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Abstract: Optical and magneto-optical surface plasmon resonance (MOSPR) characterization and pre-
liminary sensing test onto single- and multi-layers of two organic macrocycles have been performed;
TbPc2(OC11H21)8 phthalocyanine and CoCoPo2 porphyrin were deposited by the Langmuir-Schäfer
(LS) technique onto proper Au/Co/Au magneto-optical transducers. Investigations of the MOSPR
properties in Kretschmann configuration by angular modulation, gives us an indication about the
potential discrimination of two organic macrocycles with absorption electronic transition in and out of
the propagating plasmon energy spectral range. An improved molecular vapors sensitivity increase
by the MOSPR sensing probe can be demonstrated depending on the overlap between the plasmonic
probe energy and the absorption electronic transitions of the macrocycles under investigation. If the
interaction between the plasmon energy and molecular HOMO-LUMO transition is preserved, a
variation in the complex refractive index takes place. Under this condition, the magneto-plasmonic
effect reported as 1/|MOSPR| signal allows us to increase the detection of molecules deposited onto
the plasmonic transducer and their gas sensing capacity. The detection mechanism appears strongly
enhanced if the Plasmon Wave/HOMO-LUMO transitions energy are in resonance. Under coupling
conditions, a different volatile organic compounds (VOC) sensing capability has been demonstrated
using n-butylamine as the trial molecule.

Keywords: magneto-plasmonic; cobalt bisporphyrins; terbium bisphthalocyanine; Langmuir-Schäfer
technique; chemical sensing

1. Introduction

The interaction mechanism taking place between organic macrocycles such as metallated-
phthalocyanines and metallated-porphyrins and surface plasmons has been investigated to
describe how plasmonic materials can interact with nearby molecules by enhancing their
spectroscopic signatures, thus allowing for plasmon-enhanced sensing and detection [1–4].
Recently a lot of application based onto fluorescence technologies have been adopted
that exploit single molecule sensitivity for, e.g., DNA sequencing [5] and immunoassays
based on single enzymes and single-molecule counting [6], or improving and targeted
delivery of bioactive molecules to cells with magnetic layer-by-layer assembled micro-
capsules [7], or biosensor based on magneto-resistance technology [8]; a modelling of
magneto impedance response of thin film sensitive element in the presence of ferrogel as
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a step toward development of biosensor for in tissue embedded magnetic nanoparticles
detection [9].

Important groups of compounds containing an aromatic macrocycle with alternating
double and single bonds are porphyrins and phthalocyanines [10,11]. The first class of
proposed macromolecules are ubiquitous in Nature and can be regarded as derivatives of
the heterocycle porphyrin and differ in the chemical groups on the periphery and central
metal atom, in our study cobalt. The latter are highly colored and the substitution of the
central hydrogen atoms by metal ones, in our case terbium, results in the changes of the
optical properties in the UV-VIS spectral range. By this strategy they can be deposited
by chemical deposition methods like the Langmuir-Blodgett deposition technique onto
a proper transducer [12–14]. The interest in these macrocycles is due to the peculiar
properties of the large family of tetrapyrrolic functional molecular materials, above all
their high chemical and thermal stability. These compounds generated a lot of interest
for chemists, physicists, and industrial scientists due to their role in growing technologies
including photoconductors [15], solar cells [16,17] and chemical sensors [18–21]. Generally,
Langmuir-Blodgett (LB) technique involves the vertical movement of a solid substrate
through the monolayer/air interface and ensures a thorough control over single monolayer
deposition parameters. In our case well organized monolayers have been deposited by
using the horizontal lifting or Langmuir-Schäfer (LS) technique [22–24] a well-established
method of controlling thickness and molecular orientation within thin organic film [25,26].

In this work, the two macrocycles have been deposited in monolayer and multilayer
thin film form by the LS method and characterized during and after deposition by optical
approaches. In particular, the interest is related to the optical behavior and energy transfer
taking place between the two-metal coordinated organic macrocycles deposited in thin
film form and the propagating surface plasmon magnetically activated in a Kretschmann
configuration. Generally, these interactions can be investigated in wavelength or angular
modulation Kretschmann configuration. In our case angular modulation configuration
has been adopted. Recently, the magneto-optical surface plasmon resonance (MOSPR)
technique has been proposed based on the interrelation of magneto-optic effects and
surface plasmon resonance (SPR) excited in multilayers of noble (such as gold or silver)
and ferromagnetic metals (such as cobalt or iron). Experimental evidence has already led
to the application of this technique as a novel gas sensing method for the monitoring of
refractive index changes at the metal−dielectric interface.

In this paper, we report about the strong interaction between molecular excitations in
CoCoPo2 and TbPc2(OC11H21)8 molecules and magnetically modulated propagating SPR
excitations. We observe a strong coupling increase in TbPc2(OC11H21)8 absorption when
there is a coupling between plasmon resonance energy, and the energy needed for transition
between the delocalised electrons of the Pc ring to the metal transitions responsible for
volatile organic compounds sensing application. These new material properties disclose
largely unexplored areas with high scientific and technological potential, thus warranting
comprehensive investigations.

2. Materials and Methods
2.1. Preparation of the Magneto-Optical Transducers

Each magneto-optical transducer consists of a multilayers of 15 nm Au/6 nm Co/25 nm
Au/2 nm Ti deposited on Corning glass substrates (refractive index of 1.51). The 2 nm thick
Ti layer guarantees the adherence between the substrate and the 25 nm Au layer. All layers
were realized by dc magnetron sputtering in an ultrahigh-vacuum chamber with a base
pressure of 10−9 mbar. In these conditions Co layer presents in-plane magnetization [27,28].
Co layer buried in specific position in a sandwich of gold layers comes from the need to
maximizing the magneto-optical ∆R signal as explained in detail in reference [29].
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2.2. Preparation of the Magneto-Optical Transducers

The two compounds used to detect optical difference in the magneto-plasmonic
behavior were synthesized according to procedures reported in [30] for the bis-porphyrin
derivative and in reference [31] for the terbium phthalocyanine double decker. Both were
deposited onto the MP transducers by the Langmuir-Schäfer technique by using a NIMA
trough apparatus [32]. A chloroform solution of TbPc2(OC11H21)8, shiwn in Figure 1a,
was spread on ultrapure water subphase of a Langmuir trough and the surface pressure
(Π) vs. area per molecule isotherm curve was recorded during the barrier compression
(Figure 2a). The isotherm curve reported in Figure 2a shows three different slope changes
suggesting different arrangements of TbPc2(OC11H21)8 molecules spread on the subphase
surface. For large values of the surface area, TbPc2(OC11H21)8 molecules do not interact
one another. Under the effect of the barriers motion the floating film moves towards
the so-called expanded liquid phase [33] and the limiting area calculated in this region
(about 110 Å2·molecule−1) suggests that the molecules spread on the subphase surface
aggregate [34]. Starting from a surface pressure value of about 12 mN·m−1 a further
slope variation is recorded and a limiting area value of 30 Å2. Taking in account the
high hydrophobic nature of the alkyl substituents, the formation of a uniform floating
film must be excluded: the bis-phthalocyanine derivative molecules aggregate in cluster
structures. In fact, the calculated value of area per molecule appears too small if compared
with the phthalocyanine core theoretical value (290 Å2·molecule−1) [35]. Nevertheless,
as highlighted by the images recorded by means of a Brewster angle microscope (BAM)
(Figure 3), the simultaneous presence of subphase regions covered by TbPc2(OC11H21)8
floating molecules and bare water surface domains are evident at very low values of surface
pressure as well as at higher ones confirming a very low homogeneity of the floating film.
Brewster angle microscopy allows a real-time observation of the Langmuir floating film
without adding any marker molecules that could affect the molecular behavior at the
air-subphase interface. The BAM technique utilizes the reflection-free condition that can
occur at a specific angle (known as the Brewster angle) for a p-polarized light incident
on an air-water interface. According with Snell’s law, the Brewster angle depends on
the refractive indexes of the materials so changes in presence of a floating film can be
observed [36].

Similarly, the Langmuir isotherm and BAM images were also recorded for CoCoPo2
floating film. A chloroform spreading solution containing 0.12 mg/mL CoCoPo2 was used
(spread volume 150 µL) to form the floating film.
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Figure 3. BAM images of TbPc2(OC11H21)8 recorded at different surface pressure values, 4 mN·m−1

(box a), 7.5, 18 and 29 mN·m−1 (boxes b–d). Width of images is 430 µm.

At least two different slope changes characterize the Π vs. Å graph of the bis-
porphyrin derivative reported in Figure 2b. The first one is recorded at the onset at about
200 Å2·molecule−1 and the second one at the surface pressure of about 26 mN·m−1. The lim-
iting areas per molecule corresponding to the two isotherm branches are 160 Å2·molecule−1

and 85 Å2·molecule−1, respectively. The extrapolated limiting area per molecule of
160 Å2·molecule−1 is not compatible with the formation of a floating monolayer [20,37],
on the contrary the value 85 Å2·molecule−1 fits the area occupied by the CoCoPo2 in
edge-on configuration. Nevertheless, BAM images suggest that the subphase surface is
not uniformly covered by the floating film. Dendritic structures are formed at low surface
pressure value (Figure 4) and they coexist with regions of subphase not covered by the
floating film. When the surface pressure increases the observed floating structures be-
come progressively denser (Figure 4b,c) and at very high surface pressure values different
floating film thickness can be observed (Figure 4d).
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2.3. Morphological and Optical Characterization

The topography analyses of the films were performed by atomic force microscopy
(AFM NT-MDT Spectralight, NT-MDT LLC, Moscow, Russia) and the topographic height
signal images were obtained in semi-contact mode. A system equipped with a silicon
high resolution conic tip was used (radius of curvature: less than 10 nm; force constant:
17 +/− 20% N/m and resonant frequency 230 +/− 20% kHz). The active LS films were also
deposited onto polished quartz slides for UV–visible characterization. Optical absorption
measurements, at normal incidence, were conducted with an Agilent Cary 5000 instrument
(Santa Clara Campus’s main lobby at 5301 Stevens Creek Blvd. in Santa Clara, CA, USA).

2.4. Plasmonic and Magneto-Plasmonic Characterization in Dry-Air and in
Controlled Atmosphere

Surface plasmons (SP) are electromagnetic waves associated with longitudinal oscil-
lations of the electrons; they propagate along the surface of a conductor, usually a metal.
When using the Kretschmann configuration [4] to generate a plasmon, it is sufficient that a
p-polarized light wave hits a prism with a high refractive index in total reflection condi-
tions, thus generating an evanescent wave at the base of the prism. This process excites a
resonant plasmon if a thin metal film (generally gold) is deposited onto the prism base. In
SPR condition, the p-polarized incident light is absorbed by the metal layer and a resonance
dip is generated in the reflection spectrum. The resonance condition is described by the
following relationship [38]:

(2π/λinc)npsinθ = (2π/λSPP)(εmns
2/(εm + ns

2)1/2

where λinc is the wavelength in free space, np is the refractive index of the dielectric prism,
θ the incident angle of the illuminating light, εm is the permittivity of the metal layer and ns
is the refractive index of the dielectric (dry air in our case). λSPP represents the wavelength
of the SPP plasmon resonant. By using this equation, we can extract the energy of the SPP
resonant plasmon at the metal dielectric interface. In our experimental conditions, standard
SPR measurements were performed in a Kretschmann configuration and the wavelength of
the excited plasmon resonant was calculated to be λSPP = 675 nm. Au/Co/Au films were
deposited onto Corning glass substrates and attached to the base of a BK7 prism (n = 1516)
with an index matching fluid. A p-polarized He–Ne laser beam (λ = 632.8 nm) is directed
onto the back surface of the transducers Au/Co/Au thin films through the prism. The
intensities of the incident and reflected beams were detected as a function of incidence
angle using photodiodes and reflectivity was obtained. The SPR signal manifests itself as a
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dip in the angular dependence of the reflected light at a specific incidence angle above the
critical angle. In resonance conditions the light energy is used to excite surface plasmons.
It occurs at a characteristic angle of incidence (θspp), which depends on the thicknesses as
well as on the dielectric permittivity of the layers and of the adjacent medium. A shift
in the SPR curve give us the opportunity to calculate changes in refractive index in the
medium adjacent to the metal film, both real and imaginary part. In our configuration, to
monitor the magneto-optical activity in resonant condition, an home- made electromagnet
was realized with the magnetic field orientation in transversal configuration (TMOKE). The
magnetic field needed to saturate the magnetic domains of the Co layer was fixed at 30 Oe
and determined by magneto-optical Kerr effect hysteresis loops in transverse configuration
(TMOKE), which is sensitive to in-plane magnetization [27]. The relative variation in the
reflected p-polarized light is defined as:

∆R = R(+M) − R(−M)

where R(±M) are the reflectance of the p-polarized light with the sample magnetically
saturated along the positive (+M) and negative (−M) directions of the applied magnetic
field. The last equation is translated into a relative variation in the reflected p-polarized
light, which is related to the transverse magneto-optic Kerr effect (TMOKE),

TMOKE = ∆R/R = [R(+M) − R(−M)]/R(0)

where R(0) represents the p-component of the reflectivity for the demagnetization state.
The registered TMOKE signal depends on the light incident angle and on the optical and
MO properties of the investigated materials constituting the optical transducer.

3. Results and Discussion
3.1. Morphological Characterization

Figure 5a,b show the AFM characterization performed onto the two investigated
samples containing five monolayers of TbPc2(OC11H21)8 and CoCoPo2 deposited by the LS
technique. It is possible to state that, whereas the morphology of the CoCoPo2 shows spheri-
cal grains with diameters ranging from a few nanometres to a few dozens, TbPc2(OC11H21)8
highlights the presence of elongated structures that are approximately 500 nm long and
100 nm wide with many aggregates. Comparing the BAM observations reported in Figure 4,
concerning the formation of the monolayer at the air-water interface, and AFM characteriza-
tion in Figure 5, even though with a different scale, we can stress that the monolayer keeps
the same morphology during the transfer from the air-water interface to the transducer.
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3.2. Optical and Magneto-Plasmonic Characterization and Discussion

In the last years, the coupling interaction between surface plasmon polaritons (SPP)
and molecules has been utilized for optical sensing applications. Such interaction is
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generally mediated by electromagnetic (EM) fields, which determine how the optical
properties of the molecules are influenced by the presence of the plasmonics system, and
vice versa. The molecule is a classical oscillating charge density (usually a point dipole)
and the metal is a continuous body characterized by the frequency-dependent dielectric
function. In a usual Kretschmann configuration, surface plasmon polaritons and molecular
dipoles undergo to an interaction dependent on the plasmon energy and HOMO-LUMO
energy level of the organic macrocycle. If the plasmon energy is in resonance with the
HOMO-LUMO transition a variation in the angular position and depth of the SPR resonance
curve takes place. This behaviour results in a variation in the refractive index real and
imaginary part [39], thus demonstrating an energy transfer between plasmon polariton
and molecular dipole. Consequently, it is possible to stress that a more reactive chemical
environment is generated at the interface macrocycle/dielectric suitable to interact with
analytes of interest (VOCs) or gas molecules to detect. Furthermore, in our experimental
conditions, the use of magnetic/plasmonic materials as transducers, the presence of a
magnetic field in TMOKE configuration, instead of the usual noble metals, allow for an
additional degree of freedom for the modulation of electromagnetic field properties and
penetration depth of the plasmonic field in the dielectric. In fact, it allows light to interact
with the spins of the electrons and to actively manipulate the magnetic properties of such
composite material. Moreover, we experimentally demonstrate how these coupling effects
artificially enhance sensing properties in organic macrocycles like metallophthalocyanines
and metalloporphyrins. The existence of intense local electromagnetic fields around the
metal surfaces in contact with the organic molecules, due to excitation of the plasmonic
modes magnetically modulated, suggest that they are responsible of the investigated
surface-enhanced functionality. Taking into account the penetration depth of the resonant
plasmon of about 100 nm, the sensitive region is completely involved in the interaction
mechanisms. Consequently, the absorption sites involved in the interaction processes
and sensing, due to the presence in one case of TbPc2(OC11H21)8 organic macrocycles,
undergo to an energy transfer from plasmon to free π electrons of the TbPc2(OC11H21)8
ring and in the same time are undergo to a magnetic modulation. This effect is not active
for CoCoPo2; in this circumstance only a variation in the chemical environment takes place
with a consequent refractive index real part variation. In the latter case the sensing layer is
not electromagnetically reactive to the polar molecules like butylamine. On the contrary,
in the case of TbPc2(OC11H21)8, the energy transfer from plasmon to π free delocalised
electrons of the benzenic ring of the macroclyces gives rise to “hot” absorption sites. In these
conditions the polar analytes molecules are more easily captured changing the adsorption
desorption processes. In our discussion, we consider first the visible absorption spectrum
of TbPc2(OC11H21)8 in chloroform solution reported in Figure 6.
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It is characterized by three intense absorption bands located between 300–380 nm and
between 650–750 nm. The reflection spectrum of the floating film at the air-water interface
recorded at a surface pressure of 18 mN·m−1 appears very similar to the absorption
spectrum of the chloroform solution, just a red shift of the adsorption band at lowest
wavelength is observed.

Furthermore, the Langmuir-Schäfer film, obtained transferring five different layers of
TbPc2(OC11H21)8 from the Langmuir trough on a quartz substrate at a surface pressure
of 18 mN·m−1, shows the same absorption bands of the bis(phthalocyaninato) derivative
floating film, testifying that the deposition procedure does not influence the molecular
arrangement obtained at the air/subphase interface.

The main absorption peak of the CoCoPo2 chloroform solution reported in Figure 7
can be identified in the Soret band located in the range 350–470 nm. It is interesting to
observe that the Soret band is split in two signals at 402 and 433 nm. It is well-known
that ethane-bridged bisporphyrin derivatives can assume three different conformational
arrangements, the so-called syn-, anti- and tweezer forms. In particular, the signal at
402 nm can be attributed to the tweezer form of the bis-porphyrin derivative and the
433 nm is due to the anti-conformer [40].
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chloroform solution and in L-S thin film form deposited onto silica glass substrate.

Reflection spectrum of the floating film (black line), recorded at 30 mN·m−1, highlights
a decrease of the tweezer form while the signal of the anti-conformer becomes predomi-
nant [37]. On the contrary, when the floating film is transferred on the quartz substrate
by means of the LS method, the tweezer form is induced, and a new band appears as a
shoulder at about 375 nm suggesting that the CoCoPo2 are partially arranged in the closed
form (syn-conformer). Anyway, the anti-form does not disappear as confirmed by the
signal at 440 nm.

Figure 8 reports the optical absorption curves of the two analysed macrocycles de-
posited in thin film form and related to a single monolayer of both systems. It is possible
to observe a specific absorption peak of the TbPc2(OC11H21)8 centred at about 670 nm.
This absorption peak is in resonance with the plasmon energy wave propagating at the
gold/dielectric interface due to the evanescent wave generated from the Kretschmann
configuration by a HeNe (633 nm) incident laser beam. In the same spectral region, the
CoCoPo2 does not evidence any optical absorption and consequently any resonance or cou-
pling can be generated between the propagating plasmon and the macrocycle molecules.
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monolayer deposited onto silica glass substrate. The position of the transducers surface plasmon
resonance energy coupling with electronic transition of the TbPc2(OC11H21)8 is evidenced.

Figure 8 evidences this different optical behavior regarding the position in terms
of energy of the plasmon probe wavevector ksp. From the plasmonic curves reported
in Figure 9a, relative to the five CoCoPo2 monolayers, we stress a more limited energy
transfer between plasmon and CoCoPo2 molecule due to the absence of the overlap between
plasmon dipole energy and electronic molecular transition energies.
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Figure 9. (a,b) Experimental reflectivity curves (SPR) vs. angle of incidence of TbPc2(OC11H21)8 and CoCoPo2 macro-
cycles. (c) Magneto-plasmonic curves (TMOKE signal) of Au/Co/Au transducers covered by 5 monolayers (5ML) of
TbPc2(OC11H21)8 and CoCoPo2, respectivley.

There is in fact a red-shift in the SPR curve corresponding to a variation of the di-
electric constant real part and only a slight variation in the depth of the peak, linked to
the imaginary part of the dielectric constant and therefore to energy absorption phenom-
ena. On the contrary, from the plasmonic curves reported in Figure 9b and relative to
five TbPc2(OC11H21)8 monolayers, we stress variation due to the refractive index of the
macrocycles adlayer but also a a significant energy transfer between propagating plasmon
and TbPc2(OC11H21)8 molecule.

In fact, a red-shift of the SPR signal is evidenced, but also a substantial decrease in
the depth of the SPR peak. A dipole-dipole interaction between plasmonic dipole energy
and free π electrons of the phthalocyanine ring takes place. The physical effects of this
interaction are evidenced also in the MOSPR curves reported in Figure 9c.

In both cases the magneto-optical TMOKE signal probes are characterized by a sharp
resonance like angular behaviour at around 45◦, i.e., when the SPP is excited, but the
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experimental effects are significantly different in terms of simple resonant schift and dept of
the resonant curve. The resonant angle θMOSPR corresponding to the activation of MOSPR
signal is more precisely visualized by plotting the quantity 1/|TMOKE|. Plotting the
data in this manner makes much easier to visualize the gain in precision and response.
In Figure 10a the absolute value of 1/|TMOKE| as a function of the incidence angle θ

for TbPc2(OC11H21)8 and CoCoPo2 molecules is reported. The spectra of 1/|MOSPR|
reported in Figure 10 evidences a very narrow signal FWHM giving the opportunity to
discriminate between the nature of the single monolayer deposited onto the surface of
transducer, pointing out at this point the ability of the system to discriminate between
molecules with π-π* electronic transitions close to the resonant plasmon or, on the contrary
as for CoCoPo2, far away. It also demonstrates the ability of the system to sense unequivocal
the presence of five monolayer through a laser spot probe (1 mm in size) and through
an high magneto-plasmonic signal, so that we can stress to have taken the road towards
the realization of a system with improved molecular sensing also under five monolayers,
thus able to monitor even the single monolayer (single molecule layer) deposited onto the
MOSPR transducer. Furthermore, we can also demonstrate that in terms of VOCs sensing
capability comparison between the two configuration, Figure 10b puts in evidence the
sensing responses in term of 1/|TMOKE| signal when the sensing molecules are in contact
with a typical VOC like butylamine. The rationale is that the interactions between VOCs and
organic macrocycles are favoured in the case of coupling between resonant plasmons energy
and the π free electron of the phthalocyanine ring in comparison with to the decoupling
situation relative to the porphyrins, consequently the sensing signal increases.

Despite the interesting results obtained, we need also to take into account the extinc-
tion coefficients and the direction of the dipole (related to the orientation of the molecules
in the monolayer) which may also play a significant role in the sensing mechanism. More-
over the frontier orbital energies have to be estimated by using other methods taking into
account that the two analysed compounds have different molecular structures and more
further studies will be done by our group to support the claims.
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4. Conclusions

Optical and magneto-optical surface plasmon resonance (MOSPR) characterizations
have been performed on layers of two organic macrocycles—TbPc2(OC11H21)8 phthalocya-
nine and CoCoPo2 porphyrin—both deposited by the Langmuir-Schäfer (LS) technique.
Investigations of the MOSPR properties, in Kretschmann configuration by angular modula-
tion, demonstrate an interesting capacity to discriminate the two organic macrocycles with
absorption electronic transitions resonant with surface plasmon energy in Kretschmann
configuration. A sensitivity increase was detected by MOSPR sensing probe if an overlap
between the plasmonic probe energy and the electronic transitions of the PC ring free
electrons of the investigated macrocycles are in resonance condition. In this experimental
condition we emphasize how, most likely, single molecule detection can be obtained by
using 1/|MOSPR| magneto-plasmonic signal. Moreover, an increase in the VOCs sensing
capacity is demonstrated when the propagating plasmon energy is in resonance with the
HOMO-LUMO transitions. Further analysis by using different metal-coordinated organic
macrocycles tuned to the plasmon resonance energy are in progress in order to confirm this
effect. The related results will be the object of a future paper, together to the detection limit
concentration of n-butylamine using the complex system and reversibility of the TMOKE
signal in the presence or absence of butylamine vapors.
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