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Abstract: Quantum dots (QDs) represent the promising new generation of luminophores owing to
their size-, composition-, and surface-dependent tunable photoluminescence (PL) and photochemical
stability. The development of various QD composites with high PL and good biocompatibility has
facilitated the use of aptamer-functionalized QD biosensors for highly sensitive and specific detection
of molecules in clinical and environmental settings. In addition to describing the recent advances in
aptamer-based QD biosensor technology for the detection of diverse chemicals and biomolecules,
this review provides recent examples of sensing strategies based on optical signal enhancement and
quenching of QDs. It also discusses potential strategies for the development of biosensors to widen
their practical applications across various scientific and technological fields.
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1. Introduction

Numerous pathogens and toxins exist in clinics, food industries, the environment,
and military settings. These dangerous pollutants, including pathogenic bacteria, viruses,
and heavy metals, can damage organ function and even cause failure, thereby seriously
threatening people’s health. Accurate and rapid detection of these dangerous molecules
is of great importance in medical and diagnostic fields, allowing for early diagnosis and
proper treatment/removal of medical and environmental conditions. To effectively detect
and monitor the molecules in a practical setting, the sensing systems to be developed need
to fulfil diverse requirements, such as sensitivity, specificity, multiple detection, real-time
detection, and low cost.

Biosensors integrated with various nanomaterials offer several advantages, includ-
ing low limit of detection (LoD), real-time analysis, and multiplex detection [1–3]. As
novel nanomaterials are being developed rapidly, various types of sensing nanoplatforms,
physiochemical methods, bioconjugation strategies, and binding ligands are also being
employed, leading to the creation of new strategies to enhance detection performance [4].

Nanomaterials that exhibit distinct optical, electrical, electrochemical, and magnetic
characteristics have been applied for the development of biosensors that can detect and
monitor dangerous pollutants [3,5–11]. These biosensors have been built using various
nanomaterials, including nanoparticles (NPs), nanorods, nanowires, and quantum dots
(QDs), as well as carbon-based nanomaterials, such as carbon dots (CDs), carbon nanotubes
(CNTs), and graphene oxide (GOx) [5–12]. Of these, QDs possess unique spectral character-
istics and act as special inorganic luminophores; therefore, they have come into focus to be
used in the development of highly sensitive biosensors [12,13]. In addition to facilitating
practical and sensitive detection, they also enable the monitoring of various molecules in
environmental and clinical samples, including living cells [12–16]. This is a result of their
several advantages over other fluorescence dyes, including their small size, wide excitation
spectrum, narrow emission spectrum, and chemical resistance [17–19]. Varying the size,
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shape, and composition allows the creation of diverse QDs with unique photoluminescence
(PL) at tunable wavelengths across the visible and near-infrared (NIR) spectra.

In order to achieve high specificity of biosensors, numerous efforts have been de-
voted to the discovery and modification of various ligands, including peptides, phages,
oligonucleotides, proteins, antibodies, and aptamers [3]. Among these ligands, aptamers
are short, single-stranded DNA (ssDNA), RNA (ssRNA), or XNA (xeno nucleic acid, which
is a synthetic nucleic acid analogue) [20,21] molecules that can selectively bind to a wide
variety of target molecules including small chemicals, peptides, proteins, and even whole
cells [22–26]. Aptamers can be screened through an iterative in vitro process called sys-
tematic evolution of ligands by exponential enrichment (SELEX). In the SELEX process,
a large oligonucleotide pool used as starting materials is exposed with target molecules
and an aptamer with high affinity against target molecules is isolated by various screening
strategies [22–26]. Such selected aptamers exhibit high affinity, specificity, high thermosta-
bility, acid-base resistance, low immunogenicity and toxicity, low cost, and easy synthesis
and modification [27–30]. These excellent properties have enabled their increased use as
bio-recognition ligands for practical applications in industrial, environmental, and clinical
settings. Their widespread use has further facilitated the creation of novel strategies and
enhanced technologies for aptamer discovery, even the establishment of several companies
dedicated to the discovery and synthesis of aptamers [22].

Several reviews provide detailed information on the principles and characteristics
of QD biosensors [13,14,17,31]. This article focuses on introducing molecule detection
strategies and technologies based on the factors that affect the change in the optical signal
emission of QDs, which can be largely divided into the following four categories: (1) the
aptamer-analyte binding event, (2) the materials directly attach to the aptamer, (3) the
materials indirectly linked with the aptamer, and (4) the DNA-modifying enzymes involved
in signal amplification and quenching. Representative applications of aptamer-based QD
biosensors, including those described in this paper along with others that have been
developed and employed for the detection of a wide range of molecules, are also detailed
in Table 1. Furthermore, this review describes an approach that can enable the development
of QD biosensors to help achieve their eventual practical use.

2. Aptamer-Based QD Biosensors for Molecule Detection and Monitoring
2.1. QD as Sensing Material

QDs are tiny semiconducting particles or nanocrystals with diameters of 2–10 nm,
comprising 10–50 atoms [13,14,32]. Their small size and ability to operate in a confined
space lead to the quantum confinement effect, by which QDs have a distinct energy level.
The decreased particle size increases the difference in energy between the top of the valence
band and the bottom of the conduction band, the so-called band gap. A wide band gap
implies that more energy is required to excite the QDs, which concurrently means that
they release more energy when returning to the ground level. When light or electric
energy contacts the QD, the QD enters its excitation state, wherein the electron moves
from a hole in the valence band to the conduction band. Recombination of the electron
and the hole results in the release of a photon. The photon adsorption increases at higher
energies in the QD, which provides it a broad absorption spectrum (300–800 nm) and longer
fluorescent lifetime [33]. Its broad wavelength absorption spectrum allows PL to be excited
in multiple QDs with different colors by a single excitation source. Owing to its broad
wavelength absorption spectrum, the QD can utilize distance-dependent energy transfer
phenomena, such as fluorescence resonance energy transfer (FRET) and nano surface energy
transfer (NSET), through the introduction of other NPs such as AuNP as acceptors [34–36].
The high quantum yield of QDs result in high brightness and photochemical stability,
making them resistant to chemical and photo degradation [37]. The distinct advantages of
high molar extinction coefficients over a broad excitation region enable the simultaneous
detection of multiple targets from the blue to NIR spectral region and the detection of
molecules in living cells and tissues [38]. Recently, the multi-shelling process, which
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involves coating semiconductor materials (shell) onto a colloidal QD (core), has facilitated
the creation of diverse core-shell QDs, achieving higher fluorescence quantum yield and
better photostability. The optical properties of QDs depend on their size, shape, material,
composition of the core-shell conjugates, the shell growth rate, the additives, and the
multiple emission layers [39–43].

2.2. Strategy for the Change in the Optical Signal Emission of the QDs for Biosensing Application

QD biosensors can detect and monitor the presence of an analyte in the samples based
on their transition from the switch-on state to the switch-off state or vice versa. Biosensors
are also capable of quantification, which is based on measuring the change in a tunable
signal intensity. Ensuring clearer on-and-off detection and quantification requires this
system to have a high signal intensity or low background noise in the initial state (without
analyte). In aptamer-based QD biosensors, several systems that can harness the change in
the optical signal emission of the QDs. The first system is based on the aptamer-analyte
binding event [44–46]. Aptamer-attached QD emits an optical signal in the signal-on state.
Once an analyte is added, the aptamer-analyte binding event occurs, and the aptamer-
analyte quenches the emission of the QD, entering the signal-off state. In this strategy, the
aptamer-analyte binding event triggers the signal on-off change in the system; therefore,
this system has a simple and fast process. The binding force of the aptamer has a large
kinetic barrier; therefore, it can significantly affect the sensing accuracy of the system.

The second system is based on the materials directly attaching to the aptamer [34,35].
This strategy usually harnesses the distance-dependent energy transfer mechanism. Ap-
tamers are generally designed to attach to both QDs as emitters and the materials as
quenchers. QD-aptamer-material composites maintain stretching, in which the QD-material
distance is far enough to emit a signal from the QD, in its signal-on state. When an ana-
lyte exists in the sample, the aptamer binds to the analyte. As aptamer-target binding is
determined by its tertiary structure, the binding event leads a conformational change in
the aptamer which shortens the distance between the QD and the material, quenching the
signal emission in the signal-off state. The binding ability of the aptamer and the quenching
efficiency of the material facilitate the dynamic control of the system’s sensing performance.

The third system is based on the materials indirectly linking to the aptamer [47,48].
Aptamers bind to QDs; however, the materials are combined with other nucleic acid strands
with sequences complementary to the aptamers. Therefore, the materials can be linked to
the aptamers only once the aptamers hybridize with the complementary strands, forming
QD-aptamer:complementary strand duplex-material composites. In this case, the presence
of an analyte breaks the aptamer:complementary strand duplex into two single-stranded
oligos because of the preferable interaction of the aptamer against the analyte. Dissociation
of the material-attached strand causes changes in the optical signal of the QD. Compared to
two systems mentioned above, this system requires a rather complicated process; however,
it enables more dynamic control of the QD signal by varying the lengths and number of
complementary strands.

The fourth system is based on DNA-modifying enzymes [49–51]. This strategy gener-
ally utilizes multifunctional DNA fragments containing aptamers. The components of the
DNA depend on the DNA-modifying enzyme that is to be used. In this strategy, after the
aptamer-analyte binding event occurs, the addition of DNA-modifying enzymes triggers
the target recycling and signal amplification reactions, which enhance the sensitivity and
specificity even if small amounts of analyte exist in the sample. The assay time required
depends on the efficiency with which the enzymes catalyze the reaction on the substrate.
This can also help determine whether the DNA and the enzymes should be added to the
reaction mixture consecutively or simultaneously. Although one-tube enzymatic reactions
are simple, they can have low signal-to-noise ratios. Subsequent exogenous component
addition can provide high signal-to-noise ratios; however, this requires a more complicated,
multi-step process with a long assay time that can prevent its practical applications.
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3. Current Aptamer-Based QD Biosensors for Chemical and Biomolecule Detection

In this section, we highlight how specific aptamer-based QD biosensors change the
signal intensity of QD to detect various molecules. The challenges and strategies to improve
the performance of these biosensors and the related parameters (linear range, LoD, etc.)
are also summarized in Table 1.
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Table 1. Examples of aptamer-based QD biosensors for detection of various molecules a.

Sensing
Platform QD Material Aptamer Conjugation Method Analyte Sensing Type Linear Range LoD Sample Features Reference

Vinyl modified
QD Mn/ZnS

Conjugation of SH-aptamer to
molecular imprinted

polymer-QD

Cytochrome c
(Cyt c) Fluorescence 0.20–2.00 µM 54 nM Urine, serum

Use of double recognition based
on aptamer and imprinted

cavity

[44];
Figure 1A

Polyethyleneimine
(PEI)-capped
core-shell QD

Mn/ZnS
Electrostatic attraction to (+)

charged PEI-QD and (−)
charged aptamer

Cyt c PL 0.166–9.96 µM 84 nM Human serum Quenching effect by electron
transfer between QD and Cyt c [45]

Core/shell PEG-CdSe/ZnS Biotin aptamer-SA QD
conjugation EGFRvIII Fluorescence ND ND

Mice bearing
U87-EGFRvIII brain

tumors

Small enough (20 nm)
aptamer-QD conjugates to

cross BBB
[52]

MNP-QD CdTe
Hybridization of oligo with
complementary strand of
aptamer attached to QD

Salmonella
typhimurium Fluorescence 10–1010 CFU/mL 1 CFU/mL Milk, water

Formation of MNP-QD
composition by binding aptamer

and complementary strand

[46];
Figure 1B

Core/shell CdSe/ZnS Covalent linking between
COOH-QD and NH2-aptamer

Tumour necrosis
factor-alpha

(TNF-a)
PL 0–22.3 nM 97.2 pM Human serum-based

sample

Use of FRET. Sensing platform:
QD (donor)-Aptamer-AuNP

(acceptor)
[34]

Core/shell CdSe/ZnS Biotin aptamer-streptavidin QD
conjugation

Campylobacter
jejuni Fluorescence ND 5 CFU/mL Chicken rinsate

Sandwich assay with
aptamer-conjugated MB and

aptamer-attached QD
[53]

Core/shell CdSe/ZnS Biotin aptamer-avidin QD
conjugation

Escherichia coli
O157:H7,
Salmonella

typhimurium

Fluorescence

63−108 CFU/mL for
S. typhimurium;

40−108 CFU/mL for
E. coli

25 CFU/mL for
S. typhimurium;
16 CFU/mL for

E. coli

Milk, human serum,
human urine

Use of aptamer-modified
fluorescentmagnetic

multifunctional nanoprobes
consisting of (3-mercaptopropyl)

trimethoxysilane, magnetic
γ-Fe2O3, and fluorescent QDs

[54]

Single QD CdTe Covalent linking between
COOH-QD and NH2-aptamer

S. typhimurium,
Staphylococcus

aureus
PL 10–106 CFU/mL

16 CFU/mL for
S. aureus; 28

CFU/mL for S.
typhimurium

None

Sensing platform;
complementary

strand-conjugated
MB-aptamer-attached QD. Use

of MB for simple separation

[55]

Core/shell CdSe/ZnS Covalent linking between
COOH-QD and NH2-aptamer TNF-a PL ND ND

Mouse pre-osteocyte
cells (MC3T3 E1),

Mouse mono-
cyte/macrophage cells

(RAW264.7)

Use of FRET. Sensing platform:
CPP-QD

(donor)-Aptamer-AuNP
(acceptor). Intracellular
biomolecule detection

[35];
Figure 2

Core/shell CdSe/ZnS Covalent linking between
COOH-QD and NH2-aptamer Ca2+ PL ND 3.77 pM Mouse pre-osteocyte

cells (MC3T3 E1)

Use of FRET. Complex sensing
platform: CPP-QD

(donor)-Aptamer-AuNP
(acceptor). Intracellular
biomolecule detection

[36]
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Table 1. Cont.

Sensing
Platform QD Material Aptamer Conjugation Method Analyte Sensing Type Linear Range LoD Sample Features Reference

Single QD on
GCE CdS Conjugation of SH-aptamer to

QD-GCE Thrombin ECL

500–5000 pg/mL in
quenching method;
50–2000 pg/mL in

amplification
method;

5–500 pg/mL in
ratiometric method

92 pg/mL in
quenching

method;
6.5 pg/mL in
amplification

method;
500 fg/mL in
ratiometric

method

Human serum
Use of FRET. Enhancement of

ECL emission of QD by
treatment of H2O2

[56]

Single QD-GOx
composite on

GCE
CdS

Duplex formation with
NH2-labelled complementary

strand, which can bind to
COOH-QD-GOx composite

Chloramphenicol ECL 100 nM–1 pM 0.5 pM Milk

Use of GOx-CdS QD-GCE as
substrate. Use of HRP as

quencher. Sensing platform:
GCE-(GOx-QD)-Aptamer-HRP

[47];
Figure 3A

Core/shell on
GCE CdTe/CdS

Electrostatic attraction to
NH2-QD and (-) charged

aptamer
Thrombin NECL 100 aM–10 fM 31 aM

Interfering agent (BSA,
IgG, HSA)-containing

samples

Coating of chitosan on GCE-QD
for uniform surface for aptamer
immobilization. Use of NIR QDs

[48];
Figure 3B

DNA-
QD/AuNP DNA Conjugation of SH-aptamer to

DNA-QD/AuNP conjugate S. typhimurium Fluorescence 10–1.0 × 107

CFU/mL 13.6 CFU/mL Milk Use of DNA-QD/AuNP for easy
and simple aptamer conjugation [57]

Single QD on
GCE CdS Covalent linking between

COOH-QD and NH2-aptamer Cardiac troponin I ECL 1 fg/mL–10 ng/mL 0.75 fg/mL Human serum

Use of aptamer conjugated CdS
QDs and AuNPs as ECL

luminophores and plasmon
sources, respectively. Sandwich
assay with aptamer-conjugated

QD and
aptamer-attached AuNP.

[58]

Core/shell on
ITO electrode
and magentic

CdTe/CdS Covalent linking between
COOH-QD and NH2-aptamer Hg2+ ECL 20 aM to 2 µM 2 aM Carp fish, saltwater

fish, tap water

Sensing platform:
Fe3O4@SiO2/dendrimers/QDs.

Use of AuNP as a quencher.
[59]

MoS2@Pd-Au
on GCE MoS2

Duplex formation with primer
DNA crosslinked with
chitosan-MoS2@Pd-Au

Lipopolysaccharide ECL 0.1 fg/mL–
50 ng/mL 0.07 fg/mL None

Incorporation of target-cycling
synchronized rolling circle

amplification reaction

[49];
Figure 4A

MoS2@Au MoS2
Conjugation of SH-aptamer

to QD Siglec-5 ECL 10–500 pM 8.9 pM None Use of ExoIII-assisted signal
amplification of QD

[50];
Figure 4B

Single QD CdSe

Covalent linking between
COOH-QD and NH2-SSB,

followed by binding
with aptamer

Streptomycin Fluorescence 0.1–100 ng/mL 0.03 ng/mL Milk Use of ExoI-assisted target
recycling amplification

[51];
Figure 4C

Single QD CdSe Duplex formation, which can
covalently bind to antibody-QD Chloromycetin Fluorescence 0.05–100 ng/mL 2 pg/mL Milk Reusable sensing platform [60]

a Abbreviations: QD, quantum dot; LoD, limit of detection; CPP, cell penetrating peptide; CFU, colony forming unit; MNP, magnetic nanoparticle; AuNP, gold nanoparticle; MB, magnetic bead; PL,
photoluminescence; ECL, electrochemiluminescence; FRET, fluorescence resonance energy transfer; GOx, graphene oxide; GCE, glassy carbon electrode; NECL, near-infrared electrochemiluminescence; EGFRvIII,
epidermal growth factor receptor variant III; BSA, bovine serum albumin; IgG, immunoglobulin G; HSA, human serum albumin; NIR, near-infrared; NPL, near-infrared PL; BBB, blood-brain barrier; ITO, Indium
tin oxide; Siglec-5, sialic acid-binding immunoglobulin (Ig)-like lectin 5; ExoIII, exonuclease III; SSB, single-stranded DNA-binding protein; ExoI, exonuclease I; ND, not determined.
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Figure 1. Quantum dot (QD) biosensing strategy based on change in optical signal of QD by aptamer-
analyte binding: (A) Vinyl modified Mn/ZnS QD biosensor for detection of cytochrome c. Re-
produced with permission from [44]; (B) magnetic nanoparticle-CdTe QD biosensor for detection
of Salmonella typhimurium. Reproduced with permission from [46]. MPA, 3-Mercaptopropionic
acid; TEOS, tetraethoxysilane; KH570, γ-methacryloxypropyl trimethoxy silane; MAA, methcrylic
acid; MBA, N, N′-methylenebisacrylamine; EDC, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride; NHS, N-hydroxysuccinimide; CS, complementary strand; MB, magnetic bead.
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Figure 2. Quantum dot (QD) biosensing strategy based on change in optical signal of QD by
materials directly attaching to the aptamer. CdSe/ZnS QD biosensor to the detection of intracellular
tumour necrosis factor-alpha (TNF-α). Reproduced with permission from [35]. EDC, 1-Ethyl-3-(3-
dimethylaminopropyl) carbodiimide hydrochloride; NHS, N-hydroxysuccinimide.
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Figure 3. Quantum dot (QD) biosensing strategy based on change in optical signal of QD by materials
indirectly linking with the aptamer (A) glassy carbon electrode (GCE)-deposited CdS QD-graphene
oxide (GOx) composite biosensor to detect chloramphenicol. Reproduced with permission from [47];
(B) GCE-deposited CdTe/CdS QD biosensor to detect thrombin. Reproduced with permission
from [48]. PDDA, Poly(diallyldimethylammonium chloride); cDNA, complementary DNA; dsDNA,
double-stranded DNA; BSA, bovine serum albumin; HRP, horseradish peroxidase; CAP, chloram-
phenicol, pDNA-AuNP, probing DNA-modified gold nanoparticle.
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Figure 4. Quantum dot (QD) biosensing strategy based on change in signal emission of QD by
DNA-modifying enzyme-assisted reaction. (A) Aptamer-driven target-cycling synchronized rolling
circle reaction-coupled MoS2QD@Pd-Au composite biosensor for detection of lipopolysaccharide
(LPS). Reproduced with permission from [49]; (B) exonuclease III (ExoIII)-based signal amplification
reaction-coupled MoS2QD@Au composite biosensor to detect LPS. Reproduced with permission
from [50]; (C) exonuclease I (ExoI)-aided target recycling reaction-coupled MoS2QD@Au compos-
ite biosensor to detect streptomycin. Reproduced with permission from [51]. GCE, glassy carbon
electrode; TEA, trimethylamine; CRP, circular recognition probe; dNTP, deoxyribonucleoside triphos-
phate; RCA, rolling circle amplification; MCH, mercaptohexanol.
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3.1. Biosensor Based on Change in Signal Emission of QD by Aptamer-Analyte Binding

The binding of aptamers with target molecules can directly change the signal emission
of QDs. Aptamer-functionalized QDs can detect and monitor the presence of analytes
by observing changes in the PL of the QDs. For example, an Mn-ZnS QD biosensor has
been developed to detect cytochrome c (Cyt c) [44,45]. Mn doping can enhance the optical
and electronic transport of QDs [61,62]. For the specific capture of Cyt c, the double
recognition strategy was used; one recognition was achieved by using aptamers, and the
other was achieved by using molecular imprinted polymers (MIPs) [44]; Figure 1A. MIPs
are artificial custom-designed affinity materials. The polymerization of monomers upon
exposure to template molecules forms a cavity in the polymer matrix, where the target
molecules can bind, functioning as a lock-and-key mechanism [63]. In the fabrication of
MIPs, aptamers have been used as target molecules [64], and these apt-MIP composites
have been used to detect proteins and viruses [65,66]. This system, using thiolated DNA
aptamers and methacrylic acid as the functional monomers, has been reported to form
apt-MIP composites [44]. After cross-linking and polymerization, the imprinted cavity on
the surface of the vinyl-QDs could specifically recognize the Cyt c, thereby quenching the
fluorescence of the QDs. This system exhibited an LoD of 0.054 µM with a linear range of
0.20–2.00 µM (Table 1).

In order to detect Cyt c through easy and fast aptamer conjugation to QD, a QD was
coated with polyethyleneimine (PEI) and then conjugated with an aptamer through the
electrostatic interaction between the positively charged PEI and negatively charged DNA
aptamer [45]. The added Cyt c made the aptamer form a ternary compound, and the
electron transfer between the QD and Cyt c quenched the PL of the QD. This system could
detect 84 nM of Cyt c with a detection range of 0.166–9.96 µM (Table 1).

In another example, aptamers were attached to CdTe QDs through hybridization with
complementary ssDNA, forming an aptamer:ssDNA duplex-QD composite [46]; Figure 1B.
Exposing this composite to an analyte (Salmonella typhimurium) allowed the aptamer to
preferentially bind to it, while dissociating from the composite. As the aptamer was
functionalized with magnetic NPs, the released aptamer could be easily separated using a
magnet, whereas the remaining QD could emit florescence. The system exhibited an LoD
of 1 CFU/mL with a linear range of 10–1010 CFU/mL (Table 1).

3.2. Biosensor Using Change in Signal Emission of QD by Materials Directly Attaching to
the Aptamer

Materials that can cause a change in the optical properties of QDs can directly bind to
an aptamer, where the aptamer can act as a linker bridging the QD and the material. As
aptamers undergo changes in tertiary structure upon binding to analyte, the distance of
QD and the material depends on an aptamer-analyte binding. Based on this phenomena,
QD biosensors can harness the FRET effect to convert the switch-on state into the switch-off
state or vice versa. FRET relies on the transfer of excitation energy of a donor fluorophore
to an acceptor molecule through nonradiative dipole-dipole coupling. In FRET-based QD
biosensor, QD and the material act as donor dye and acceptor molecules, respectively. The
metallic QD-based system can be applied to another distance-dependent energy transfer,
NSEF, which is a dipole-surface energy transfer process involving a metallic surface and
a molecules dipole. The aptamer can modulate the distance between the donor and the
acceptor; a conformational change in the aptamer shortens the distance, thereby quenching
the QD emission. Based on this system, QDs can be used with various materials to detect
or monitor dynamic binding events between aptamers and analytes.

A QD-NP composite can exhibit the FRET effect in the UV-visible range, where the
QD acts as a donor and the NPs act as acceptors that can quench or cause a release of
photons [34–36]. For example, intracellular tumor necrosis factor-alpha (TNF-α) could
be detected using the QD-AuNP sensing material [34]. The sensing platform comprised
a QD, an AuNP, and an aptamer. The aptamer had two functional groups at each end;
at one end, an amine group was attached, which bound to the carboxyl group-modified
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CdSe/ZnS QD that functioned as the FRET donor. At the other end, a thiol group was
labelled and bound to the monomaleimide AuNP that functioned as the FRET acceptor. In
the absence of TNF-α, the QD was far enough away from the AuNP to emit its PL. This
resulted from the large amount of energy available in the QD that could be emitted as
photons because of little to no transfer of energy from the QD to the AuNP, as the quencher.
Upon the exposure of TNF-α, the aptamer specifically bound to TNF-α and underwent a
conformational change, which reduced the QD-AuNP distance, resulting in a decrease in
PL intensity. The change in PL intensity depended on the concentration of the TNF-α in
the sample. This system revealed a linear correlation in the range of 0–22.3 nM with a LoD
of 97.2 pM (Table 1).

This system has been applied to detect intracellular biomolecules in living cells by
introducing a cell-penetrating peptide [36,38]. The DSS (Asp-Ser-Ser) peptide is a well-
known cell-penetrating peptide [67]; this repeated motif has been used to coat lignin NPs
to improve drug delivery efficiency [38,68]. The use of the DSS peptide enhances cell
entry efficiency without endosomal trapping. In the QD-AuNP sensing platform, the DSS
peptide was attached to a carboxylated QD [35]; Figure 2. Upon the DSS peptide-assisted
entry of the sensory molecules into the macrophage cells, they exhibited a high PL intensity
from the QD. The PL intensity was significantly decreased when the cells were treated with
bacterial lipopolysaccharide (LPS), which triggers TNF-α production by inducing infection
and inflammation. Using the same system, intracellular Ca2+ has been detected in living
cells stimulated by thapsigargin, which induced increased intracellular calcium release [36].
This system could detect intracellular Ca2+ up to 3.77 pM (Table 1).

3.3. Biosensor Using Change in Signal Emission of QD by Materials Indirectly Linking with
the Aptamer

Materials that influence the emission of photons from QDs can also indirectly bind to
aptamers. Materials are generally attached to oligos with sequences complementary to the
aptamers, which eventually form a duplex with aptamer. This system is designed to ensure
that the duplex only partially forms base pairs while retaining ssDNA in some regions;
therefore, adding target molecules can result in the preferential binding of aptamers to
targets rather than to complementary strands, resulting in the dissociation of the duplex
and the release of materials. Compared to the strategy in which the aptamer is directly
attached, this strategy can exhibit dynamic changes in QD emission by changing the
length of the duplex, and introducing another signal amplification/quenching reaction or
fluorescent dye/luminophore.

For example, a ratiometric assay has been developed to detect thrombin by employing
a QD-NP composite with luminol [56]. These ratiometric assays are based on the change in
electrochemiluminescence (ECL) signals from two different luminophores depending on
the concentration of the analytes [69–72]. In this method, two different thrombin-specific
aptamers were used: aptamer I was modified with thiol at the 5′ end to conjugate with
the CdS QD and biotin at the 3′ end to interact with the streptavidin-coated AuNPs, and
aptamer II was functionalized with biotin at the 5′ end to bind with the streptavidin-coated
luminol-AuNP composites [56]. First, the CdS QDs were deposited onto the surface of the
glassy carbon electrode (GCE), and aptamer I was sequentially attached to the QDs. When
thrombin was present in the sample, aptamer I underwent a conformational change that
reduced the distance between the QD and the AuNP, resulting in quenching of the CdS
by the AuNPs. The presence of thrombin could be checked by observing the increased
ECL intensity of luminol after introduction of the aptamer II-luminol-AuNP composites.
The proximity of AuNP to luminol enhanced its ECL emission by increasing the electron
transfer rate. In addition, to observe the obvious change in ECL intensity from the QD, it
was pre-treated with H2O2 which oxidizes the CdS QD, leading to the formation of excess
Cd2+ ions (sulphur vacancies) on the surface of the QD. This has been shown to stabilize the
electrogenerated radicals, resulting in enhanced ECL intensity [73]. Treatment with citric
acid has also been reported to enhance the stability of the QD, facilitating the formation of
more excited states of QD. The system could detect 500 fg/mL of thrombin [56]; Table 1.
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As a QD quencher, horseradish peroxidase (HRP) has been used to detect chloram-
phenicol [47]; Figure 3A. In order to immobilize CdS QD on the GCE, GOx was positively
charged by treatment with polydiallyldimethylammonium chloride (PDDA) [74], which
functioned as a linker. GOx could bind with CdS QD through electrostatic interactions
and then the GOx-QD composite could be adsorbed onto the GCE. The amine-attached
chloramphenicol-specific aptamer formed a duplex with its complementary strand, which
is modified with biotin, resulting in two functional groups. The first functional group,
amine, enabled the binding of aptamer with the carboxyl group of the QD. The second
group, biotin, bound with streptavidin-coated HRP. When the sensing platform was ex-
posed to a solution containing H2O2, the H2O2 reacted with the electron-injected QD to
generate excited QDs, leading to strong ECL intensity because of signal amplification. In
the presence of HRP, the H2O2 was consumed and the ECL intensity decreased, indicating
that HRP could quench excited states of QD [74]. The presence of chloramphenicol led to a
conformational change in the aptamer, causing it to be released from the duplex; eventually,
the HRP attached to the aptamer was also removed in the washing step, resulting in an
increase in the ECL intensity.

In addition to the application of QDs as visible-range ECL biosensors, there have been
efforts to broaden the application of QD biosensors that are capable of detection in the
NIR range. NIR emitters have several advantages including minimal autofluorescence,
light absorption, and scattering from the biological environment, which have facilitated
the development of NIR QDs [75]. In order to detect biomolecules in the NIR range, an
aptamer-based QD biosensor has been incorporated with gold nanorods (AuNRs), which
exhibit distinct shape-dependent surface plasmon resonance [48]; Figure 3B. A nanorod
can absorb light in the NIR region; therefore, it can function as a FRET acceptor [76]. When
molecules are detected in the NIR range, the background signal is extremely low, enabling
interference-free detection, especially in complex biological samples [77]. For example, an
NIR ECL (NECL)-emitting QD biosensor has been applied to detect thrombin [48]. For
NECL detection, CdTe/CdS QDs have been coated on the surface of a GCE to obtain
strong and stable NECL emission. The resulting QDs-GCE was pre-treated with a chitosan
solution to obtain a uniform substrate surface, which enables uniform DNA immobilization,
resulting in good reproducibility. Aptamers have been immobilized on QDs-GCE substrate
through electrostatic attraction to NH2-QD and subsequent formation of a partial duplex
with another DNA (pDNA) with a sequence complementary to the aptamer. The formation
of a partial duplex resulted in a decrease in NECL emission because the end of the pDNA
was linked to the AuNRs. When thrombin was present in the sample, it could specifically
bind to the aptamer, which underwent conformational change and detached pDNA-AuNR
from the aptamer, resulting in an increase in NECL intensity from the QD. In order to
enhance the ECL energy transfer efficiency, which directly affects LoD, two different factors
were optimized: one factor was the spectrum overlap between the donor and acceptor,
which was optimized by employing pDNA-AuNRs with longitudinal surface plasmon
resonance (SPR) bands at different wavelengths. The other was the distance between the
QD and AuNR [78,79], which was optimized by changing the length of aptamer-pDNA.
Therefore, using the low background noise of NIR-emitting QDs and a specific aptamer in
optimal condition with enhanced ECL efficiency yielded a high LoD of 31 aM for thrombin
(Table 1).

3.4. Biosensor Using Change in Signal Emission of QD by DNA-Modifying
Enzyme-Assisted Reaction

The optical signals of QDs can be altered by incorporating an enzymatic catalytic
reaction. The distinct catalytic activities and enzymatic activities of DNA-modifying
enzymes, including DNA polymerases, nicking endonucleases, and exonucleases, can be
used to enhance signal amplification and quenching because of their specific recognition
capabilities and characteristic functional mechanisms [80]. The QD biosensor that uses
aptamer-driven target cycling synchronized rolling circle amplification (RCA) reaction
is one example. Using this sensor, LPS could be detect up to 70 ag/mL [49]; Figure 4A;
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Table 1. This system used MoS2 QDs that were encapsulated with a Pd-Au hexoctahedron
composite and coated with chitosan. After activating the chitosan film for crosslinking
with amine-functionalized primer DNA, dumbbell-shaped DNA was added. This DNA
comprised multifunctional parts: a c-primer region with a sequence complementary to
the primer, an aptamer region to specifically bind LPS, and a C-rich domain to form the
hemin/G-quadruplex. Upon adding dumbbell-shaped DNA, this DNA could bind to
the primer DNA at the c-primer region. When the analyte was present in the sample,
the analyte bound to the aptamer region of the dumbbell-shaped DNA. After phi 29
polymerase and dNTPs were added, the dumbbell-shaped DNA acted as a template for
the rolling circle amplification, and the primer strand on the MoS2/Pd-Au composite QD
was lengthened. During RCA reaction, the analyte was released from the dumbbell-shaped
DNA and bound to another dumbbell-shaped DNA, which is called the target-recycling
reaction. As the generated RCA product, the lengthened primer on the composite QD
contained numerous C-rich domains, which embed hemin, resulting in the quenching of
the ECL emission from the QDs.

Another example is the incorporation of the exonuclease III-assisted signal amplifica-
tion reaction. This sensor could achieve an LoD of LPS as low as 8.9 pM [50]; Figure 4B;
Table 1. The QD used in this method was MoS2, which is an ECL emitter with low toxicity
and good biocompatibility; however, it has limited intrinsic conductivity and functional
groups on the surface [50,81,82]. These limitations can be overcome by forming a compos-
ite with AuNP, which provides a large area to attach and facilitates the immobilization
of various chemicals, especially thiolated aptamers, through the formation of an Au-S
covalent bond [83]. The MoS2@Au composite QD was deposited onto the GCE and conju-
gated with an ssDNA: Au nanocage-attached DNA (Au nanocage-S2) duplex; therefore,
this activated the off state because of the quenching of the QD’s ECL emission by the Au
nanocage [50]. When LPS was present, the aptamer:primer duplex was dissociated by
preferentially binding the aptamer and the LPS, releasing the primer and further binding
another Au nanocage-S2 that was already hybridized with S1 on MoS2@Au/GCE. Expo-
sure of exonuclease III led to the specific cleavage of the 3′ terminus of the dsDNA and
caused the digestion of Au nanocage-S2, which was in the off state. Concurrently, the
primer was released from the duplex, enabling the combination of another S2 at a different
locus on MoS2@Au/GCE to trigger the next cycle. The repeated cycle enabled primer
recycling and signal amplification. The use of the Au nanocage instead of AuNP made the
transition of the signal on-off state clearer because the Au nanocage exhibited enhanced
quenching efficiency because of higher overlap with the ECL spectra of this QD composite.

In another study, exonuclease I has been employed in a biosensor to detect strepto-
mycin [51]; Figure 4C. The signal-off state of the biosensor was achieved by the interaction
between an ssDNA-binding protein (SSB)-attached QD and the aptamer. SSB could specif-
ically bind to the ssDNA aptamer and act as a linker bridging the QDs, resulting in QD
aggregation and quenching the fluorescence emission of the QD, which was in the signal-on
state. Upon the addition of streptomycin and exonuclease I, the aptamer could prefer-
entially bind with streptomycin, and the aptamer-free SSB-QD dispersed into solution,
entering the signal-on state. Exonuclease I digested the aptamer coupled with streptomycin,
and the liberated streptomycin could combine with another aptamer-SSB-QD aggregate.
This system achieved an LoD of 30 pg/mL with a linear range of 0.1–100 ng/mL (Table 1).

4. Conclusions and Future Perspectives

QDs have been widely applied to detect and monitor molecules in vitro and in vivo
owing to their excellent optical properties, such as their small size, photostability, broad ex-
citation spectra, and narrow emission spectra. Their broadened application has facilitated
the development of QDs with novel compositions and structures. By selecting the particle
size, shape, material, and composition, the PL emission band can be easily adjusted from
UV to IR [39–41]. The optimization of the shell growth rate, additives, and multiple emit-
ting layers can enhance the PL quantum yield and photostability, which allows sensitive
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detection [42,43]. With these advances in QDs, the development of diverse nanostructure
architectures, surface modifications [17], and aptamer-screening strategies [22] will play
an increasingly critical role in the advancement of aptamer-based QD sensors to detect
biomolecules in clinical and environmental settings.

Diverse in vitro biosensors were created with the development of various QDs trig-
gered by the superior photophysical properties of QDs, and the tremendous progress.
However, in developing in vivo biosensor, the toxicity and the biocompatibility of QDs
are still major concerns for the detection of intracellular molecules in living cells or tissues.
Most QDs are made using toxic materials, such as Cd, In, Te, and As, that can cause damage
in multiple organ systems including the digestive, immune, nervous, and cardiovascular
systems [82]. Many efforts have been devoted to overcoming these limitations (Table 2).

Table 2. Strategies for overcoming toxicity of QDs.

Purpose Strategy Feature Reference(s)

Reduction of toxicity

Deposition of semiconductor shell
layer on the core (production of
core-shell composite)

Protection of the toxic component from
degradation; Minimal surface defects of these QDs

[75]

Attachment of hydrophilic
bifunctional molecule (e.g., PEG)

High stability under biologically relevant
conditions; Less affected by size of QD

[52,84,85]

Functionalization of amphiphilic
polymer (micelle-forming)

Robust, commercially available, and cheap
polymeric precursors; Easy control over number of
functional units introduced into polymeric coating

[86–88]

Coating surface of QD with silica Non-toxic, biocompatible, chemically inert,
optically transparent, protect from leaching of
toxic QD components

[89,90]

Use of eco-friendly synthetic
method

Bacteria, fungi, virus-driven
biosynthesis

Need for optimization of biosynthesis, recovery,
and purification process

[91]

• Use of bacteria • CdS QD production from Escherichia coli,
Moorella thermoacetica, Acidithiobacillus,
Pedobacter sp., Thermoanaerobacter sp.

[92–95]

• CdSAg QD production from E. coli [96]

• CdTe QD production from E. coli [97]

• ZnS QD production from
Thermoanaerobacter sp.

[98,99]

• Use of yeast • CdS QD production from
Schizosaccharomyces pombe

[100,101]

• CdTe QD production from Fusarium
oxysporum Saccharomyces cerevisiae

[102,103]

• ZnS QD production from Saccharomyces
cerevisiae and Aspergillus sp.

[104,105]

• Use of virus • Pt, Rh, Pd, Fe, Co, and Ni NPs production
using T4 bacteriophage capsid

[106]

• ZnS and CdS QD production from M13
bacteriophage

[107]

One way to reduce their toxicity is to change the surface of QDs. This surface change
could be achieved through various fabrication strategies of core-shell conjugates because
this can increase the size of the QDs and protect the toxic component from degrading,
thereby minimizing the surface defects of these QDs and enhancing their luminescent
quantum yield [75].

The QD surface can also be modified using three methods. One approach is ligand-
based modification, where hydrophilic bifunctional molecules, such as PEG, are attached
onto the surface of QDs [84,85]. This method is relatively simple and cost-effective, and
it does not affect the change in particle size; however, it typically results in a lower PL
quantum yield. For example, PEG-functionalized Cd-based QDs exhibited reduced toxicity
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and biocompatibility while retaining a high PL quantum yield, where PEG formed a fence-
like structure, resulting in prevention of Cd2+ accumulation on the QD surface [52,84].
CdSe/CdS QDs were also modified with PEG using a cascade treatment of 3-mercaptopropionic
acid (MPA) thiol-terminated methoxy PEG (mPEG-HS), where the resultant QDs exhibited
a decreased PL intensity, and upon adding glycine to the solution the original PL intensity
was re-achieved [85]. Another approach is micelle formation, where an amphiphilic
polymer surrounds the surface of the QD through hydrophobic interactions [86–88]. Unlike
the surface change approach, encapsulation provides large QDs with a high quantum
yield. The silanization method can decrease the toxicity of QDs by covering the surface
of QDs in a silica shell [89,90]. The silica surface is non-toxic and relatively biocompatible
and prevents the leaching of toxic QD components (e.g., Cd). Moreover, it can be easy
functionalized for bioconjugation.

Concerns regarding the chemical production of QDs, which requires a high temper-
ature, pressure, and hazardous solvents and ligands, remain the main obstacle to their
broad biological application [91]. An alternative way to produce eco-friendly QDs is to use
microorganisms or viruses [92–107].

Another advantage of bioproduction is that it provides biogenic QDs to functional
groups such as -OH, -NH2, and C=O originating from various biomolecules without
additional processes [108]. These functional groups also lower the toxicity and exhibit
good biocompatibility.

Some QDs have been produced at large titers in industrial-scale production; for exam-
ple, ZnS QDs and CdS QDs have been produced in quantities as high as 322 g (72% yield)
and ~3 g/L in Thermoanaerobacter sp. in a batch fermentation reactor, respectively [98,99].

There are some challenges for shortening the time required for biosynthesis and to de-
veloping low-cost purification processes, including precipitation, extraction, centrifugation,
and calcination. When the challenges described above are overcome, it is expected that
biogenic QDs will be safely applied to more diverse and innovative applications across
various fields without causing environmental pollution.

Although the current trend has shifted to the substitution of the common, toxic Cd-
and Pb-based QDs for less toxic semiconductor nanocrystals, such as CuInS2 and AgInS2,
and the use of new material QDs such as silicon- and carbon-QDs [109–111], guidelines
surrounding the safe handling of QDs are still needed during research, development, and
large-scale manufacturing.

Taken together, these breakthroughs and innovations will undoubtedly lead to the
emergence and discovery of new technologies and materials to facilitate disease diagnosis
in the near future.
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