations may suggest whether the electrode reaction is diffusion or ad-
sorption controlled. Moreover, since the dependence of ln (Ip) on ln(v) is character-
ized by linear regression: C-SPE: ln(Ip) = 0.5877 ln(v) + 4.01, r2 = 0.8979; HRCM-SPE:
ln(Ip) = 0.5411 ln(v) + 4.13, r2 = 0.8975; MW-SPE: ln(Ip) = 0.4768 ln(v) + 4.17, r2 = 0.9044.
The slope of the fits suggests that the processes are all controlled by diffusion, since they
are close to 0.5 [57].

3.2.3. Calculation of the Electroactive Area of Functionalized SPEs

The Randles-Sěvcik equation has been used to calculate the electroactive surface area
of WE in irreversible electrochemical processes such as AA oxidation [19,21]:

Ip = 2.69 × 105 n3/2 AD1/2 v1/2 C

where Ip is the anodic peak current, n is the electron transfer number, A is the surface area of
the electrode, D is the diffusion coefficient, v is the scan rate, and C is the AA concentration.
In this paper: Ip = 24.51 µA, 29.69 µA, and 34.62 µA were used for C-SPEs, HRCM-SPEs,
and MW-SPEs, respectively; D = 1.42 × 10−6 was used according to [21]; n = 2 was used as
previously reported [19,20]; v = 0.1 V/s and C = 2 mM.
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The following electroactive areas were calculated: C-SPEs 0.0856 cm2; HRCM-SPEs
0.1037 cm2; MW-SPEs 0.1209 cm2.

3.2.4. Chronoamperometry

The chronoamperometric analysis was performed for different AA concentrations in
PBS vs. Ag/AgCl pseudo-RE at +120 mV. The results of the chronoamperometries obtained
by C-SPEs, HRCM-SPEs functionalized with 5 mg/mL, and MW-SPEs functionalized with
10 mg/mL were selected to be shown in Figure 5.
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Figure 5. Chronoamperograms of C-SPEs, HRCM-SPEs functionalized with 5 mg/mL, and MW-SPEs
functionalized with 10 mg/mL in PBS at different concentrations of ascorbic acid (25, 50, and 75 µM
(graphs on the left)). Cottrell plots of I vs. t−1/2 (s−1/2) of the chronoamperometric data obtained for
25, 50, and 75 µM of AA (graphs on the right).

The Cottrell equation for chronoamperometric analysis of electroactive moieties under
mass transfer limited conditions is:

I = n FAD 1/2 cπ −1/2 t −1/2

where n is the number of electrons involved in the rate determining step (n = 2 for AA
according to [19,20]); F is the Faraday constant of 96,485 C/mol; A is the electroactive area
of WE of SPEs; D is the diffusion coefficient; c is the (AA), and t is the time (s). According
to [53], this equation can be used to estimate the diffusion rate of AA. The slope of the linear
region of the I vs. t−1/2 in the short time region provides the product AD1/2; thus, D was
calculated as 8.17 × 10−11, 7.76 × 10−10, and 4.20 × 10−10 cm2 /s for C-SPEs, HRCM-SPEs
functionalized with 5 mg/mL, and MW-SPEs functionalized with 10 mg/mL, respectively.
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3.3. AA Calibration, LOD and Aging of SPEs

Figure 6 shows two AA calibration, (A) in the range of 5–100 µM, and (B) in the range
of 0.25–5 µM. In Figure 6A, the linear response of the SPEs was excellent with r2 = 0.999 for
C-SPEs and r2 > 0.996 for all the functionalized ones.
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Figure 6. (A) Five-point calibration in PBS with 5, 10, 20, 50, and 100 µM AA performed with C-SPEs, MW-SPEs (functional-
ized with 5, 10, and 50 mg/mL MWCNTs/DMF), and HRCM-SPEs (functionalized with 5 and 10 mg/mL HRCM/DMF).
(B) Height-points calibration in PBS with 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, and 5 µM AA performed with C-SPEs, HRCM-SPEs
(functionalized with 5 mg/mL HRCM/DMF), and MW-SPEs (functionalized with 10 mg/mL MWCNTs/DMF). All calibra-
tions were baseline subtracted (AA current minus baseline current). An r2 value is reported for all calibration lines. Vertical,
dashed lines correspond to the LOQ (3 × LOD) of different SPEs: black line at x = 1.65 µM for C-SPE; red line at x = 0.45 µM
for HRCM-SPE; blue line at x = 0.84 µM for MW-SPE. Points outside the linearity range are not displayed on the graph.

The functionalization with HRCM and MWCNTs significantly increased the slope of
the C-SPEs (Table 1), thus increasing the ability of the HRCM-SPEs and the MW-SPEs to
oxidize the AA compared to C-SPEs.

Table 1. Slope of the AA calibrations (nA/µM) and LOD (µM) of the sensors calculated for C-SPEs,
HRCM-SPEs functionalized with 5 and 10 mg/mL of HRCM/DMF suspension, and MW-SPEs
functionalized with 5, 10, and 50 mg/mL of MWCNT/DMF suspension.

C-SPE HRCM-SPE MW-SPE

Functionali-
zation

-
mg HRCM/mL of DMF mg of MWCNTs/mL of DMF

5 10 5 10 50

Slope
(nA/µM) 0.77 ± 0.01 e 2.89 ± 0.09 a 2.18 ± 0.06 c 1.47 ± 0.02 d 2.48 ± 0.04 b 2.34 ± 0.05 b

LOD (µM) 0.55 ± 0.08 c 0.15 ± 0.02 e 0.98 ± 0.12 b 0.53 ± 0.08 c 0.28 ± 0.04 d 2.24 ± 0.27 a

Means in row, followed by unlike letters, differed significantly by Fisher’s least significant difference (LSD) test
(p ≤ 0.05); n.d. = not detectable since <LOQ. The mean values and standard deviations shown in the table were
calculated taking into account the dilution factor.

The LOD of the SPEs was calculated as 3.3 σ/S, where σ is the standard deviation of
background noise of the screen-printed sensor, and S is the slope of the linear region of
the calibration curve. The LOD values for all of the sensors are also reported in Table 1.
The LOQ for all of the SPEs were calculated as 3 × LOD in order to estimate the lowest AA
concentration in all of the real samples that could be quantified (see also Section 3.4). The
response of SPEs towards low concentrations near the detection limit can be observed in
Figure 6B. The results indicated that AA calibrations became linear near the LOQ of the
SPEs: 1.65 µM for C-SPE, 0.45 µM for HRCM-SPE, and 0.84 µM for MW-SPE.

The stability of subsequent measurements with SPEs should not be considered, since
they are sold in multi-sensors sheets, at a limited price, printed to be used only once.
An estimate of the aging of a similar C-SPE and the reproducibility of its measurements has
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already been reported [8]. With the same methodology, the aging and the reproducibility
of functionalized SPEs were calculated: a reduction of the slope value by 65% and 75%
was estimated for HRCM-SPEs and MW-SPEs, respectively, after 10 calibrations with
standard AA. As far as reproducibility is concerned, the matrix effect on AA currents was
studied: the outcome of the calibration with the standard addition method is shown in
Supplementary Materials Figure S2. The deposition of spiked samples on the WE surface
of C-SPEs, HRCM-SPEs functionalized with 5 mg/mL, and MW-SPEs functionalized with
10 mg/mL determined a linear increase in the baseline-subtracted current values. The
results, statistically compared with those of AA standard, demonstrated that the exposition
to watermelon and apple juice did not affect the SPEs’ performances.

3.4. AA Electrochemical Detection in Watermelon and Apple Juice Samples

The specificity of the system towards AA was demonstrated in order to eliminate
the possibility that the recorded AA currents were influenced by interferers. As reported
above, the Eapp of +120 mV was high enough for a correct reading of AA and low enough
to exclude a large number of molecules that could influence the recorded currents in
watermelon and apple juice. More than 20 polyphenols were identified in watermelon [58].
The most represented were p-coumaric acid, ferulic acid glucuronide, 2,5-dihydroxybenzoic
acid, and isoferulic acid glucuronide, all having different redox potentials, but none of
them could be a potential interferer since they start to oxidize to a potential higher than
+250 mV [11] and cannot be recorded at +120 mV. Apple polyphenols were prevalently
concentrated in the peel [49,59], while only the pulp, where a polyphenols concentration
that could affect the AA signal is negligible, was used in this work.

The concentration of AA in the watermelon and apple juice samples was determined
by HPLC and by SPEs, and the results are reported and compared in Table 2. They indicate
that the AA concentrations in the watermelon and apple samples could be detected with all
sensors and that the data obtained by SPEs did not significantly differ from those obtained
with HPLC. Moreover, the data were consistent with the literature [46,49].

Table 2. AA concentration (µM) determined in the watermelon and apple samples at time 0 and at
the expiration date with HPLC, C-SPEs, HRCM-SPEs functionalized with 5 mg/mL of HRCM/DMF
suspension, and with MW-SPEs functionalized with 10 mg/mL of MWCNT/DMF suspension.

AA Concentration (µM) in Watermelon and Apple Samples

HPLC C-SPEs HRCM-SPEs MW-SPEs

(AA) at Time 0

Watermelon 153 ± 6.2 b 147 ± 3.8 b 160 ± 7.1 ab 165 ± 7.1 a

Apple 227 ± 7.7 ab 219 ± 6.7 b 235 ± 8.3 a 240 ± 7.4 a

(AA) at expiration date

Watermelon 73 ± 5.1 a 70 ± 3.7 b 71 ± 5.2 ab 76 ± 3.1 a

Apple 102 ± 5.3 a n. d. 99 ± 6.9 a 108 ± 5.5 a
Means in row followed by unlike letters differed significantly by Fisher’s least significant difference (LSD) test
(p ≤ 0.05); n.d. = not detectable since <LOQ. The mean values and standard deviations shown in the table were
calculated taking into account the dilution factor.

All SPEs were able to determine the AA concentration in the watermelon and apple
samples at time 0. ANOVA revealed that the MW-SPEs detected a higher AA concentra-
tion than the C-SPEs and HPLC, even though the difference was very low and could be
considered negligible. The AA mean values obtained by the HRCM-SPEs were consistent
with the HPLC and C-SPEs and did not statistically differ from MW-SPEs. According to
the HPLC measurements, during the 4 days of cold storage, 52% and 55% of the initial AA
concentrations were lost for the watermelon and apple samples, respectively.

Although the vitamin C content in the watermelon samples was low, the AA con-
centration could be detected by the C-SPE both at time 0 and at the expiration date, since
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it was always higher than the LOQ. Otherwise, in the apple samples, the C-SPEs could
detect the AA concentration only at time 0. The reason for this difference was that apple
juice could not be directly achieved with the extractor, while a puree was obtained and the
puree had to be diluted 1:100 in PBS in order for the 70 µL of the sample to be deposited
on the sensor’s surface. At the expiration date, the 70 µL of diluted puree contained
approximately 1 µM AA, a concentration lower than the LOQ of the C-SPEs (1.65 µM).
Therefore, it was not possible to distinguish the AA current from the background noise of
the C-SPE. But when the HRCM-SPE functionalized with 5 mg/mL of HRCM/DMF suspen-
sion (LOQ = 0.45 µM) or the MW-SPEs functionalized with 10 mg/mL of MWCNT/DMF
suspension (LOQ = 0.84 µM) were used, the AA concentration at the expiration date was
detected because their LODs were low enough.

4. Discussion

In previous works [4,8], the quality of fresh-cut produce with a high content of vitamin
C (kiwi, pineapple, and parsley) was monitored by rapid determination of AA, revealing
in real time some inefficiencies or malfunctions in the cold chain, allowing operators to
intervene and remedy immediately. The sensors used in those works (i.e., pencil rods or
carbon screen-printed), allowed for the easy determination of the AA concentration, even
when the storage conditions were incorrect.

In this paper, we demonstrated that the functionalization of SPEs with nanomaterials
allowed for AA detection in species characterized by a low content of vitamin C. We started
by recognizing the main limits of C-SPEs: a small electroactive area, a high LOD, and
a relatively low diffusion rate towards the working electrode surface [8,18–20], and we
identified a high reactivity carbonaceous material for a low-cost functionalization of C-SPEs.
Then, we compared the morphological features and the electrochemical performances of
functionalized HRCM-SPEs with those of C-SPEs and SPEs nanostructured with MWCNTs.

The morphological characterization showed that the nature of HRCM was in good
agreement with what is reported in the patent [50]. The SEM and TEM images clearly
showed superimposed two-dimensional sheets, presumably of graphene, with inclusions of
other nanostructures which, according to the patent, are nanofractals, optionally branched
open-ended SWNTs, nanoloops, and nanoonions. According to [33], the term “graphene-
like materials” is often used in the literature as a common name for two groups of quasi-2D
systems with significantly different chemical compositions and properties. The first group,
the graphene-based materials, includes systems based on or containing the 0D ± 2D
forms of graphene. These are 2D graphene modified in different manners (by introduc-
ing structural vacancies and/or impurities, by adsorption of atoms or molecules, or by
mechanical deformation), as well as various hybrid structures formed by graphene with
other carbon nanostructures (e.g., graphene ± fullerene or graphene ± CNTs), graphene
derivatives (graphene oxide, graphane, and fluorographene) or graphene-containing com-
posites. This group also includes graphene ribbons (1D), graphene nano-flakes (0D), and
multi-layer graphenes, which can either be modified or used as components of various
composites. According to [36], which promoted a precise vocabulary for the family of
graphene-based materials, they “consist of not only single-layer graphenes but also few-
layer graphenes, graphene oxide, reduced graphene oxide, graphene nanosheets, ultrafine
graphite, graphene ribbons, and graphene dots”. We can therefore conclude that the HRCM
used in this work is a graphene-based material.

The mere comparison of the SEM images in Figure 2 showed that the functionalization,
both with HRCM and MWCNTs, determined a clear increase in the exposed geometric area
of the WEs, even though the arrangement of HRCM on the transducer surface was much
more homogeneous than MWCNTs. Even though TEM analysis clearly showed carbon
nanotubes with a thickness of approximately 15 nm, agglomerates of spherical structures
were observed in the SEM images of MWCNTs, and aggregates and cavities of different
shapes and sizes were evident on the WEs of the MW-SPEs too. This result is in agreement
with our previous work [12] in which both MWCNTs and SWCNTs, after ultrasonication,
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re-aggregated on the surface of the working electrodes, forming agglomerates very similar
to those observed in this work. In agreement with [51], we suppose this could depend
on the solvent used, even if DMF seemed to be the best solvent among the tested ones
(data not shown). According to [60], DMF does not significantly affect the surface of
carbon WEs. On the other hand, it proved to be an excellent solvent for HRCM, so that
the performances obtained with sensors functionalized with 5 mg/mL of HRCM were
statistically not different from those of sensors functionalized with 10 mg/mL of MWCNTs.
After a series of preliminary tests, most of the experiments in this work focused on these
last two SPEs.

If the SEM and TEM images testify to the modification of the geometric surface,
the CVs evidenced that the electroactive surface of the WEs were modified following
functionalization. It should be noted that the electroactive area of the C-SPEs were found
to be smaller than the geometric area by approximately 30%. This is not new, since the ratio
Aelectroative/Ageometric can vary from 75% to 123%, according to probes, to binder holding
the graphite and to carbon black components [21]. The functionalization with HRCM and
MWCNTs increased the electroactive area by 1.2 and 1.4 times, respectively, compared
to C-SPEs. This is in good agreement with previous works, where the determination of
the real electroactive surface of SPEs was investigated by the same technique using the
Randles–Sěvcik equation and irreversible probes such as AA [19,21,61,62]. In all these
papers, it was demonstrated that nanostructuration notably improved the electroactive
areas and, as a consequence, the AA oxidation signal. In this work, CVs demonstrated that
the presence of the HRCM and MWCNTs on the surface of the WE increased both baseline
and AA oxidation currents, generating AA currents 10 and 20 times higher than the C-SPEs,
at the potential chosen to carry out the measurements on fruit samples. Furthermore, the
linear relation between Ip and the square root of the potential scan rate (ν1/2) indicated
that AA oxidation was a diffusion-controlled process, since it was characterized by a slope
value close to 0.5, while those controlled by adsorption were described by a slope close
to 1 [57].

Given that the diffusion rate of the AA towards the WE increased by almost 27 times,
just by reducing the geometric C-SPE surface from 0.19547 cm2, used in [8], to 0.12419 cm2

used in this work, functionalization also had another relevant effect: an increase in the
electroactive area of HRCM-SPEs and MW-SPEs allowed a remarkable improvement
in the diffusion rate by an order of 10 compared to C-SPE. The value of D reported
in the manuscript were lower than those commonly reported in the literature, which
were of the order of 10−6 or less [19–21,62]. However, the values in the literature take
into account a potential step between 0 mV and the peak value of AA. Differently, the
chronoamperometries performed in this manuscript, considered a potential step between 0
and +120 mV, because +120 mV is the potential used in the analysis of the real samples. For
this reason, the current values that we plotted versus t−1/2 (s−1/2) were much lower than
those reported in the literature. The D value of our C-SPEs was compatible with low AA
concentrations, bare carbon electrode, and low applied potential, but the functionalization
strongly improved the diffusion rate of the SPEs.

The calibrations showed that SPEs functionalized with 5 mg/100 mL of HRCM and
10 mg/100 mL of MWCNTs allowed to obtain the highest currents for the same AA
concentration. Although the HRCM concentration used for functionalization was half
that of the MWCNTs, the slope in Table 1 indicated that the oxidative capacity of HRCM-
SPEs and MW-SPEs was 3.7 and 3.2 times higher than the C-SPEs, respectively. Different
concentrations, even higher, of the suspensions of HRCM and MWCNTs gave rise to
SPEs with lower performances. Moreover, the increase in the slope of the functionalized
SPEs is a key point in this work. Since the background noise of the currents generated
by modified and unmodified SPEs was quite similar (σ = 0.1297 and 0.1316 for C-SPEs
and HRCM-SPEs functionalized with 5 mg/mL, respectively), or even higher (0.1987 for
MW-SPEs functionalized with 10 mg/mL) after the functionalization, the slope values are
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the parameters which mainly define the LOD and LOQ of the SPEs, thus determining the
lowest AA concentration that can be detected in watermelon and apple samples.

From a comparison with other publications, where the concentration of AA was
determined with SPEs (Table S1 in the Supplementary Materials), it can be stated that
sensitivity, linear range, and detection limit of the SPEs used in this work are in line with the
literature and with the objectives stated in the introduction. As far as the choice of the most
suitable SPE for AA detection in plant species containing low concentrations of vitamin C,
a low LOD (and LOQ), linearity near the limit of detection, absence of matrix effect, high
electroactive areas, and high diffusion rates are the most important requested parameters.
Fruit samples are generally rich in polyphenols and other substances that polymerize on
the working electrode of the sensor, the faster the higher the applied potential. This effect,
known as “electrode passivation” [63] or the fouling effect, cannot be avoided but has
to be minimized [12] with strategies such as the use of the lowest sample concentration
as possible; applying the lowest potential possible; reducing the contact time of the SPE
surface with the analyte solution; use of an SPE built with material that has the greatest
affinity with the analyte of interest, AA in this case. In this work, the functionalization of
the sensors with HRCM allowed: for the reduction, with a dilution, of the AA concentration
in the samples down to 1 µM; the application of a potential of +120 mV, to which only
AA and a few other molecules, mostly not present in fruit and vegetables [42], could be
oxidized; to leave the samples in contact with the transducer for no more than two minutes,
so as not to induce the matrix or fouling effect. Finally, as regards the material used for the
functionalization, the results suggested that the choice falls either on 5 mg/mL HRCM or
on 10 mg/mL MWCNT, which gave similar performances to the relative SPEs. It can be
assumed that, in this situation, the choice should fall on the least expensive material.

5. Conclusions

The modified SPEs presented in this work showed similar better electrochemical and
analytical performances than the unmodified ones. HRCM improved the oxidative capacity
of the functionalized SPEs by increasing their electroactive areas. The sensitivity and the
diffusion rate of AA towards the transducer surface consistently increased. The limit of
detection and of quantification improved. For all these reasons, HRCM can be used for
functionalization of SPEs devoted to analyzing fruit and vegetables samples with low
content of vitamin C. In particular, the use of HRCM-SPEs is recommended for all the
cultivated species when the juice extraction is difficult and/or when the extracts must be
previously diluted to be analyzed.

6. Patents

Patent US 7842271B2 of 30/11/2010 indicated as “Mass Production of Carbon Nanos-
tructures” [50].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/chemosensors9120354/s1: Figure S1: Effect of functionalization on the AA oxidative capacity
of the C-SPEs; Figure S2: Matrix effect on AA currents; Table S1: Sensitivity, linear range, and
detection limit of screen-printed sensors for AA detection, a literature selection.
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